File: vm_armv7l.c

package info (click to toggle)
iortcw 1.51.c%2Bdfsg1-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 25,304 kB
  • sloc: ansic: 457,326; cpp: 6,507; makefile: 4,737; sh: 1,292; asm: 1,176; xml: 31
file content (1222 lines) | stat: -rw-r--r-- 40,129 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
/*
===========================================================================
Copyright (C) 2009 David S. Miller <davem@davemloft.net>
Copyright (C) 2013,2014 SUSE Linux Products GmbH

This file is part of Quake III Arena source code.

Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.

Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Quake III Arena source code; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
===========================================================================

ARMv7l VM by Ludwig Nussel <ludwig.nussel@suse.de>

TODO: optimization

Docu:
http://www.coranac.com/tonc/text/asm.htm
http://www.heyrick.co.uk/armwiki/Category:Opcodes
ARMv7-A_ARMv7-R_DDI0406_2007.pdf
*/

#include <sys/types.h>
#include <sys/mman.h>
#include <sys/time.h>
#include <time.h>
#include <stddef.h>

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

#include "vm_local.h"
#define R0	0
#define R1	1
#define R2	2
#define R3	3
#define R4	4

#define R12	12

#define FP	11
#define SP	13
#define LR	14
#define PC	15

#define APSR_nzcv	15

#define S14     14
#define S15     15

#define rOPSTACK	5
#define rOPSTACKBASE	6
#define rCODEBASE	7
#define rPSTACK		8
#define rDATABASE	9
#define rDATAMASK	10

#define bit(x) (1<<x)

/* arm eabi, builtin gcc functions */
int __aeabi_idiv (int, int);
unsigned __aeabi_uidiv (unsigned, unsigned);
void __aeabi_idivmod(void);
void __aeabi_uidivmod(void);

/* exit() won't be called but use it because it is marked with noreturn */
#define DIE( reason, args... ) \
	do { \
		Com_Error(ERR_DROP, "vm_arm compiler error: " reason, ##args); \
		exit(1); \
	} while(0)

/*
 * opcode information table:
 * - length of immediate value
 * - returned register type
 * - required register(s) type
 */
#define opImm0	0x0000 /* no immediate */
#define opImm1	0x0001 /* 1 byte immadiate value after opcode */
#define opImm4	0x0002 /* 4 bytes immediate value after opcode */

#define opRet0	0x0000 /* returns nothing */
#define opRetI	0x0004 /* returns integer */
#define opRetF	0x0008 /* returns float */
#define opRetIF	(opRetI | opRetF) /* returns integer or float */

#define opArg0	0x0000 /* requires nothing */
#define opArgI	0x0010 /* requires integer(s) */
#define opArgF	0x0020 /* requires float(s) */
#define opArgIF	(opArgI | opArgF) /* requires integer or float */

#define opArg2I	0x0040 /* requires second argument, integer */
#define opArg2F	0x0080 /* requires second argument, float */
#define opArg2IF (opArg2I | opArg2F) /* requires second argument, integer or float */

static const unsigned char vm_opInfo[256] =
{
	[OP_UNDEF]	= opImm0,
	[OP_IGNORE]	= opImm0,
	[OP_BREAK]	= opImm0,
	[OP_ENTER]	= opImm4,
			/* OP_LEAVE has to accept floats, they will be converted to ints */
	[OP_LEAVE]	= opImm4 | opRet0 | opArgIF,
			/* only STORE4 and POP use values from OP_CALL,
			 * no need to convert floats back */
	[OP_CALL]	= opImm0 | opRetI | opArgI,
	[OP_PUSH]	= opImm0 | opRetIF,
	[OP_POP]	= opImm0 | opRet0 | opArgIF,
	[OP_CONST]	= opImm4 | opRetIF,
	[OP_LOCAL]	= opImm4 | opRetI,
	[OP_JUMP]	= opImm0 | opRet0 | opArgI,

	[OP_EQ]		= opImm4 | opRet0 | opArgI | opArg2I,
	[OP_NE]		= opImm4 | opRet0 | opArgI | opArg2I,
	[OP_LTI]	= opImm4 | opRet0 | opArgI | opArg2I,
	[OP_LEI]	= opImm4 | opRet0 | opArgI | opArg2I,
	[OP_GTI]	= opImm4 | opRet0 | opArgI | opArg2I,
	[OP_GEI]	= opImm4 | opRet0 | opArgI | opArg2I,
	[OP_LTU]	= opImm4 | opRet0 | opArgI | opArg2I,
	[OP_LEU]	= opImm4 | opRet0 | opArgI | opArg2I,
	[OP_GTU]	= opImm4 | opRet0 | opArgI | opArg2I,
	[OP_GEU]	= opImm4 | opRet0 | opArgI | opArg2I,
	[OP_EQF]	= opImm4 | opRet0 | opArgF | opArg2F,
	[OP_NEF]	= opImm4 | opRet0 | opArgF | opArg2F,
	[OP_LTF]	= opImm4 | opRet0 | opArgF | opArg2F,
	[OP_LEF]	= opImm4 | opRet0 | opArgF | opArg2F,
	[OP_GTF]	= opImm4 | opRet0 | opArgF | opArg2F,
	[OP_GEF]	= opImm4 | opRet0 | opArgF | opArg2F,

	[OP_LOAD1]	= opImm0 | opRetI | opArgI,
	[OP_LOAD2]	= opImm0 | opRetI | opArgI,
	[OP_LOAD4]	= opImm0 | opRetIF| opArgI,
	[OP_STORE1]	= opImm0 | opRet0 | opArgI | opArg2I,
	[OP_STORE2]	= opImm0 | opRet0 | opArgI | opArg2I,
	[OP_STORE4]	= opImm0 | opRet0 | opArgIF| opArg2I,
	[OP_ARG]	= opImm1 | opRet0 | opArgIF,
	[OP_BLOCK_COPY]	= opImm4 | opRet0 | opArgI | opArg2I,

	[OP_SEX8]	= opImm0 | opRetI | opArgI,
	[OP_SEX16]	= opImm0 | opRetI | opArgI,
	[OP_NEGI]	= opImm0 | opRetI | opArgI,
	[OP_ADD]	= opImm0 | opRetI | opArgI | opArg2I,
	[OP_SUB]	= opImm0 | opRetI | opArgI | opArg2I,
	[OP_DIVI]	= opImm0 | opRetI | opArgI | opArg2I,
	[OP_DIVU]	= opImm0 | opRetI | opArgI | opArg2I,
	[OP_MODI]	= opImm0 | opRetI | opArgI | opArg2I,
	[OP_MODU]	= opImm0 | opRetI | opArgI | opArg2I,
	[OP_MULI]	= opImm0 | opRetI | opArgI | opArg2I,
	[OP_MULU]	= opImm0 | opRetI | opArgI | opArg2I,
	[OP_BAND]	= opImm0 | opRetI | opArgI | opArg2I,
	[OP_BOR]	= opImm0 | opRetI | opArgI | opArg2I,
	[OP_BXOR]	= opImm0 | opRetI | opArgI | opArg2I,
	[OP_BCOM]	= opImm0 | opRetI | opArgI,
	[OP_LSH]	= opImm0 | opRetI | opArgI | opArg2I,
	[OP_RSHI]	= opImm0 | opRetI | opArgI | opArg2I,
	[OP_RSHU]	= opImm0 | opRetI | opArgI | opArg2I,
	[OP_NEGF]	= opImm0 | opRetF | opArgF,
	[OP_ADDF]	= opImm0 | opRetF | opArgF | opArg2F,
	[OP_SUBF]	= opImm0 | opRetF | opArgF | opArg2F,
	[OP_DIVF]	= opImm0 | opRetF | opArgF | opArg2F,
	[OP_MULF]	= opImm0 | opRetF | opArgF | opArg2F,
	[OP_CVIF]	= opImm0 | opRetF | opArgI,
	[OP_CVFI]	= opImm0 | opRetI | opArgF,
};

#ifdef DEBUG_VM
static const char *opnames[256] = {
	"OP_UNDEF", "OP_IGNORE", "OP_BREAK", "OP_ENTER", "OP_LEAVE", "OP_CALL",
	"OP_PUSH", "OP_POP", "OP_CONST", "OP_LOCAL", "OP_JUMP",
	"OP_EQ", "OP_NE", "OP_LTI", "OP_LEI", "OP_GTI", "OP_GEI",
	"OP_LTU", "OP_LEU", "OP_GTU", "OP_GEU", "OP_EQF", "OP_NEF",
	"OP_LTF", "OP_LEF", "OP_GTF", "OP_GEF",
	"OP_LOAD1", "OP_LOAD2", "OP_LOAD4", "OP_STORE1", "OP_STORE2",
	"OP_STORE4", "OP_ARG", "OP_BLOCK_COPY",
	"OP_SEX8", "OP_SEX16",
	"OP_NEGI", "OP_ADD", "OP_SUB", "OP_DIVI", "OP_DIVU",
	"OP_MODI", "OP_MODU", "OP_MULI", "OP_MULU", "OP_BAND",
	"OP_BOR", "OP_BXOR", "OP_BCOM", "OP_LSH", "OP_RSHI", "OP_RSHU",
	"OP_NEGF", "OP_ADDF", "OP_SUBF", "OP_DIVF", "OP_MULF",
	"OP_CVIF", "OP_CVFI",
};

#define NOTIMPL(x) \
	do { Com_Error(ERR_DROP, "instruction not implemented: %s", opnames[x]); } while(0)
#else
#define NOTIMPL(x) \
	do { Com_Printf(S_COLOR_RED "instruction not implemented: %x\n", x); vm->compiled = qfalse; return; } while(0)
#endif

static void VM_Destroy_Compiled(vm_t *vm)
{
	if (vm->codeBase) {
		if (munmap(vm->codeBase, vm->codeLength))
			Com_Printf(S_COLOR_RED "Memory unmap failed, possible memory leak\n");
	}
	vm->codeBase = NULL;
}

/*
=================
ErrJump
Error handler for jump/call to invalid instruction number
=================
*/

static void __attribute__((__noreturn__)) ErrJump(unsigned num)
{
	Com_Error(ERR_DROP, "program tried to execute code outside VM (%x)", num);
}

static int asmcall(int call, int pstack)
{
	// save currentVM so as to allow for recursive VM entry
	vm_t *savedVM = currentVM;
	int i, ret;

	// modify VM stack pointer for recursive VM entry
	currentVM->programStack = pstack - 4;

	if (sizeof(intptr_t) == sizeof(int)) {
		intptr_t *argPosition = (intptr_t *)((byte *)currentVM->dataBase + pstack + 4);
		argPosition[0] = -1 - call;
		ret = currentVM->systemCall(argPosition);
	} else {
		intptr_t args[MAX_VMSYSCALL_ARGS];

		args[0] = -1 - call;
		int *argPosition = (int *)((byte *)currentVM->dataBase + pstack + 4);
		for( i = 1; i < ARRAY_LEN(args); i++ )
			args[i] = argPosition[i];

		ret = currentVM->systemCall(args);
	}

	currentVM = savedVM;

	return ret;
}

void _emit(vm_t *vm, unsigned isn, int pass)
{
#if 0
	static int fd = -2;
	if (fd == -2)
		fd = open("code.bin", O_TRUNC|O_WRONLY|O_CREAT, 0644);
	if (fd > 0)
		write(fd, &isn, 4);
#endif

	if (pass)
		memcpy(vm->codeBase+vm->codeLength, &isn, 4);
	vm->codeLength+=4;
}

#define emit(isn) _emit(vm, isn, pass)

static unsigned char off8(unsigned val)
{
	if (val&3)
		DIE("offset must be multiple of four");
	if (val > 1020)
		DIE("offset too large");
	return val>>2;
}

// ARM is really crazy ...
static unsigned short rimm(unsigned val)
{
	unsigned shift = 0;
	if (val < 256)
		return val;
	// rotate the value until it fits
	while (shift < 16 && (val>255 || !(val&3))) {
		val =  (val&3)<<30 | val>>2;
		++shift;
	}
	if (shift > 15 || val > 255) {
		DIE("immediate cannot be encoded (%d, %d)\n", shift, val);
	}
	return (16-shift)<<8 | val;
}

// same as rimm but doesn't die, returns 0 if not encodable so don't call with zero as argument!
static unsigned short can_encode(unsigned val)
{
	unsigned shift = 0;
	if (!val)
		DIE("can_encode: invalid argument");
	if (val < 256)
		return val;
	// rotate the value until it fits
	while (shift < 16 && (val>255 || !(val&3))) {
		val =  (val&3)<<30 | val>>2;
		++shift;
	}
	if (shift > 15 || val > 255) {
		return 0;
	}
	return (16-shift)<<8 | val;
}

#define PREINDEX (1<<24)

#define rASR(i, reg) (0b10<<5 | ((i&31)<<7) | reg)
#define rLSL(i, reg) (0b00<<5 | ((i&31)<<7) | reg)
#define rLSR(i, reg) (0b01<<5 | ((i&31)<<7) | reg)
#define rROR(i, reg) (0b11<<5 | ((i&31)<<7) | reg)

// conditions
#define EQ (0b0000<<28)
#define NE (0b0001<<28)
#define CS (0b0010<<28)
#define HS CS
#define CC (0b0011<<28)
#define LO CC
#define MI (0b0100<<28)
#define PL (0b0101<<28)
#define VS (0b0110<<28)
#define VC (0b0111<<28)
#define HI (0b1000<<28)
#define LS (0b1001<<28)
#define GE (0b1010<<28)
#define LT (0b1011<<28)
#define GT (0b1100<<28)
#define LE (0b1101<<28)
#define AL (0b1110<<28)
#define cond(what, op) (what | (op&~AL))

// XXX: v not correctly computed
#define BKPT(v) (AL | 0b10010<<20 | ((v&~0xF)<<4) | 0b0111<<4 | (v&0xF))

#define YIELD (0b110010<<20 | 0b1111<<12 | 1)
#define NOP cond(AL, YIELD)

// immediate value must fit in 0xFF!
#define ANDi(dst, src, i) (AL | (0b001<<25) | (0b00000<<20) | (src<<16) | (dst<<12) | rimm(i))
#define EORi(dst, src, i) (AL | (0b001<<25) | (0b00010<<20) | (src<<16) | (dst<<12) | rimm(i))
#define SUBi(dst, src, i) (AL | (0b001<<25) | (0b00100<<20) | (src<<16) | (dst<<12) | rimm(i))
#define RSBi(dst, src, i) (AL | (0b001<<25) | (0b00110<<20) | (src<<16) | (dst<<12) | rimm(i))
#define ADDi(dst, src, i) (AL | (0b001<<25) | (0b01000<<20) | (src<<16) | (dst<<12) | rimm(i))
#define ADCi(dst, src, i) (AL | (0b001<<25) | (0b01010<<20) | (src<<16) | (dst<<12) | rimm(i))
#define SBCi(dst, src, i) (AL | (0b001<<25) | (0b01100<<20) | (src<<16) | (dst<<12) | rimm(i))
#define RSCi(dst, src, i) (AL | (0b001<<25) | (0b01110<<20) | (src<<16) | (dst<<12) | rimm(i))

#define ORRi(dst, src, i) (AL | (0b001<<25) | (0b11000<<20) | (src<<16) | (dst<<12) | rimm(i))
#define MOVi(dst,      i) (AL | (0b001<<25) | (0b11010<<20) |             (dst<<12) | rimm(i))
#define BICi(dst, src, i) (AL | (0b001<<25) | (0b11100<<20) | (src<<16) | (dst<<12) | rimm(i))
#define MVNi(dst,      i) (AL | (0b001<<25) | (0b11110<<20) |             (dst<<12) | rimm(i))

#define MOVW(dst,      i) (AL |  (0b11<<24)                 | ((((i)>>12)&0xF)<<16) | (dst<<12) | ((i)&((1<<12)-1)))
#define MOVT(dst,      i) (AL |  (0b11<<24) |  (0b0100<<20) | ((((i)>>12)&0xF)<<16) | (dst<<12) | ((i)&((1<<12)-1)))

#define TSTi(     src, i) (AL | (0b001<<25) | (0b10001<<20) | (src<<16) |             rimm(i))
#define TEQi(     src, i) (AL | (0b001<<25) | (0b10011<<20) | (src<<16) |             rimm(i))
#define CMPi(     src, i) (AL | (0b001<<25) | (0b10101<<20) | (src<<16) |             rimm(i))
#define CMNi(     src, i) (AL | (0b001<<25) | (0b10111<<20) | (src<<16) |             rimm(i))

#define ANDSi(dst, src, i) (ANDi(dst, src, i) | (1<<20))
#define EORSi(dst, src, i) (EORi(dst, src, i) | (1<<20))
#define SUBSi(dst, src, i) (SUBi(dst, src, i) | (1<<20))
#define RSBSi(dst, src, i) (RSBi(dst, src, i) | (1<<20))
#define ADDSi(dst, src, i) (ADDi(dst, src, i) | (1<<20))
#define ADCSi(dst, src, i) (ADCi(dst, src, i) | (1<<20))
#define SBCSi(dst, src, i) (SBCi(dst, src, i) | (1<<20))
#define RSCSi(dst, src, i) (RSCi(dst, src, i) | (1<<20))

#define ORRSi(dst, src, i) (ORRi(dst, src, i) | (1<<20))
#define MOVSi(dst,      i) (MOVi(dst,      i) | (1<<20))
#define BICSi(dst, src, i) (BICi(dst, src, i) | (1<<20))
#define MVNSi(dst,      i) (MVNi(dst, src, i) | (1<<20))

#define AND(dst, src, reg) (AL | (0b000<<25) | (0b00000<<20) | (src<<16) | (dst<<12) | reg)
#define EOR(dst, src, reg) (AL | (0b000<<25) | (0b00010<<20) | (src<<16) | (dst<<12) | reg)
#define SUB(dst, src, reg) (AL | (0b000<<25) | (0b00100<<20) | (src<<16) | (dst<<12) | reg)
#define RSB(dst, src, reg) (AL | (0b000<<25) | (0b00110<<20) | (src<<16) | (dst<<12) | reg)
#define ADD(dst, src, reg) (AL | (0b000<<25) | (0b01000<<20) | (src<<16) | (dst<<12) | reg)
#define ADC(dst, src, reg) (AL | (0b000<<25) | (0b01010<<20) | (src<<16) | (dst<<12) | reg)
#define SBC(dst, src, reg) (AL | (0b000<<25) | (0b01100<<20) | (src<<16) | (dst<<12) | reg)
#define RSC(dst, src, reg) (AL | (0b000<<25) | (0b01110<<20) | (src<<16) | (dst<<12) | reg)

#define ORR(dst, src, reg) (AL | (0b000<<25) | (0b11000<<20) | (src<<16) | (dst<<12) | reg)
#define MOV(dst,      src) (AL | (0b000<<25) | (0b11010<<20) |             (dst<<12) | src)

#define LSL(dst, src, reg) (AL | (0b000<<25) | (0b1101<<21) | (0<<20) | (dst<<12) | (reg<<8)     | (0b0001<<4) | src)
#define LSR(dst, src, reg) (AL | (0b000<<25) | (0b1101<<21) | (0<<20) | (dst<<12) | (reg<<8)     | (0b0011<<4) | src)
#define ASR(dst, src, reg) (AL | (0b000<<25) | (0b1101<<21) | (0<<20) | (dst<<12) | (reg<<8)     | (0b0101<<4) | src)
#define ROR(dst, src, reg) (AL | (0b000<<25) | (0b1101<<21) | (0<<20) | (dst<<12) | (reg<<8)     | (0b0111<<4) | src)

#define LSLi(dst, src, i)  (AL | (0b000<<25) | (0b1101<<21) | (0<<20) | (dst<<12) | ((i&0x1F)<<7) | (0b000<<4) | src)
#define LSRi(dst, src, i)  (AL | (0b000<<25) | (0b1101<<21) | (0<<20) | (dst<<12) | ((i&0x1F)<<7) | (0b010<<4) | src)
#define ASRi(dst, src, i)  (AL | (0b000<<25) | (0b1101<<21) | (0<<20) | (dst<<12) | ((i&0x1F)<<7) | (0b100<<4) | src)
#define RORi(dst, src, i)  (AL | (0b000<<25) | (0b1101<<21) | (0<<20) | (dst<<12) | ((i&0x1F)<<7) | (0b110<<4) | src)
#define RRX(dst, src)      (AL | (0b000<<25) | (0b1101<<21) | (0<<20) | (dst<<12) |                 (0b110<<4) | src)

#define BIC(dst, src, reg) (AL | (0b000<<25) | (0b11100<<20) | (src<<16) | (dst<<12) | reg)
#define MVN(dst,      reg) (AL | (0b000<<25) | (0b11110<<20) |             (dst<<12) | reg)

#define TST(     src, reg) (AL | (0b000<<25) | (0b10001<<20) | (src<<16) |             reg)
#define TEQ(     src, reg) (AL | (0b000<<25) | (0b10011<<20) | (src<<16) |             reg)
#define CMP(     src, reg) (AL | (0b000<<25) | (0b10101<<20) | (src<<16) |             reg)
#define CMN(     src, reg) (AL | (0b000<<25) | (0b10111<<20) | (src<<16) |             reg)

#define LDRa(dst, base, off)   (AL | (0b011<<25) | (0b1100<<21) | (1<<20) | base<<16 | dst<<12 | off)
#define LDRx(dst, base, off)   (AL | (0b011<<25) | (0b1000<<21) | (1<<20) | base<<16 | dst<<12 | off)

#define LDRai(dst, base, off)  (AL | (0b010<<25) | (0b1100<<21) | (1<<20) | base<<16 | dst<<12 | rimm(off))
#define LDRxi(dst, base, off)  (AL | (0b010<<25) | (0b1000<<21) | (1<<20) | base<<16 | dst<<12 | rimm(off))
#define LDRxiw(dst, base, off) (AL | (0b010<<25) | (0b1001<<21) | (1<<20) | base<<16 | dst<<12 | rimm(off))

#define LDRTa(dst, base, off)  (AL | (0b011<<25) | (0b0101<<21) | (1<<20) | base<<16 | dst<<12 | off)
#define LDRTx(dst, base, off)  (AL | (0b011<<25) | (0b0001<<21) | (1<<20) | base<<16 | dst<<12 | off)
#define LDRTai(dst, base, off) (AL | (0b010<<25) | (0b0101<<21) | (1<<20) | base<<16 | dst<<12 | rimm(off))
#define LDRTxi(dst, base, off) (AL | (0b010<<25) | (0b0001<<21) | (1<<20) | base<<16 | dst<<12 | rimm(off))

#define LDRBa(dst, base, off)  (AL | (0b011<<25) | (0b1110<<21) | (1<<20) | base<<16 | dst<<12 | off)
#define LDRSBai(dst, base, off) (AL | (0b000<<25) | (0b0110<<21) | (1<<20) | base<<16 | dst<<12 | ((off&0xF0)<<4)|0b1101<<4|(off&0x0F))
#define STRBa(dst, base, off)  (AL | (0b011<<25) | (0b1110<<21) | (0<<20) | base<<16 | dst<<12 | off)

#define LDRHa(dst, base, off)   (AL | (0b000<<25) | (0b1100<<21) | (1<<20) | base<<16 | dst<<12 | (0b1011<<4) | off)
#define LDRSHai(dst, base, off) (AL | (0b000<<25) | (0b1110<<21) | (1<<20) | base<<16 | dst<<12 | ((off&0xF0)<<4)|0b1111<<4|(off&0x0F))
#define STRHa(dst, base, off)   (AL | (0b000<<25) | (0b1100<<21) | (0<<20) | base<<16 | dst<<12 | (0b1011<<4) | off)

#define STRa(dst, base, off)   (AL | (0b011<<25) | (0b1100<<21) | (0<<20) | base<<16 | dst<<12 | off)
#define STRx(dst, base, off)   (AL | (0b011<<25) | (0b1000<<21) | (0<<20) | base<<16 | dst<<12 | off)
#define STRai(dst, base, off)  (AL | (0b010<<25) | (0b1100<<21) | (0<<20) | base<<16 | dst<<12 | rimm(off))
#define STRxi(dst, base, off)  (AL | (0b010<<25) | (0b1000<<21) | (0<<20) | base<<16 | dst<<12 | rimm(off))
#define STRaiw(dst, base, off) (AL | (0b010<<25) | (0b1101<<21) | (0<<20) | base<<16 | dst<<12 | rimm(off))
#define STRxiw(dst, base, off) (AL | (0b010<<25) | (0b1001<<21) | (0<<20) | base<<16 | dst<<12 | rimm(off))

// load with post-increment
#define POP1(reg)              (AL | (0b010<<25) | (0b0100<<21) | (1<<20) |   SP<<16 | reg<<12 | reg)
// store with post-increment
#define PUSH1(reg)             (AL | (0b010<<25) | (0b1001<<21) | (0<<20) |   SP<<16 | reg<<12 | 4)

// branch to target address (for small jumps)
#define Bi(i) \
	(AL | (0b10)<<26 | (1<<25) /*I*/ | (0<<24) /*L*/ | (i))
// call subroutine
#define BLi(i) \
	(AL | (0b10)<<26 | (1<<25) /*I*/ | (1<<24) /*L*/ | (i))
// branch and exchange (register)
#define BX(reg) \
	(AL | 0b00010010<<20 | 0b1111<<16 | 0b1111<<12 | 0b1111<<8| 0b0001<<4 | reg)
// call subroutine (register)
#define BLX(reg) \
	(AL | 0b00010010<<20 | 0b1111<<16 | 0b1111<<12 | 0b1111<<8| 0b0011<<4 | reg)

#define PUSH(mask)    (AL | (0b100100<<22) | (0b10<<20) | (0b1101<<16) |  mask)
#define PUSH2(r1, r2) (AL | (0b100100<<22) | (0b10<<20) | (0b1101<<16) |  1<<r1 | 1<<r2)
//#define PUSH1(reg) STRxiw(SP, reg, 4)

#define POP(mask)     (0xe8bd0000|mask)

#define STM(base, regs) \
	(AL | 0b100<<25 | 0<<24/*P*/| 0<<24/*U*/| 0<<24/*S*/| 0<<24/*W*/ | (base<<16) | (regs&~(1<<16)))

// note: op1 and op2 must not be the same
#define MUL(op1, op2, op3) \
	(AL | 0b0000000<<21 | (1<<20) /*S*/ | (op1<<16) | (op3<<8) | 0b1001<<4 | (op2))

// puts integer in R0
#define emit_MOVR0i(arg) emit_MOVRxi(R0, arg)

// puts integer arg in register reg
#define emit_MOVRxi(reg, arg) do { \
	emit(MOVW(reg, (arg&0xFFFF))); \
	if (arg > 0xFFFF) \
		emit(MOVT(reg, (((arg>>16)&0xFFFF)))); \
	} while(0)

// puts integer arg in register reg. adds nop if only one instr is needed to
// make size constant
#define emit_MOVRxi_or_NOP(reg, arg) do { \
	emit(MOVW(reg, (arg&0xFFFF))); \
	if (arg > 0xFFFF) \
		emit(MOVT(reg, (((arg>>16)&0xFFFF)))); \
	else \
		emit(NOP); \
	} while(0)

// arm core register -> singe precision register
#define VMOVass(Vn, Rt) (AL|(0b1110<<24)|(0b000<<21)|(0<<20)| ((Vn>>1)<<16) | (Rt<<12) | (0b1010<<8) | ((Vn&1)<<7) | (1<<4))
// singe precision register -> arm core register
#define VMOVssa(Rt, Vn) (AL|(0b1110<<24)|(0b000<<21)|(1<<20)| ((Vn>>1)<<16) | (Rt<<12) | (0b1010<<8) | ((Vn&1)<<7) | (1<<4))

#define _VCVT_F(Vd, Vm, opc2, op) \
	(AL|(0b11101<<23)|((Vd&1)<<22)|(0b111<<19)|(opc2<<16)|((Vd>>1)<<12)|(0b101<<9)|(0<<8)|(op<<7)|(1<<6)|((Vm&1)<<5)|(Vm>>1))
#define VCVT_F32_U32(Sd, Sm) _VCVT_F(Sd, Sm, 0b000, 0 /* unsigned */)
#define VCVT_U32_F32(Sd, Sm) _VCVT_F(Sd, Sm, 0b100, 1 /* round zero */)
#define VCVT_F32_S32(Sd, Sm) _VCVT_F(Sd, Sm, 0b000, 1 /* unsigned */)
#define VCVT_S32_F32(Sd, Sm) _VCVT_F(Sd, Sm, 0b101, 1 /* round zero */)

#define VLDRa(Vd, Rn, i) (AL|(0b1101<<24)|1<<23|((Vd&1)<<22)|1<<20|(Rn<<16)|((Vd>>1)<<12)|(0b1010<<8)|off8(i))
#define VSTRa(Vd, Rn, i) (AL|(0b1101<<24)|1<<23|((Vd&1)<<22)|0<<20|(Rn<<16)|((Vd>>1)<<12)|(0b1010<<8)|off8(i))

#define VNEG_F32(Vd, Vm) \
	(AL|(0b11101<<23)|((Vd&1)<<22)|(0b11<<20)|(1<<16)|((Vd>>1)<<12)|(0b101<<9)|(0<<8)|(1<<6)|((Vm&1)<<5)|(Vm>>1))

#define VADD_F32(Vd, Vn, Vm) \
	(AL|(0b11100<<23)|((Vd&1)<<22)|(0b11<<20)|((Vn>>1)<<16)|((Vd>>1)<<12)|(0b101<<9)|(0<<8)|((Vn&1)<<7)|(0<<6)|((Vm&1)<<5)|(Vm>>1))
#define VSUB_F32(Vd, Vn, Vm) \
	(AL|(0b11100<<23)|((Vd&1)<<22)|(0b11<<20)|((Vn>>1)<<16)|((Vd>>1)<<12)|(0b101<<9)|(0<<8)|((Vn&1)<<7)|(1<<6)|((Vm&1)<<5)|(Vm>>1))
#define VMUL_F32(Vd, Vn, Vm) \
	(AL|(0b11100<<23)|((Vd&1)<<22)|(0b10<<20)|((Vn>>1)<<16)|((Vd>>1)<<12)|(0b101)<<9|(0<<8)|((Vn&1)<<7)|(0<<6)|((Vm&1)<<5)|(Vm>>1))
#define VDIV_F32(Vd, Vn, Vm) \
	(AL|(0b11101<<23)|((Vd&1)<<22)|(0b00<<20)|((Vn>>1)<<16)|((Vd>>1)<<12)|(0b101<<9)|(0<<8)|((Vn&1)<<7)|(0<<6)|((Vm&1)<<5)|(Vm>>1))

#define _VCMP_F32(Vd, Vm, E) \
	(AL|(0b11101<<23)|((Vd&1)<<22)|(0b11<<20)|((0b0100)<<16)|((Vd>>1)<<12)|(0b101<<9)|(0<<8)|(E<<7)|(1<<6)|((Vm&1)<<5)|(Vm>>1))
#define VCMP_F32(Vd, Vm) _VCMP_F32(Vd, Vm, 0)

#define VMRS(Rt) \
	(AL|(0b11101111<<20)|(0b0001<<16)|(Rt<<12)|(0b1010<<8)|(1<<4))

// check if instruction in R0 is within range. Clobbers R1, R12
#define CHECK_JUMP do { \
	static int bytes_to_skip = -1; \
	static unsigned branch = -1; \
	emit_MOVRxi(R1, (unsigned)vm->instructionCount); \
	emit(CMP(R0, R1)); \
	if (branch == -1) \
		branch = vm->codeLength; \
	emit(cond(LT, Bi(j_rel(bytes_to_skip)))); \
	emit_MOVRxi_or_NOP(R12, (unsigned)ErrJump); \
	emit(BLX(R12)); \
	if (bytes_to_skip == -1) \
		bytes_to_skip = vm->codeLength - branch; \
} while(0)

//#define CONST_OPTIMIZE
#ifdef CONST_OPTIMIZE
#define MAYBE_EMIT_CONST() \
	if (got_const) \
	{ \
		got_const = 0; \
		vm->instructionPointers[instruction-1] = assembler_get_code_size(); \
		STACK_PUSH(4); \
		emit("movl $%d, (%%r9, %%rbx, 4)", const_value); \
	}
#else
#define MAYBE_EMIT_CONST()
#endif

// optimize: use load multiple
#define IJ(comparator) do { \
	MAYBE_EMIT_CONST(); \
	emit_MOVRxi(R0, arg.i); \
	CHECK_JUMP; \
	emit(LDRTxi(R0, rOPSTACK, 4)); \
	emit(LDRTxi(R1, rOPSTACK, 4));  \
	emit(CMP(R1, R0)); \
	emit(cond(comparator, Bi(j_rel(vm->instructionPointers[arg.i]-vm->codeLength)))); \
} while (0)

#define FJ(comparator) do { \
	emit_MOVRxi(R0, arg.i); \
	CHECK_JUMP; \
	emit(SUBi(rOPSTACK, rOPSTACK, 8)); \
	emit(VLDRa(S15, rOPSTACK, 4)); \
	emit(VLDRa(S14, rOPSTACK, 8)); \
	emit(VCMP_F32(S15, S14)); \
	emit(VMRS(APSR_nzcv)); \
	emit(cond(comparator, Bi(j_rel(vm->instructionPointers[arg.i]-vm->codeLength)))); \
} while (0)

#define printreg(reg) emit(PUSH1(R3)); emit(BLX(reg)); emit(POP1(R3));

static inline unsigned _j_rel(int x, int pc)
{
	if (x&3) goto err;
	x = (x>>2)-2;
	if (x < 0)
	{
		if ((x&(0xFF<<24)) != 0xFF<<24)
			goto err;
		x &= ~(0xFF<<24);
	}
	else if (x&(0xFF<<24))
		goto err;
	return x;
err:
	DIE("jump %d out of range at %d", x, pc);
}

void VM_Compile(vm_t *vm, vmHeader_t *header)
{
	unsigned char *code;
	int i_count, pc = 0;
	int pass;
	int codeoffsets[2]; // was 1024 but it's only used for OFF_CODE and OFF_IMMEDIATES

#define j_rel(x) (pass?_j_rel(x, pc):0xBAD)
#define OFFSET(i) (pass?(j_rel(codeoffsets[i]-vm->codeLength)):(0xF000000F))
//#define new_offset() (offsidx++)
#define get_offset(i) (codeoffsets[i])
#define save_offset(i) (codeoffsets[i] = vm->codeLength)
#define OFF_CODE 0
#define OFF_IMMEDIATES 1

	vm->compiled = qfalse;

	vm->codeBase = NULL;
	vm->codeLength = 0;

	for (pass = 0; pass < 2; ++pass) {

//	int offsidx = 0;

#ifdef CONST_OPTIMIZE
	// const optimization
	unsigned got_const = 0, const_value = 0;
#endif

	if(pass)
	{
		vm->codeBase = mmap(NULL, vm->codeLength, PROT_WRITE, MAP_SHARED|MAP_ANONYMOUS, -1, 0);
		if(vm->codeBase == MAP_FAILED)
			Com_Error(ERR_FATAL, "VM_CompileARM: can't mmap memory");
		vm->codeLength = 0;
	}

	//int (*entry)(vm_t*, int*, int*);
	emit(PUSH((((1<<8)-1)<<4)|(1<<14))); // push R4-R11, LR
	emit(SUBi(SP, SP, 12)); // align stack!
	emit(LDRai(rCODEBASE, R0, offsetof(vm_t, codeBase)));
	emit(LDRai(rDATABASE, R0, offsetof(vm_t, dataBase)));
	emit(LDRai(rDATAMASK, R0, offsetof(vm_t, dataMask)));
	emit(LDRai(rPSTACK, R1, 0));
	emit(MOV(rOPSTACK, R2)); // TODO: reverse opstack to avoid writing to return address
	emit(MOV(rOPSTACKBASE, rOPSTACK));

	emit(BLi(OFFSET(OFF_CODE)));

	// save return value in r0
	emit(LDRTxi(R0, rOPSTACK, 4));  // r0 = *opstack; rOPSTACK -= 4

	emit(ADDi(SP, SP, 12)); // align stack!
	emit(POP((((1<<8)-1)<<4)|(1<<15))); // pop R4-R11, LR -> PC

	/* save some immediates here */
	emit(BKPT(0));
	emit(BKPT(0));
	save_offset(OFF_IMMEDIATES);
//	emit((unsigned)whatever);
	emit(BKPT(0));
	emit(BKPT(0));

	save_offset(OFF_CODE);
//	offsidx = OFF_IMMEDIATES+1;

	code = (unsigned char *) header + header->codeOffset;
	pc = 0;

	for (i_count = 0; i_count < header->instructionCount; i_count++) {
		union {
			unsigned char b[4];
			unsigned int i;
		} arg;
		unsigned char op = code[pc++];

		vm->instructionPointers[i_count] = vm->codeLength;

		if (vm_opInfo[op] & opImm4)
		{
			memcpy(arg.b, &code[pc], 4);
			pc += 4;
#ifdef EXCESSIVE_DEBUG
			Com_Printf("%d: instruction %d (%s %d), offset %d\n", pass, i_count, opnames[op], arg.i, vm->codeLength);
#endif
		}
		else if (vm_opInfo[op] & opImm1)
		{
			arg.b[0] = code[pc];
			++pc;
#ifdef EXCESSIVE_DEBUG
			Com_Printf("%d: instruction %d (%s %hhd), offset %d\n", pass, i_count, opnames[op], arg.i, vm->codeLength);
#endif
		}
		else
		{
#ifdef EXCESSIVE_DEBUG
			Com_Printf("%d: instruction %d (%s), offset %d\n", pass, i_count, opnames[op], vm->codeLength);
#endif
		}

		// TODO: for debug only
		//emit_MOVRxi(R4, i_count);

		switch ( op )
		{
			case OP_UNDEF:
				break;

			case OP_IGNORE:
				NOTIMPL(op);
				break;

			case OP_BREAK:
				emit(BKPT(0));
				break;

			case OP_ENTER:
				MAYBE_EMIT_CONST();
				emit(PUSH1(LR));
				emit(SUBi(SP, SP, 12)); // align stack
				if (arg.i == 0 || can_encode(arg.i))
				{
					emit(SUBi(rPSTACK, rPSTACK, arg.i)); // pstack -= arg
				}
				else
				{
					emit_MOVR0i(arg.i);
					emit(SUB(rPSTACK, rPSTACK, R0)); // pstack -= arg
				}
				break;

			case OP_LEAVE:
				if (arg.i == 0 || can_encode(arg.i))
				{
					emit(ADDi(rPSTACK, rPSTACK, arg.i)); // pstack += arg
				}
				else
				{
					emit_MOVR0i(arg.i);
					emit(ADD(rPSTACK, rPSTACK, R0)); // pstack += arg
				}
				emit(ADDi(SP, SP, 12));
				emit(0xe49df004); // pop pc
				break;

			case OP_CALL:
#if 0
				// save next instruction
				emit_MOVR0i(i_count);
				emit(STRa(R0, rDATABASE, rPSTACK));      // dataBase[pstack] = r0
#endif
#ifdef CONST_OPTIMIZE
				if (got_const)
				{
					NOTIMPL(op);
				}
				else
#endif
				{
					static int bytes_to_skip = -1;
					static unsigned start_block = -1;
					MAYBE_EMIT_CONST();
					// get instruction nr from stack
					emit(LDRTxi(R0, rOPSTACK, 4));  // r0 = *opstack; rOPSTACK -= 4
					emit(CMPi(R0, 0)); // check if syscall
					if (start_block == -1)
						start_block = vm->codeLength;
					emit(cond(LT, Bi(j_rel(bytes_to_skip))));
						CHECK_JUMP;
						emit_MOVRxi_or_NOP(R1, (unsigned)vm->instructionPointers);
						emit(LDRa(R0, R1, rLSL(2, R0))); // r0 = ((int*)r1)[r0]
						emit(ADD(R0, rCODEBASE, R0)); // r0 = codeBase+r0
						emit(BLX(R0));
						emit(Bi(j_rel(vm->instructionPointers[i_count+1]-vm->codeLength)));
					if (bytes_to_skip == -1)
						bytes_to_skip = vm->codeLength - start_block;
					emit(MOV(R1, rPSTACK));
					emit_MOVRxi(R12, (unsigned)asmcall);
					emit(BLX(R12));
					// store return value
					emit(STRaiw(R0, rOPSTACK, 4));      // opstack+=4; *opstack = r0
				}
				break;

			case OP_PUSH:
				MAYBE_EMIT_CONST();
				emit(ADDi(rOPSTACK, rOPSTACK, 4));
				break;

			case OP_POP:
				MAYBE_EMIT_CONST();
				emit(SUBi(rOPSTACK, rOPSTACK, 4));
				break;

			case OP_CONST:
				MAYBE_EMIT_CONST();
				emit_MOVR0i(arg.i);
				emit(STRaiw(R0, rOPSTACK, 4));      // opstack+=4; *opstack = r0
				break;

			case OP_LOCAL:
				MAYBE_EMIT_CONST();
				if (arg.i == 0 || can_encode(arg.i))
				{
					emit(ADDi(R0, rPSTACK, arg.i));     // r0 = pstack+arg
				}
				else
				{
					emit_MOVR0i(arg.i);
					emit(ADD(R0, rPSTACK, R0));     // r0 = pstack+arg
				}
				emit(STRaiw(R0, rOPSTACK, 4));      // opstack+=4; *opstack = r0
				break;

			case OP_JUMP:
#ifdef CONST_OPTIMIZE
				if (got_const)
				{
					NOTIMPL(op);
				}
				else
#endif
				{
					emit(LDRTxi(R0, rOPSTACK, 4));  // r0 = *opstack; rOPSTACK -= 4
					CHECK_JUMP;
					emit_MOVRxi(R1, (unsigned)vm->instructionPointers);
					emit(LDRa(R0, R1, rLSL(2, R0))); // r0 = ((int*)r1)[r0]
					emit(ADD(R0, rCODEBASE, R0)); // r0 = codeBase+r0
					emit(BLX(R0));
				}
				break;

			case OP_EQ:
				IJ(EQ);
				break;

			case OP_NE:
				IJ(NE);
				break;

			case OP_LTI:
				IJ(LT);
				break;

			case OP_LEI:
				IJ(LE);
				break;

			case OP_GTI:
				IJ(GT);
				break;

			case OP_GEI:
				IJ(GE);
				break;

			case OP_LTU:
				IJ(LO);
				break;

			case OP_LEU:
				IJ(LS);
				break;

			case OP_GTU:
				IJ(HI);
				break;

			case OP_GEU:
				IJ(HS);
				break;

			case OP_EQF:
				FJ(EQ);
				break;

			case OP_NEF:
				FJ(NE);
				break;

			case OP_LTF:
				FJ(LT);
				break;

			case OP_LEF:
				FJ(LE);
				break;

			case OP_GTF:
				FJ(GT);
				break;

			case OP_GEF:
				FJ(GE);
				break;

			case OP_LOAD1:
				MAYBE_EMIT_CONST();
				emit(LDRai(R0, rOPSTACK, 0));   // r0 = *opstack
				emit(AND(R0, rDATAMASK, R0));    // r0 = r0 & rDATAMASK
				emit(LDRBa(R0, rDATABASE, R0));  // r0 = (unsigned char)dataBase[r0]
				emit(STRai(R0, rOPSTACK, 0));   // *opstack = r0
				break;

			case OP_LOAD2:
				MAYBE_EMIT_CONST();
				emit(LDRai(R0, rOPSTACK, 0));   // r0 = *opstack
				emit(AND(R0, rDATAMASK, R0));    // r0 = r0 & rDATAMASK
				emit(LDRHa(R0, rDATABASE, R0));  // r0 = (unsigned short)dataBase[r0]
				emit(STRai(R0, rOPSTACK, 0));   // *opstack = r0
				break;

			case OP_LOAD4:
				MAYBE_EMIT_CONST();
				emit(LDRai(R0, rOPSTACK, 0));   // r0 = *opstack
				emit(AND(R0, rDATAMASK, R0));    // r0 = r0 & rDATAMASK
				emit(LDRa(R0, rDATABASE, R0));  // r0 = dataBase[r0]
				emit(STRai(R0, rOPSTACK, 0));   // *opstack = r0
				break;

			case OP_STORE1:
				MAYBE_EMIT_CONST();
				emit(LDRTxi(R0, rOPSTACK, 4));  // r0 = *opstack; rOPSTACK -= 4
				emit(LDRTxi(R1, rOPSTACK, 4));  // r1 = *opstack; rOPSTACK -= 4
				emit(AND(R1, rDATAMASK, R1));    // r1 = r1 & rDATAMASK
				emit(STRBa(R0, rDATABASE, R1)); // database[r1] = r0
				break;

			case OP_STORE2:
				MAYBE_EMIT_CONST();
				emit(LDRTxi(R0, rOPSTACK, 4));  // r0 = *opstack; rOPSTACK -= 4
				emit(LDRTxi(R1, rOPSTACK, 4));  // r1 = *opstack; rOPSTACK -= 4
				emit(AND(R1, rDATAMASK, R1));    // r1 = r1 & rDATAMASK
				emit(STRHa(R0, rDATABASE, R1)); // database[r1] = r0
				break;

			case OP_STORE4:
				MAYBE_EMIT_CONST();
				// optimize: use load multiple
				// value
				emit(LDRTxi(R0, rOPSTACK, 4));  // r0 = *opstack; rOPSTACK -= 4
				// pointer
				emit(LDRTxi(R1, rOPSTACK, 4));  // r1 = *opstack; rOPSTACK -= 4
				emit(AND(R1, rDATAMASK, R1));    // r1 = r1 & rDATAMASK
				// store value at pointer
				emit(STRa(R0, rDATABASE, R1)); // database[r1] = r0
				break;

			case OP_ARG:
				MAYBE_EMIT_CONST();
				emit(LDRTxi(R0, rOPSTACK, 4));      // r0 = *opstack; rOPSTACK -= 4
				emit(ADDi(R1, rPSTACK, arg.b[0]));  // r1 = programStack+arg
				emit(AND(R1, rDATAMASK, R1));       // r1 = r1 & rDATAMASK
				emit(STRa(R0, rDATABASE, R1));      // dataBase[r1] = r0
				break;

			case OP_BLOCK_COPY:
				MAYBE_EMIT_CONST();
				emit(LDRTxi(R1, rOPSTACK, 4));  // r0 = *opstack; rOPSTACK -= 4
				emit(LDRTxi(R0, rOPSTACK, 4));
				emit_MOVRxi(R2, arg.i);
				emit_MOVRxi(R12, (unsigned)VM_BlockCopy);
				emit(BLX(R12));
				break;

			case OP_SEX8:
				MAYBE_EMIT_CONST();
				emit(LDRSBai(R0, rOPSTACK, 0));      // sign extend *opstack
				emit(STRai(R0, rOPSTACK, 0));  // *opstack = r0
				break;

			case OP_SEX16:
				MAYBE_EMIT_CONST();
				emit(LDRSHai(R0, rOPSTACK, 0));      // sign extend *opstack
				emit(STRai(R0, rOPSTACK, 0));  // *opstack = r0
				break;

			case OP_NEGI:
				MAYBE_EMIT_CONST();
				emit(LDRai(R0, rOPSTACK, 0));  // r0 = *opstack
				emit(RSBi(R0, R0, 0));         // r0 = -r0
				emit(STRai(R0, rOPSTACK, 0));  // *opstack = r0
				break;

			case OP_ADD:
				MAYBE_EMIT_CONST();
				emit(LDRai(R0, rOPSTACK, 0));  // r0 = *opstack
				emit(LDRxiw(R1, rOPSTACK, 4)); // opstack-=4; r1 = *opstack
				emit(ADD(R0, R1, R0));         // r0 = r1 + r0
				emit(STRai(R0, rOPSTACK, 0));  // *opstack = r0
				break;

			case OP_SUB:
				MAYBE_EMIT_CONST();
				emit(LDRai(R0, rOPSTACK, 0));  // r0 = *opstack
				emit(LDRxiw(R1, rOPSTACK, 4)); // opstack-=4; r1 = *opstack
				emit(SUB(R0, R1, R0));         // r0 = r1 - r0
				emit(STRai(R0, rOPSTACK, 0));  // *opstack = r0
				break;

			case OP_DIVI:
			case OP_DIVU:
				MAYBE_EMIT_CONST();
				emit(LDRai(R1, rOPSTACK, 0));  // r1 = *opstack
				emit(LDRxiw(R0, rOPSTACK, 4)); // opstack-=4; r0 = *opstack
				if ( op == OP_DIVI )
					emit_MOVRxi(R12, (unsigned)__aeabi_idiv);
				else
					emit_MOVRxi(R12, (unsigned)__aeabi_uidiv);
				emit(BLX(R12));
				emit(STRai(R0, rOPSTACK, 0));  // *opstack = r0
				break;

			case OP_MODI:
			case OP_MODU:
				MAYBE_EMIT_CONST();
				emit(LDRai(R1, rOPSTACK, 0));  // r1 = *opstack
				emit(LDRxiw(R0, rOPSTACK, 4)); // opstack-=4; r0 = *opstack
				if ( op == OP_MODI )
					emit_MOVRxi(R12, (unsigned)__aeabi_idivmod);
				else
					emit_MOVRxi(R12, (unsigned)__aeabi_uidivmod);
				emit(BLX(R12));
				emit(STRai(R1, rOPSTACK, 0));  // *opstack = r1
				break;

			case OP_MULI:
			case OP_MULU:
				MAYBE_EMIT_CONST();
				emit(LDRai(R0, rOPSTACK, 0));  // r0 = *opstack
				emit(LDRxiw(R1, rOPSTACK, 4)); // opstack-=4; r1 = *opstack
				emit(MUL(R0, R1, R0));         // r0 = r1 * r0
				emit(STRai(R0, rOPSTACK, 0));  // *opstack = r0
				break;

			case OP_BAND:
				MAYBE_EMIT_CONST();
				emit(LDRai(R0, rOPSTACK, 0));  // r0 = *opstack
				emit(LDRxiw(R1, rOPSTACK, 4)); // opstack-=4; r1 = *opstack
				emit(AND(R0, R1, R0));         // r0 = r1 & r0
				emit(STRai(R0, rOPSTACK, 0));  // *opstack = r0
				break;

			case OP_BOR:
				MAYBE_EMIT_CONST();
				emit(LDRai(R0, rOPSTACK, 0));  // r0 = *opstack
				emit(LDRxiw(R1, rOPSTACK, 4)); // opstack-=4; r1 = *opstack
				emit(ORR(R0, R1, R0));         // r0 = r1 | r0
				emit(STRai(R0, rOPSTACK, 0));  // *opstack = r0
				break;

			case OP_BXOR:
				MAYBE_EMIT_CONST();
				emit(LDRai(R0, rOPSTACK, 0));  // r0 = *opstack
				emit(LDRxiw(R1, rOPSTACK, 4)); // opstack-=4; r1 = *opstack
				emit(EOR(R0, R1, R0));         // r0 = r1 ^ r0
				emit(STRai(R0, rOPSTACK, 0));  // *opstack = r0
				break;

			case OP_BCOM:
				MAYBE_EMIT_CONST();
				emit(LDRai(R0, rOPSTACK, 0));  // r0 = *opstack
				emit(MVN(R0, R0));             // r0 = ~r0
				emit(STRai(R0, rOPSTACK, 0));  // *opstack = r0
				break;

			case OP_LSH:
				MAYBE_EMIT_CONST();
				emit(LDRai(R0, rOPSTACK, 0));  // r0 = *opstack
				emit(LDRxiw(R1, rOPSTACK, 4)); // opstack-=4; r1 = *opstack
				emit(LSL(R0, R1, R0));         // r0 = r1 << r0
				emit(STRai(R0, rOPSTACK, 0));  // *opstack = r0
				break;

			case OP_RSHI:
				MAYBE_EMIT_CONST();
				emit(LDRai(R0, rOPSTACK, 0));  // r0 = *opstack
				emit(LDRxiw(R1, rOPSTACK, 4)); // opstack-=4; r1 = *opstack
				emit(ASR(R0, R1, R0));         // r0 = r1 >> r0
				emit(STRai(R0, rOPSTACK, 0));  // *opstack = r0
				break;

			case OP_RSHU:
				MAYBE_EMIT_CONST();
				emit(LDRai(R0, rOPSTACK, 0));  // r0 = *opstack
				emit(LDRxiw(R1, rOPSTACK, 4)); // opstack-=4; r1 = *opstack
				emit(LSR(R0, R1, R0));         // r0 = (unsigned)r1 >> r0
				emit(STRai(R0, rOPSTACK, 0));  // *opstack = r0
				break;

			case OP_NEGF:
				MAYBE_EMIT_CONST();
				emit(VLDRa(S14, rOPSTACK, 0)); // s14 = *((float*)opstack)
				emit(VNEG_F32(S14, S14));      // s15 = -s14
				emit(VSTRa(S14, rOPSTACK, 0)); // *((float*)opstack) = s15
				break;

			case OP_ADDF:
				MAYBE_EMIT_CONST();
				emit(VLDRa(S14, rOPSTACK, 0));   // s14 = *((float*)opstack)
				// vldr can't modify rOPSTACK so
				// we'd either need to change it
				// with sub or use regular ldr+vmov
				emit(LDRxiw(R0, rOPSTACK, 4));   // opstack-=4; r1 = *opstack
				emit(VMOVass(S15,R0));           // s15 = r0
				emit(VADD_F32(S14, S15, S14));   // s14 = s14 + s15
				emit(VSTRa(S14, rOPSTACK, 0));   // *((float*)opstack) = s15
				break;

			case OP_SUBF:
				emit(VLDRa(S14, rOPSTACK, 0));   // s14 = *((float*)opstack)
				// see OP_ADDF
				emit(LDRxiw(R0, rOPSTACK, 4));   // opstack-=4; r1 = *opstack
				emit(VMOVass(S15,R0));           // s15 = r0
				emit(VSUB_F32(S14, S15, S14));   // s14 = s14 - s15
				emit(VSTRa(S14, rOPSTACK, 0));   // *((float*)opstack) = s15
				break;

			case OP_DIVF:
				emit(VLDRa(S14, rOPSTACK, 0));   // s14 = *((float*)opstack)
				// see OP_ADDF
				emit(LDRxiw(R0, rOPSTACK, 4));   // opstack-=4; r1 = *opstack
				emit(VMOVass(S15,R0));           // s15 = r0
				emit(VDIV_F32(S14, S15, S14));   // s14 = s14 / s15
				emit(VSTRa(S14, rOPSTACK, 0));   // *((float*)opstack) = s15
				break;

			case OP_MULF:
				emit(VLDRa(S14, rOPSTACK, 0));   // s14 = *((float*)opstack)
				// see OP_ADDF
				emit(LDRxiw(R0, rOPSTACK, 4));   // opstack-=4; r1 = *opstack
				emit(VMOVass(S15,R0));           // s15 = r0
				emit(VMUL_F32(S14, S15, S14));   // s14 = s14 * s15
				emit(VSTRa(S14, rOPSTACK, 0));   // *((float*)opstack) = s15
				break;

			case OP_CVIF:
				MAYBE_EMIT_CONST();
				emit(LDRai(R0, rOPSTACK, 0));  // r0 = *opstack
				emit(VMOVass(S14,R0));         // s14 = r0
				emit(VCVT_F32_S32(S14, S14));  // s15 = (float)s14
				emit(VSTRa(S14, rOPSTACK, 0)); // *((float*)opstack) = s15
				break;

			case OP_CVFI:
				MAYBE_EMIT_CONST();
				emit(VLDRa(S14, rOPSTACK, 0)); // s14 = *((float*)opstack)
				emit(VCVT_S32_F32(S14, S14));  // s15 = (int)s14
				emit(VMOVssa(R0,S14));         // s14 = r0
				emit(STRai(R0, rOPSTACK, 0));  // *opstack = r0
				break;
		}
	}

	// never reached
	emit(BKPT(0));
	} // pass

	if (mprotect(vm->codeBase, vm->codeLength, PROT_READ|PROT_EXEC/* |PROT_WRITE */)) {
		VM_Destroy_Compiled(vm);
		DIE("mprotect failed");
	}

	// clear icache, http://blogs.arm.com/software-enablement/141-caches-and-self-modifying-code/ 
	__clear_cache(vm->codeBase, vm->codeBase+vm->codeLength);

	vm->destroy = VM_Destroy_Compiled;
	vm->compiled = qtrue;
}

int VM_CallCompiled(vm_t *vm, int *args)
{
	byte	stack[OPSTACK_SIZE + 15];
	int	*opStack;
	int	programStack = vm->programStack;
	int	stackOnEntry = programStack;
	byte	*image = vm->dataBase;
	int	*argPointer;
	int	retVal;

	currentVM = vm;

	vm->currentlyInterpreting = qtrue;

	programStack -= ( 8 + 4 * MAX_VMMAIN_ARGS );
	argPointer = (int *)&image[ programStack + 8 ];
	memcpy( argPointer, args, 4 * MAX_VMMAIN_ARGS );
	argPointer[-1] = 0;
	argPointer[-2] = -1;


	opStack = PADP(stack, 16);
	*opStack = 0xDEADBEEF;

#if 0
	Com_Printf("r5 opStack:\t\t%p\n", opStack);
	Com_Printf("r7 codeBase:\t\t%p\n", vm->codeBase);
	Com_Printf("r8 programStack:\t0x%x\n", programStack);
	Com_Printf("r9 dataBase:\t\t%p\n", vm->dataBase);
#endif

	/* call generated code */
	{
		//int (*entry)(void *, int, void *, int);
		int (*entry)(vm_t*, int*, int*);

		entry = (void *)(vm->codeBase);
		//__asm__ volatile("bkpt");
		//retVal = entry(vm->codeBase, programStack, vm->dataBase, vm->dataMask);
		retVal = entry(vm, &programStack, opStack);
	}

	if(*opStack != 0xDEADBEEF)
	{
		Com_Error(ERR_DROP, "opStack corrupted in compiled code");
	}

	if(programStack != stackOnEntry - (8 + 4 * MAX_VMMAIN_ARGS))
		Com_Error(ERR_DROP, "programStack corrupted in compiled code");

	vm->programStack = stackOnEntry;
	vm->currentlyInterpreting = qfalse;

	return retVal;
}