1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
|
/*
===========================================================================
Copyright (C) 2008 Przemyslaw Iskra <sparky@pld-linux.org>
This file is part of Quake III Arena source code.
Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Quake III Arena source code; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
#include <sys/types.h> /* needed by sys/mman.h on OSX */
#include <sys/mman.h>
#include <sys/time.h>
#include <time.h>
#include <stddef.h>
#ifndef MAP_ANONYMOUS
# define MAP_ANONYMOUS MAP_ANON
#endif
#include "vm_local.h"
#include "vm_powerpc_asm.h"
/*
* VM_TIMES enables showing information about time spent inside
* and outside generated code
*/
//#define VM_TIMES
#ifdef VM_TIMES
#include <sys/times.h>
static clock_t time_outside_vm = 0;
static clock_t time_total_vm = 0;
#endif
/* exit() won't be called but use it because it is marked with noreturn */
#define DIE( reason ) Com_Error( ERR_DROP, "vm_powerpc compiler error: " reason )
/*
* vm_powerpc uses large quantities of memory during compilation,
* Z_Malloc memory may not be enough for some big qvm files
*/
//#define VM_SYSTEM_MALLOC
#ifdef VM_SYSTEM_MALLOC
static inline void *
PPC_Malloc( size_t size )
{
void *mem = malloc( size );
if ( ! mem )
DIE( "Not enough memory" );
return mem;
}
# define PPC_Free free
#else
# define PPC_Malloc Z_Malloc
# define PPC_Free Z_Free
#endif
/*
* optimizations:
* - hole: bubble optimization (OP_CONST+instruction)
* - copy: inline OP_BLOCK_COPY for lengths under 16/32 bytes
* - mask: use rlwinm instruction as dataMask
*/
#ifdef __OPTIMIZE__
# define OPTIMIZE_HOLE 1
# define OPTIMIZE_COPY 1
# define OPTIMIZE_MASK 1
#else
# define OPTIMIZE_HOLE 0
# define OPTIMIZE_COPY 0
# define OPTIMIZE_MASK 0
#endif
/*
* SUPPORTED TARGETS:
* - Linux 32 bits
* ( http://refspecs.freestandards.org/elf/elfspec_ppc.pdf )
* * LR at r0 + 4
* * Local variable space not needed
* -> store caller safe regs at 16+
*
* - Linux 64 bits (not fully conformant)
* ( http://www.ibm.com/developerworks/linux/library/l-powasm4.html )
* * needs "official procedure descriptors" (only first function has one)
* * LR at r0 + 16
* * local variable space required, min 64 bytes, starts at 48
* -> store caller safe regs at 128+
*
* - OS X 32 bits
* ( http://developer.apple.com/documentation/DeveloperTools/Conceptual/LowLevelABI/Articles/32bitPowerPC.html )
* * LR at r0 + 8
* * local variable space required, min 32 bytes (?), starts at 24
* -> store caller safe regs at 64+
*
* - OS X 64 bits (completely untested)
* ( http://developer.apple.com/documentation/DeveloperTools/Conceptual/LowLevelABI/Articles/64bitPowerPC.html )
* * LR at r0 + 16
* * local variable space required, min 64 bytes (?), starts at 48
* -> store caller safe regs at 128+
*/
/* Select Length - first value on 32 bits, second on 64 */
#ifdef __PPC64__
# define SL( a, b ) (b)
#else
# define SL( a, b ) (a)
#endif
/* Select ABI - first for ELF, second for OS X */
#ifdef __ELF__
# define SA( a, b ) (a)
#else
# define SA( a, b ) (b)
#endif
#define ELF32 SL( SA( 1, 0 ), 0 )
#define ELF64 SL( 0, SA( 1, 0 ) )
#define OSX32 SL( SA( 0, 1 ), 0 )
#define OSX64 SL( 0, SA( 0, 1 ) )
/* native length load/store instructions ( L stands for long ) */
#define iSTLU SL( iSTWU, iSTDU )
#define iSTL SL( iSTW, iSTD )
#define iLL SL( iLWZ, iLD )
#define iLLX SL( iLWZX, iLDX )
/* register length */
#define GPRLEN SL( 4, 8 )
#define FPRLEN (8)
/* shift that many bits to obtain value miltiplied by GPRLEN */
#define GPRLEN_SHIFT SL( 2, 3 )
/* Link register position */
#define STACK_LR SL( SA( 4, 8 ), 16 )
/* register save position */
#define STACK_SAVE SL( SA( 16, 64 ), 128 )
/* temporary space, for float<->int exchange */
#define STACK_TEMP SL( SA( 8, 24 ), 48 )
/* red zone temporary space, used instead of STACK_TEMP if stack isn't
* prepared properly */
#define STACK_RTEMP (-16)
#if ELF64
/*
* Official Procedure Descriptor
* we need to prepare one for generated code if we want to call it
* as function
*/
typedef struct {
void *function;
void *toc;
void *env;
} opd_t;
#endif
/*
* opcode information table:
* - length of immediate value
* - returned register type
* - required register(s) type
*/
#define opImm0 0x0000 /* no immediate */
#define opImm1 0x0001 /* 1 byte immadiate value after opcode */
#define opImm4 0x0002 /* 4 bytes immediate value after opcode */
#define opRet0 0x0000 /* returns nothing */
#define opRetI 0x0004 /* returns integer */
#define opRetF 0x0008 /* returns float */
#define opRetIF (opRetI | opRetF) /* returns integer or float */
#define opArg0 0x0000 /* requires nothing */
#define opArgI 0x0010 /* requires integer(s) */
#define opArgF 0x0020 /* requires float(s) */
#define opArgIF (opArgI | opArgF) /* requires integer or float */
#define opArg2I 0x0040 /* requires second argument, integer */
#define opArg2F 0x0080 /* requires second argument, float */
#define opArg2IF (opArg2I | opArg2F) /* requires second argument, integer or float */
static const unsigned char vm_opInfo[256] =
{
[OP_UNDEF] = opImm0,
[OP_IGNORE] = opImm0,
[OP_BREAK] = opImm0,
[OP_ENTER] = opImm4,
/* OP_LEAVE has to accept floats, they will be converted to ints */
[OP_LEAVE] = opImm4 | opRet0 | opArgIF,
/* only STORE4 and POP use values from OP_CALL,
* no need to convert floats back */
[OP_CALL] = opImm0 | opRetI | opArgI,
[OP_PUSH] = opImm0 | opRetIF,
[OP_POP] = opImm0 | opRet0 | opArgIF,
[OP_CONST] = opImm4 | opRetIF,
[OP_LOCAL] = opImm4 | opRetI,
[OP_JUMP] = opImm0 | opRet0 | opArgI,
[OP_EQ] = opImm4 | opRet0 | opArgI | opArg2I,
[OP_NE] = opImm4 | opRet0 | opArgI | opArg2I,
[OP_LTI] = opImm4 | opRet0 | opArgI | opArg2I,
[OP_LEI] = opImm4 | opRet0 | opArgI | opArg2I,
[OP_GTI] = opImm4 | opRet0 | opArgI | opArg2I,
[OP_GEI] = opImm4 | opRet0 | opArgI | opArg2I,
[OP_LTU] = opImm4 | opRet0 | opArgI | opArg2I,
[OP_LEU] = opImm4 | opRet0 | opArgI | opArg2I,
[OP_GTU] = opImm4 | opRet0 | opArgI | opArg2I,
[OP_GEU] = opImm4 | opRet0 | opArgI | opArg2I,
[OP_EQF] = opImm4 | opRet0 | opArgF | opArg2F,
[OP_NEF] = opImm4 | opRet0 | opArgF | opArg2F,
[OP_LTF] = opImm4 | opRet0 | opArgF | opArg2F,
[OP_LEF] = opImm4 | opRet0 | opArgF | opArg2F,
[OP_GTF] = opImm4 | opRet0 | opArgF | opArg2F,
[OP_GEF] = opImm4 | opRet0 | opArgF | opArg2F,
[OP_LOAD1] = opImm0 | opRetI | opArgI,
[OP_LOAD2] = opImm0 | opRetI | opArgI,
[OP_LOAD4] = opImm0 | opRetIF| opArgI,
[OP_STORE1] = opImm0 | opRet0 | opArgI | opArg2I,
[OP_STORE2] = opImm0 | opRet0 | opArgI | opArg2I,
[OP_STORE4] = opImm0 | opRet0 | opArgIF| opArg2I,
[OP_ARG] = opImm1 | opRet0 | opArgIF,
[OP_BLOCK_COPY] = opImm4 | opRet0 | opArgI | opArg2I,
[OP_SEX8] = opImm0 | opRetI | opArgI,
[OP_SEX16] = opImm0 | opRetI | opArgI,
[OP_NEGI] = opImm0 | opRetI | opArgI,
[OP_ADD] = opImm0 | opRetI | opArgI | opArg2I,
[OP_SUB] = opImm0 | opRetI | opArgI | opArg2I,
[OP_DIVI] = opImm0 | opRetI | opArgI | opArg2I,
[OP_DIVU] = opImm0 | opRetI | opArgI | opArg2I,
[OP_MODI] = opImm0 | opRetI | opArgI | opArg2I,
[OP_MODU] = opImm0 | opRetI | opArgI | opArg2I,
[OP_MULI] = opImm0 | opRetI | opArgI | opArg2I,
[OP_MULU] = opImm0 | opRetI | opArgI | opArg2I,
[OP_BAND] = opImm0 | opRetI | opArgI | opArg2I,
[OP_BOR] = opImm0 | opRetI | opArgI | opArg2I,
[OP_BXOR] = opImm0 | opRetI | opArgI | opArg2I,
[OP_BCOM] = opImm0 | opRetI | opArgI,
[OP_LSH] = opImm0 | opRetI | opArgI | opArg2I,
[OP_RSHI] = opImm0 | opRetI | opArgI | opArg2I,
[OP_RSHU] = opImm0 | opRetI | opArgI | opArg2I,
[OP_NEGF] = opImm0 | opRetF | opArgF,
[OP_ADDF] = opImm0 | opRetF | opArgF | opArg2F,
[OP_SUBF] = opImm0 | opRetF | opArgF | opArg2F,
[OP_DIVF] = opImm0 | opRetF | opArgF | opArg2F,
[OP_MULF] = opImm0 | opRetF | opArgF | opArg2F,
[OP_CVIF] = opImm0 | opRetF | opArgI,
[OP_CVFI] = opImm0 | opRetI | opArgF,
};
/*
* source instruction data
*/
typedef struct source_instruction_s source_instruction_t;
struct source_instruction_s {
// opcode
unsigned long int op;
// number of instruction
unsigned long int i_count;
// immediate value (if any)
union {
unsigned int i;
signed int si;
signed short ss[2];
unsigned short us[2];
unsigned char b;
} arg;
// required and returned registers
unsigned char regA1;
unsigned char regA2;
unsigned char regR;
unsigned char regPos;
// next instruction
source_instruction_t *next;
};
/*
* read-only data needed by the generated code
*/
typedef struct VM_Data {
// length of this struct + data
size_t dataLength;
// compiled code size (in bytes)
// it only is code size, without the data
size_t codeLength;
// function pointers, no use to waste registers for them
long int (* AsmCall)( int, int );
void (* BlockCopy )( unsigned int, unsigned int, size_t );
// instruction pointers, rarely used so don't waste register
ppc_instruction_t *iPointers;
// data mask for load and store, not used if optimized
unsigned int dataMask;
// fixed number used to convert from integer to float
unsigned int floatBase; // 0x59800004
#if ELF64
// official procedure descriptor
opd_t opd;
#endif
// additional constants, for floating point OP_CONST
// this data has dynamic length, thus '0' here
unsigned int data[0];
} vm_data_t;
#ifdef offsetof
# define VM_Data_Offset( field ) offsetof( vm_data_t, field )
#else
# define OFFSET( structName, field ) \
( (void *)&(((structName *)NULL)->field) - NULL )
# define VM_Data_Offset( field ) OFFSET( vm_data_t, field )
#endif
/*
* functions used by generated code
*/
static long int
VM_AsmCall( int callSyscallInvNum, int callProgramStack )
{
vm_t *savedVM = currentVM;
long int i, ret;
#ifdef VM_TIMES
struct tms start_time, stop_time;
clock_t saved_time = time_outside_vm;
times( &start_time );
#endif
// save the stack to allow recursive VM entry
currentVM->programStack = callProgramStack - 4;
// we need to convert ints to longs on 64bit powerpcs
if ( sizeof( intptr_t ) == sizeof( int ) ) {
intptr_t *argPosition = (intptr_t *)((byte *)currentVM->dataBase + callProgramStack + 4);
// generated code does not invert syscall number
argPosition[ 0 ] = -1 - callSyscallInvNum;
ret = currentVM->systemCall( argPosition );
} else {
intptr_t args[MAX_VMSYSCALL_ARGS];
// generated code does not invert syscall number
args[0] = -1 - callSyscallInvNum;
int *argPosition = (int *)((byte *)currentVM->dataBase + callProgramStack + 4);
for( i = 1; i < ARRAY_LEN(args); i++ )
args[ i ] = argPosition[ i ];
ret = currentVM->systemCall( args );
}
currentVM = savedVM;
#ifdef VM_TIMES
times( &stop_time );
time_outside_vm = saved_time + ( stop_time.tms_utime - start_time.tms_utime );
#endif
return ret;
}
/*
* code-block descriptors
*/
typedef struct dest_instruction dest_instruction_t;
typedef struct symbolic_jump symbolic_jump_t;
struct symbolic_jump {
// number of source instruction it has to jump to
unsigned long int jump_to;
// jump condition true/false, (4*cr7+(eq|gt..))
long int bo, bi;
// extensions / modifiers (branch-link)
unsigned long ext;
// dest_instruction refering to this jump
dest_instruction_t *parent;
// next jump
symbolic_jump_t *nextJump;
};
struct dest_instruction {
// position in the output chain
unsigned long int count;
// source instruction number
unsigned long int i_count;
// exact (for instructins), or maximum (for jump) length
unsigned short length;
dest_instruction_t *next;
// if the instruction is a jump than jump will be non NULL
symbolic_jump_t *jump;
// if jump is NULL than all the instructions will be here
ppc_instruction_t code[0];
};
// first and last instruction,
// di_first is a dummy instruction
static dest_instruction_t *di_first = NULL, *di_last = NULL;
// number of instructions
static unsigned long int di_count = 0;
// pointers needed to compute local jumps, those aren't pointers to
// actual instructions, just used to check how long the jump is going
// to be and whether it is positive or negative
static dest_instruction_t **di_pointers = NULL;
// output instructions which does not come from source code
// use false i_count value
#define FALSE_ICOUNT 0xffffffff
/*
* append specified instructions at the end of instruction chain
*/
static void
PPC_Append(
dest_instruction_t *di_now,
unsigned long int i_count
)
{
di_now->count = di_count++;
di_now->i_count = i_count;
di_now->next = NULL;
di_last->next = di_now;
di_last = di_now;
if ( i_count != FALSE_ICOUNT ) {
if ( ! di_pointers[ i_count ] )
di_pointers[ i_count ] = di_now;
}
}
/*
* make space for instructions and append
*/
static void
PPC_AppendInstructions(
unsigned long int i_count,
size_t num_instructions,
const ppc_instruction_t *is
)
{
if ( num_instructions < 0 )
num_instructions = 0;
size_t iBytes = sizeof( ppc_instruction_t ) * num_instructions;
dest_instruction_t *di_now = PPC_Malloc( sizeof( dest_instruction_t ) + iBytes );
di_now->length = num_instructions;
di_now->jump = NULL;
if ( iBytes > 0 )
memcpy( &(di_now->code[0]), is, iBytes );
PPC_Append( di_now, i_count );
}
/*
* create symbolic jump and append
*/
static symbolic_jump_t *sj_first = NULL, *sj_last = NULL;
static void
PPC_PrepareJump(
unsigned long int i_count,
unsigned long int dest,
long int bo,
long int bi,
unsigned long int ext
)
{
dest_instruction_t *di_now = PPC_Malloc( sizeof( dest_instruction_t ) );
symbolic_jump_t *sj = PPC_Malloc( sizeof( symbolic_jump_t ) );
sj->jump_to = dest;
sj->bo = bo;
sj->bi = bi;
sj->ext = ext;
sj->parent = di_now;
sj->nextJump = NULL;
sj_last->nextJump = sj;
sj_last = sj;
di_now->length = (bo == branchAlways ? 1 : 2);
di_now->jump = sj;
PPC_Append( di_now, i_count );
}
/*
* simplyfy instruction emission
*/
#define emitStart( i_cnt ) \
unsigned long int i_count = i_cnt; \
size_t num_instructions = 0; \
long int force_emit = 0; \
ppc_instruction_t instructions[50];
#define pushIn( inst ) \
(instructions[ num_instructions++ ] = inst)
#define in( inst, args... ) pushIn( IN( inst, args ) )
#define emitEnd() \
do{ \
if ( num_instructions || force_emit ) \
PPC_AppendInstructions( i_count, num_instructions, instructions );\
num_instructions = 0; \
} while(0)
#define emitJump( dest, bo, bi, ext ) \
do { \
emitEnd(); \
PPC_PrepareJump( i_count, dest, bo, bi, ext ); \
} while(0)
/*
* definitions for creating .data section,
* used in cases where constant float is needed
*/
#define LOCAL_DATA_CHUNK 50
typedef struct local_data_s local_data_t;
struct local_data_s {
// number of data in this structure
long int count;
// data placeholder
unsigned int data[ LOCAL_DATA_CHUNK ];
// next chunk, if this one wasn't enough
local_data_t *next;
};
// first data chunk
static local_data_t *data_first = NULL;
// total number of data
static long int data_acc = 0;
/*
* append the data and return its offset
*/
static size_t
PPC_PushData( unsigned int datum )
{
local_data_t *d_now = data_first;
long int accumulated = 0;
// check whether we have this one already
do {
long int i;
for ( i = 0; i < d_now->count; i++ ) {
if ( d_now->data[ i ] == datum ) {
accumulated += i;
return VM_Data_Offset( data[ accumulated ] );
}
}
if ( !d_now->next )
break;
accumulated += d_now->count;
d_now = d_now->next;
} while (1);
// not found, need to append
accumulated += d_now->count;
// last chunk is full, create new one
if ( d_now->count >= LOCAL_DATA_CHUNK ) {
d_now->next = PPC_Malloc( sizeof( local_data_t ) );
d_now = d_now->next;
d_now->count = 0;
d_now->next = NULL;
}
d_now->data[ d_now->count ] = datum;
d_now->count += 1;
data_acc = accumulated + 1;
return VM_Data_Offset( data[ accumulated ] );
}
/*
* find leading zeros in dataMask to implement it with
* "rotate and mask" instruction
*/
static long int fastMaskHi = 0, fastMaskLo = 31;
static void
PPC_MakeFastMask( int mask )
{
#if defined( __GNUC__ ) && ( __GNUC__ >= 4 || ( __GNUC__ == 3 && __GNUC_MINOR__ >= 4 ) )
/* count leading zeros */
fastMaskHi = __builtin_clz( mask );
/* count trailing zeros */
fastMaskLo = 31 - __builtin_ctz( mask );
#else
fastMaskHi = 0;
while ( ( mask & ( 0x80000000 >> fastMaskHi ) ) == 0 )
fastMaskHi++;
fastMaskLo = 31;
while ( ( mask & ( 0x80000000 >> fastMaskLo ) ) == 0 )
fastMaskLo--;
#endif
}
/*
* register definitions
*/
/* registers which are global for generated code */
// pointer to VM_Data (constant)
#define rVMDATA r14
// vm->dataBase (constant)
#define rDATABASE r15
// programStack (variable)
#define rPSTACK r16
/*
* function local registers,
*
* normally only volatile registers are used, but if there aren't enough
* or function has to preserve some value while calling annother one
* then caller safe registers are used as well
*/
static const long int gpr_list[] = {
/* caller safe registers, normally only one is used */
r24, r23, r22, r21,
r20, r19, r18, r17,
/* volatile registers (preferred),
* normally no more than 5 is used */
r3, r4, r5, r6,
r7, r8, r9, r10,
};
static const long int gpr_vstart = 8; /* position of first volatile register */
static const long int gpr_total = ARRAY_LEN( gpr_list );
static const long int fpr_list[] = {
/* static registers, normally none is used */
f20, f21, f19, f18,
f17, f16, f15, f14,
/* volatile registers (preferred),
* normally no more than 7 is used */
f0, f1, f2, f3,
f4, f5, f6, f7,
f8, f9, f10, f11,
f12, f13,
};
static const long int fpr_vstart = 8;
static const long int fpr_total = ARRAY_LEN( fpr_list );
/*
* prepare some dummy structures and emit init code
*/
static void
PPC_CompileInit( void )
{
di_first = di_last = PPC_Malloc( sizeof( dest_instruction_t ) );
di_first->count = 0;
di_first->next = NULL;
di_first->jump = NULL;
sj_first = sj_last = PPC_Malloc( sizeof( symbolic_jump_t ) );
sj_first->nextJump = NULL;
data_first = PPC_Malloc( sizeof( local_data_t ) );
data_first->count = 0;
data_first->next = NULL;
/*
* init function:
* saves old values of global registers and sets our values
* function prototype is:
* int begin( void *data, int programStack, void *vm->dataBase )
*/
/* first instruction must not be placed on instruction list */
emitStart( FALSE_ICOUNT );
long int stack = STACK_SAVE + 4 * GPRLEN;
in( iMFLR, r0 );
in( iSTLU, r1, -stack, r1 );
in( iSTL, rVMDATA, STACK_SAVE + 0 * GPRLEN, r1 );
in( iSTL, rPSTACK, STACK_SAVE + 1 * GPRLEN, r1 );
in( iSTL, rDATABASE, STACK_SAVE + 2 * GPRLEN, r1 );
in( iSTL, r0, stack + STACK_LR, r1 );
in( iMR, rVMDATA, r3 );
in( iMR, rPSTACK, r4 );
in( iMR, rDATABASE, r5 );
in( iBL, +4*8 ); // LINK JUMP: first generated instruction | XXX jump !
in( iLL, rVMDATA, STACK_SAVE + 0 * GPRLEN, r1 );
in( iLL, rPSTACK, STACK_SAVE + 1 * GPRLEN, r1 );
in( iLL, rDATABASE, STACK_SAVE + 2 * GPRLEN, r1 );
in( iLL, r0, stack + STACK_LR, r1 );
in( iMTLR, r0 );
in( iADDI, r1, r1, stack );
in( iBLR );
emitEnd();
}
// rFIRST is the copy of the top value on the opstack
#define rFIRST (gpr_list[ gpr_pos - 1])
// second value on the opstack
#define rSECOND (gpr_list[ gpr_pos - 2 ])
// temporary registers, not on the opstack
#define rTEMP(x) (gpr_list[ gpr_pos + x ])
#define rTMP rTEMP(0)
#define fFIRST (fpr_list[ fpr_pos - 1 ])
#define fSECOND (fpr_list[ fpr_pos - 2 ])
#define fTEMP(x) (fpr_list[ fpr_pos + x ])
#define fTMP fTEMP(0)
// register types
#define rTYPE_STATIC 0x01
#define rTYPE_FLOAT 0x02
// what type should this opcode return
#define RET_INT ( !(i_now->regR & rTYPE_FLOAT) )
#define RET_FLOAT ( i_now->regR & rTYPE_FLOAT )
// what type should it accept
#define ARG_INT ( ! i_now->regA1 )
#define ARG_FLOAT ( i_now->regA1 )
#define ARG2_INT ( ! i_now->regA2 )
#define ARG2_FLOAT ( i_now->regA2 )
/*
* emit OP_CONST, called if nothing has used the const value directly
*/
static void
PPC_EmitConst( source_instruction_t * const i_const )
{
emitStart( i_const->i_count );
if ( !(i_const->regR & rTYPE_FLOAT) ) {
// gpr_pos needed for "rFIRST" to work
long int gpr_pos = i_const->regPos;
if ( i_const->arg.si >= -0x8000 && i_const->arg.si < 0x8000 ) {
in( iLI, rFIRST, i_const->arg.si );
} else if ( i_const->arg.i < 0x10000 ) {
in( iLI, rFIRST, 0 );
in( iORI, rFIRST, rFIRST, i_const->arg.i );
} else {
in( iLIS, rFIRST, i_const->arg.ss[ 0 ] );
if ( i_const->arg.us[ 1 ] != 0 )
in( iORI, rFIRST, rFIRST, i_const->arg.us[ 1 ] );
}
} else {
// fpr_pos needed for "fFIRST" to work
long int fpr_pos = i_const->regPos;
// there's no good way to generate the data,
// just read it from data section
in( iLFS, fFIRST, PPC_PushData( i_const->arg.i ), rVMDATA );
}
emitEnd();
}
#define MAYBE_EMIT_CONST() if ( i_const ) PPC_EmitConst( i_const )
/*
* emit empty instruction, just sets the needed pointers
*/
static inline void
PPC_EmitNull( source_instruction_t * const i_null )
{
PPC_AppendInstructions( i_null->i_count, 0, NULL );
}
#define EMIT_FALSE_CONST() PPC_EmitNull( i_const )
/*
* analize function for register usage and whether it needs stack (r1) prepared
*/
static void
VM_AnalyzeFunction(
source_instruction_t * const i_first,
long int *prepareStack,
long int *gpr_start_pos,
long int *fpr_start_pos
)
{
source_instruction_t *i_now = i_first;
source_instruction_t *value_provider[20] = { NULL };
unsigned long int opstack_depth = 0;
/*
* first step:
* remember what codes returned some value and mark the value type
* when we get to know what it should be
*/
while ( (i_now = i_now->next) ) {
unsigned long int op = i_now->op;
unsigned long int opi = vm_opInfo[ op ];
if ( opi & opArgIF ) {
assert( opstack_depth > 0 );
opstack_depth--;
source_instruction_t *vp = value_provider[ opstack_depth ];
unsigned long int vpopi = vm_opInfo[ vp->op ];
if ( (opi & opArgI) && (vpopi & opRetI) ) {
// instruction accepts integer, provider returns integer
//vp->regR |= rTYPE_INT;
//i_now->regA1 = rTYPE_INT;
} else if ( (opi & opArgF) && (vpopi & opRetF) ) {
// instruction accepts float, provider returns float
vp->regR |= rTYPE_FLOAT; // use OR here - could be marked as static
i_now->regA1 = rTYPE_FLOAT;
} else {
// instruction arg type does not agree with
// provider return type
DIE( "unrecognized instruction combination" );
}
}
if ( opi & opArg2IF ) {
assert( opstack_depth > 0 );
opstack_depth--;
source_instruction_t *vp = value_provider[ opstack_depth ];
unsigned long int vpopi = vm_opInfo[ vp->op ];
if ( (opi & opArg2I) && (vpopi & opRetI) ) {
// instruction accepts integer, provider returns integer
//vp->regR |= rTYPE_INT;
//i_now->regA2 = rTYPE_INT;
} else if ( (opi & opArg2F) && (vpopi & opRetF) ) {
// instruction accepts float, provider returns float
vp->regR |= rTYPE_FLOAT; // use OR here - could be marked as static
i_now->regA2 = rTYPE_FLOAT;
} else {
// instruction arg type does not agree with
// provider return type
DIE( "unrecognized instruction combination" );
}
}
if (
( op == OP_CALL )
||
( op == OP_BLOCK_COPY && ( i_now->arg.i > SL( 16, 32 ) || !OPTIMIZE_COPY ) )
) {
long int i;
*prepareStack = 1;
// force caller safe registers so we won't have to save them
for ( i = 0; i < opstack_depth; i++ ) {
source_instruction_t *vp = value_provider[ i ];
vp->regR |= rTYPE_STATIC;
}
}
if ( opi & opRetIF ) {
value_provider[ opstack_depth ] = i_now;
opstack_depth++;
}
}
/*
* second step:
* now that we know register types; compute exactly how many registers
* of each type we need
*/
i_now = i_first;
long int needed_reg[4] = {0,0,0,0}, max_reg[4] = {0,0,0,0};
opstack_depth = 0;
while ( (i_now = i_now->next) ) {
unsigned long int op = i_now->op;
unsigned long int opi = vm_opInfo[ op ];
if ( opi & opArgIF ) {
assert( opstack_depth > 0 );
opstack_depth--;
source_instruction_t *vp = value_provider[ opstack_depth ];
needed_reg[ ( vp->regR & 2 ) ] -= 1;
if ( vp->regR & 1 ) // static
needed_reg[ ( vp->regR & 3 ) ] -= 1;
}
if ( opi & opArg2IF ) {
assert( opstack_depth > 0 );
opstack_depth--;
source_instruction_t *vp = value_provider[ opstack_depth ];
needed_reg[ ( vp->regR & 2 ) ] -= 1;
if ( vp->regR & 1 ) // static
needed_reg[ ( vp->regR & 3 ) ] -= 1;
}
if ( opi & opRetIF ) {
long int i;
value_provider[ opstack_depth ] = i_now;
opstack_depth++;
i = i_now->regR & 2;
needed_reg[ i ] += 1;
if ( max_reg[ i ] < needed_reg[ i ] )
max_reg[ i ] = needed_reg[ i ];
i = i_now->regR & 3;
if ( i & 1 ) {
needed_reg[ i ] += 1;
if ( max_reg[ i ] < needed_reg[ i ] )
max_reg[ i ] = needed_reg[ i ];
}
}
}
long int gpr_start = gpr_vstart;
const long int gpr_volatile = gpr_total - gpr_vstart;
if ( max_reg[ 1 ] > 0 || max_reg[ 0 ] > gpr_volatile ) {
// max_reg[ 0 ] - all gprs needed
// max_reg[ 1 ] - static gprs needed
long int max = max_reg[ 0 ] - gpr_volatile;
if ( max_reg[ 1 ] > max )
max = max_reg[ 1 ];
if ( max > gpr_vstart ) {
/* error */
DIE( "Need more GPRs" );
}
gpr_start -= max;
// need stack to save caller safe registers
*prepareStack = 1;
}
*gpr_start_pos = gpr_start;
long int fpr_start = fpr_vstart;
const long int fpr_volatile = fpr_total - fpr_vstart;
if ( max_reg[ 3 ] > 0 || max_reg[ 2 ] > fpr_volatile ) {
// max_reg[ 2 ] - all fprs needed
// max_reg[ 3 ] - static fprs needed
long int max = max_reg[ 2 ] - fpr_volatile;
if ( max_reg[ 3 ] > max )
max = max_reg[ 3 ];
if ( max > fpr_vstart ) {
/* error */
DIE( "Need more FPRs" );
}
fpr_start -= max;
// need stack to save caller safe registers
*prepareStack = 1;
}
*fpr_start_pos = fpr_start;
}
/*
* translate opcodes to ppc instructions,
* it works on functions, not on whole code at once
*/
static void
VM_CompileFunction( source_instruction_t * const i_first )
{
long int prepareStack = 0;
long int gpr_start_pos, fpr_start_pos;
VM_AnalyzeFunction( i_first, &prepareStack, &gpr_start_pos, &fpr_start_pos );
long int gpr_pos = gpr_start_pos, fpr_pos = fpr_start_pos;
// OP_CONST combines well with many opcodes so we treat it in a special way
source_instruction_t *i_const = NULL;
source_instruction_t *i_now = i_first;
// how big the stack has to be
long int save_space = STACK_SAVE;
{
if ( gpr_start_pos < gpr_vstart )
save_space += (gpr_vstart - gpr_start_pos) * GPRLEN;
save_space = ( save_space + 15 ) & ~0x0f;
if ( fpr_start_pos < fpr_vstart )
save_space += (fpr_vstart - fpr_start_pos) * FPRLEN;
save_space = ( save_space + 15 ) & ~0x0f;
}
long int stack_temp = prepareStack ? STACK_TEMP : STACK_RTEMP;
while ( (i_now = i_now->next) ) {
emitStart( i_now->i_count );
switch ( i_now->op )
{
default:
case OP_UNDEF:
case OP_IGNORE:
MAYBE_EMIT_CONST();
in( iNOP );
break;
case OP_BREAK:
MAYBE_EMIT_CONST();
// force SEGV
in( iLWZ, r0, 0, r0 );
break;
case OP_ENTER:
if ( i_const )
DIE( "Weird opcode order" );
// don't prepare stack if not needed
if ( prepareStack ) {
long int i, save_pos = STACK_SAVE;
in( iMFLR, r0 );
in( iSTLU, r1, -save_space, r1 );
in( iSTL, r0, save_space + STACK_LR, r1 );
/* save registers */
for ( i = gpr_start_pos; i < gpr_vstart; i++ ) {
in( iSTL, gpr_list[ i ], save_pos, r1 );
save_pos += GPRLEN;
}
save_pos = ( save_pos + 15 ) & ~0x0f;
for ( i = fpr_start_pos; i < fpr_vstart; i++ ) {
in( iSTFD, fpr_list[ i ], save_pos, r1 );
save_pos += FPRLEN;
}
prepareStack = 2;
}
in( iADDI, rPSTACK, rPSTACK, - i_now->arg.si );
break;
case OP_LEAVE:
if ( i_const ) {
EMIT_FALSE_CONST();
if ( i_const->regR & rTYPE_FLOAT)
DIE( "constant float in OP_LEAVE" );
if ( i_const->arg.si >= -0x8000 && i_const->arg.si < 0x8000 ) {
in( iLI, r3, i_const->arg.si );
} else if ( i_const->arg.i < 0x10000 ) {
in( iLI, r3, 0 );
in( iORI, r3, r3, i_const->arg.i );
} else {
in( iLIS, r3, i_const->arg.ss[ 0 ] );
if ( i_const->arg.us[ 1 ] != 0 )
in( iORI, r3, r3, i_const->arg.us[ 1 ] );
}
gpr_pos--;
} else {
MAYBE_EMIT_CONST();
/* place return value in r3 */
if ( ARG_INT ) {
if ( rFIRST != r3 )
in( iMR, r3, rFIRST );
gpr_pos--;
} else {
in( iSTFS, fFIRST, stack_temp, r1 );
in( iLWZ, r3, stack_temp, r1 );
fpr_pos--;
}
}
// don't undo stack if not prepared
if ( prepareStack >= 2 ) {
long int i, save_pos = STACK_SAVE;
in( iLL, r0, save_space + STACK_LR, r1 );
/* restore registers */
for ( i = gpr_start_pos; i < gpr_vstart; i++ ) {
in( iLL, gpr_list[ i ], save_pos, r1 );
save_pos += GPRLEN;
}
save_pos = ( save_pos + 15 ) & ~0x0f;
for ( i = fpr_start_pos; i < fpr_vstart; i++ ) {
in( iLFD, fpr_list[ i ], save_pos, r1 );
save_pos += FPRLEN;
}
in( iMTLR, r0 );
in( iADDI, r1, r1, save_space );
}
in( iADDI, rPSTACK, rPSTACK, i_now->arg.si);
in( iBLR );
assert( gpr_pos == gpr_start_pos );
assert( fpr_pos == fpr_start_pos );
break;
case OP_CALL:
if ( i_const ) {
EMIT_FALSE_CONST();
if ( i_const->arg.si >= 0 ) {
emitJump(
i_const->arg.i,
branchAlways, 0, branchExtLink
);
} else {
/* syscall */
in( iLL, r0, VM_Data_Offset( AsmCall ), rVMDATA );
in( iLI, r3, i_const->arg.si ); // negative value
in( iMR, r4, rPSTACK ); // push PSTACK on argument list
in( iMTCTR, r0 );
in( iBCTRL );
}
if ( rFIRST != r3 )
in( iMR, rFIRST, r3 );
} else {
MAYBE_EMIT_CONST();
in( iCMPWI, cr7, rFIRST, 0 );
in( iBLTm, cr7, +4*5 /* syscall */ ); // XXX jump !
/* instruction call */
// get instruction address
in( iLL, r0, VM_Data_Offset( iPointers ), rVMDATA );
in( iRLWINM, rFIRST, rFIRST, GPRLEN_SHIFT, 0, 31-GPRLEN_SHIFT ); // mul * GPRLEN
in( iLLX, r0, rFIRST, r0 ); // load pointer
in( iB, +4*(3 + (rFIRST != r3 ? 1 : 0) ) ); // XXX jump !
/* syscall */
in( iLL, r0, VM_Data_Offset( AsmCall ), rVMDATA ); // get asmCall pointer
/* rFIRST can be r3 or some static register */
if ( rFIRST != r3 )
in( iMR, r3, rFIRST ); // push OPSTACK top value on argument list
in( iMR, r4, rPSTACK ); // push PSTACK on argument list
/* common code */
in( iMTCTR, r0 );
in( iBCTRL );
if ( rFIRST != r3 )
in( iMR, rFIRST, r3 ); // push return value on the top of the opstack
}
break;
case OP_PUSH:
MAYBE_EMIT_CONST();
if ( RET_INT )
gpr_pos++;
else
fpr_pos++;
/* no instructions here */
force_emit = 1;
break;
case OP_POP:
MAYBE_EMIT_CONST();
if ( ARG_INT )
gpr_pos--;
else
fpr_pos--;
/* no instructions here */
force_emit = 1;
break;
case OP_CONST:
MAYBE_EMIT_CONST();
/* nothing here */
break;
case OP_LOCAL:
MAYBE_EMIT_CONST();
{
signed long int hi, lo;
hi = i_now->arg.ss[ 0 ];
lo = i_now->arg.ss[ 1 ];
if ( lo < 0 )
hi += 1;
gpr_pos++;
if ( hi == 0 ) {
in( iADDI, rFIRST, rPSTACK, lo );
} else {
in( iADDIS, rFIRST, rPSTACK, hi );
if ( lo != 0 )
in( iADDI, rFIRST, rFIRST, lo );
}
}
break;
case OP_JUMP:
if ( i_const ) {
EMIT_FALSE_CONST();
emitJump(
i_const->arg.i,
branchAlways, 0, 0
);
} else {
MAYBE_EMIT_CONST();
in( iLL, r0, VM_Data_Offset( iPointers ), rVMDATA );
in( iRLWINM, rFIRST, rFIRST, GPRLEN_SHIFT, 0, 31-GPRLEN_SHIFT ); // mul * GPRLEN
in( iLLX, r0, rFIRST, r0 ); // load pointer
in( iMTCTR, r0 );
in( iBCTR );
}
gpr_pos--;
break;
case OP_EQ:
case OP_NE:
if ( i_const && i_const->arg.si >= -0x8000 && i_const->arg.si < 0x10000 ) {
EMIT_FALSE_CONST();
if ( i_const->arg.si >= 0x8000 )
in( iCMPLWI, cr7, rSECOND, i_const->arg.i );
else
in( iCMPWI, cr7, rSECOND, i_const->arg.si );
} else {
MAYBE_EMIT_CONST();
in( iCMPW, cr7, rSECOND, rFIRST );
}
emitJump(
i_now->arg.i,
(i_now->op == OP_EQ ? branchTrue : branchFalse),
4*cr7+eq, 0
);
gpr_pos -= 2;
break;
case OP_LTI:
case OP_GEI:
if ( i_const && i_const->arg.si >= -0x8000 && i_const->arg.si < 0x8000 ) {
EMIT_FALSE_CONST();
in( iCMPWI, cr7, rSECOND, i_const->arg.si );
} else {
MAYBE_EMIT_CONST();
in( iCMPW, cr7, rSECOND, rFIRST );
}
emitJump(
i_now->arg.i,
( i_now->op == OP_LTI ? branchTrue : branchFalse ),
4*cr7+lt, 0
);
gpr_pos -= 2;
break;
case OP_GTI:
case OP_LEI:
if ( i_const && i_const->arg.si >= -0x8000 && i_const->arg.si < 0x8000 ) {
EMIT_FALSE_CONST();
in( iCMPWI, cr7, rSECOND, i_const->arg.si );
} else {
MAYBE_EMIT_CONST();
in( iCMPW, cr7, rSECOND, rFIRST );
}
emitJump(
i_now->arg.i,
( i_now->op == OP_GTI ? branchTrue : branchFalse ),
4*cr7+gt, 0
);
gpr_pos -= 2;
break;
case OP_LTU:
case OP_GEU:
if ( i_const && i_const->arg.i < 0x10000 ) {
EMIT_FALSE_CONST();
in( iCMPLWI, cr7, rSECOND, i_const->arg.i );
} else {
MAYBE_EMIT_CONST();
in( iCMPLW, cr7, rSECOND, rFIRST );
}
emitJump(
i_now->arg.i,
( i_now->op == OP_LTU ? branchTrue : branchFalse ),
4*cr7+lt, 0
);
gpr_pos -= 2;
break;
case OP_GTU:
case OP_LEU:
if ( i_const && i_const->arg.i < 0x10000 ) {
EMIT_FALSE_CONST();
in( iCMPLWI, cr7, rSECOND, i_const->arg.i );
} else {
MAYBE_EMIT_CONST();
in( iCMPLW, cr7, rSECOND, rFIRST );
}
emitJump(
i_now->arg.i,
( i_now->op == OP_GTU ? branchTrue : branchFalse ),
4*cr7+gt, 0
);
gpr_pos -= 2;
break;
case OP_EQF:
case OP_NEF:
MAYBE_EMIT_CONST();
in( iFCMPU, cr7, fSECOND, fFIRST );
emitJump(
i_now->arg.i,
( i_now->op == OP_EQF ? branchTrue : branchFalse ),
4*cr7+eq, 0
);
fpr_pos -= 2;
break;
case OP_LTF:
case OP_GEF:
MAYBE_EMIT_CONST();
in( iFCMPU, cr7, fSECOND, fFIRST );
emitJump(
i_now->arg.i,
( i_now->op == OP_LTF ? branchTrue : branchFalse ),
4*cr7+lt, 0
);
fpr_pos -= 2;
break;
case OP_GTF:
case OP_LEF:
MAYBE_EMIT_CONST();
in( iFCMPU, cr7, fSECOND, fFIRST );
emitJump(
i_now->arg.i,
( i_now->op == OP_GTF ? branchTrue : branchFalse ),
4*cr7+gt, 0
);
fpr_pos -= 2;
break;
case OP_LOAD1:
MAYBE_EMIT_CONST();
#if OPTIMIZE_MASK
in( iRLWINM, rFIRST, rFIRST, 0, fastMaskHi, fastMaskLo );
#else
in( iLWZ, r0, VM_Data_Offset( dataMask ), rVMDATA );
in( iAND, rFIRST, rFIRST, r0 );
#endif
in( iLBZX, rFIRST, rFIRST, rDATABASE );
break;
case OP_LOAD2:
MAYBE_EMIT_CONST();
#if OPTIMIZE_MASK
in( iRLWINM, rFIRST, rFIRST, 0, fastMaskHi, fastMaskLo );
#else
in( iLWZ, r0, VM_Data_Offset( dataMask ), rVMDATA );
in( iAND, rFIRST, rFIRST, r0 );
#endif
in( iLHZX, rFIRST, rFIRST, rDATABASE );
break;
case OP_LOAD4:
MAYBE_EMIT_CONST();
#if OPTIMIZE_MASK
in( iRLWINM, rFIRST, rFIRST, 0, fastMaskHi, fastMaskLo );
#else
in( iLWZ, r0, VM_Data_Offset( dataMask ), rVMDATA );
in( iAND, rFIRST, rFIRST, r0 );
#endif
if ( RET_INT ) {
in( iLWZX, rFIRST, rFIRST, rDATABASE );
} else {
fpr_pos++;
in( iLFSX, fFIRST, rFIRST, rDATABASE );
gpr_pos--;
}
break;
case OP_STORE1:
MAYBE_EMIT_CONST();
#if OPTIMIZE_MASK
in( iRLWINM, rSECOND, rSECOND, 0, fastMaskHi, fastMaskLo );
#else
in( iLWZ, r0, VM_Data_Offset( dataMask ), rVMDATA );
in( iAND, rSECOND, rSECOND, r0 );
#endif
in( iSTBX, rFIRST, rSECOND, rDATABASE );
gpr_pos -= 2;
break;
case OP_STORE2:
MAYBE_EMIT_CONST();
#if OPTIMIZE_MASK
in( iRLWINM, rSECOND, rSECOND, 0, fastMaskHi, fastMaskLo );
#else
in( iLWZ, r0, VM_Data_Offset( dataMask ), rVMDATA );
in( iAND, rSECOND, rSECOND, r0 );
#endif
in( iSTHX, rFIRST, rSECOND, rDATABASE );
gpr_pos -= 2;
break;
case OP_STORE4:
MAYBE_EMIT_CONST();
if ( ARG_INT ) {
#if OPTIMIZE_MASK
in( iRLWINM, rSECOND, rSECOND, 0, fastMaskHi, fastMaskLo );
#else
in( iLWZ, r0, VM_Data_Offset( dataMask ), rVMDATA );
in( iAND, rSECOND, rSECOND, r0 );
#endif
in( iSTWX, rFIRST, rSECOND, rDATABASE );
gpr_pos--;
} else {
#if OPTIMIZE_MASK
in( iRLWINM, rFIRST, rFIRST, 0, fastMaskHi, fastMaskLo );
#else
in( iLWZ, r0, VM_Data_Offset( dataMask ), rVMDATA );
in( iAND, rFIRST, rFIRST, r0 );
#endif
in( iSTFSX, fFIRST, rFIRST, rDATABASE );
fpr_pos--;
}
gpr_pos--;
break;
case OP_ARG:
MAYBE_EMIT_CONST();
in( iADDI, r0, rPSTACK, i_now->arg.b );
if ( ARG_INT ) {
in( iSTWX, rFIRST, rDATABASE, r0 );
gpr_pos--;
} else {
in( iSTFSX, fFIRST, rDATABASE, r0 );
fpr_pos--;
}
break;
case OP_BLOCK_COPY:
MAYBE_EMIT_CONST();
#if OPTIMIZE_COPY
if ( i_now->arg.i <= SL( 16, 32 ) ) {
/* block is very short so copy it in-place */
unsigned int len = i_now->arg.i;
unsigned int copied = 0, left = len;
in( iADD, rFIRST, rFIRST, rDATABASE );
in( iADD, rSECOND, rSECOND, rDATABASE );
if ( len >= GPRLEN ) {
long int i, words = len / GPRLEN;
in( iLL, r0, 0, rFIRST );
for ( i = 1; i < words; i++ )
in( iLL, rTEMP( i - 1 ), GPRLEN * i, rFIRST );
in( iSTL, r0, 0, rSECOND );
for ( i = 1; i < words; i++ )
in( iSTL, rTEMP( i - 1 ), GPRLEN * i, rSECOND );
copied += words * GPRLEN;
left -= copied;
}
if ( SL( 0, left >= 4 ) ) {
in( iLWZ, r0, copied+0, rFIRST );
in( iSTW, r0, copied+0, rSECOND );
copied += 4;
left -= 4;
}
if ( left >= 4 ) {
DIE("Bug in OP_BLOCK_COPY");
}
if ( left == 3 ) {
in( iLHZ, r0, copied+0, rFIRST );
in( iLBZ, rTMP, copied+2, rFIRST );
in( iSTH, r0, copied+0, rSECOND );
in( iSTB, rTMP, copied+2, rSECOND );
} else if ( left == 2 ) {
in( iLHZ, r0, copied+0, rFIRST );
in( iSTH, r0, copied+0, rSECOND );
} else if ( left == 1 ) {
in( iLBZ, r0, copied+0, rFIRST );
in( iSTB, r0, copied+0, rSECOND );
}
} else
#endif
{
unsigned long int r5_ori = 0;
if ( i_now->arg.si >= -0x8000 && i_now->arg.si < 0x8000 ) {
in( iLI, r5, i_now->arg.si );
} else if ( i_now->arg.i < 0x10000 ) {
in( iLI, r5, 0 );
r5_ori = i_now->arg.i;
} else {
in( iLIS, r5, i_now->arg.ss[ 0 ] );
r5_ori = i_now->arg.us[ 1 ];
}
in( iLL, r0, VM_Data_Offset( BlockCopy ), rVMDATA ); // get blockCopy pointer
if ( r5_ori )
in( iORI, r5, r5, r5_ori );
in( iMTCTR, r0 );
if ( rFIRST != r4 )
in( iMR, r4, rFIRST );
if ( rSECOND != r3 )
in( iMR, r3, rSECOND );
in( iBCTRL );
}
gpr_pos -= 2;
break;
case OP_SEX8:
MAYBE_EMIT_CONST();
in( iEXTSB, rFIRST, rFIRST );
break;
case OP_SEX16:
MAYBE_EMIT_CONST();
in( iEXTSH, rFIRST, rFIRST );
break;
case OP_NEGI:
MAYBE_EMIT_CONST();
in( iNEG, rFIRST, rFIRST );
break;
case OP_ADD:
if ( i_const ) {
EMIT_FALSE_CONST();
signed short int hi, lo;
hi = i_const->arg.ss[ 0 ];
lo = i_const->arg.ss[ 1 ];
if ( lo < 0 )
hi += 1;
if ( hi != 0 )
in( iADDIS, rSECOND, rSECOND, hi );
if ( lo != 0 )
in( iADDI, rSECOND, rSECOND, lo );
// if both are zero no instruction will be written
if ( hi == 0 && lo == 0 )
force_emit = 1;
} else {
MAYBE_EMIT_CONST();
in( iADD, rSECOND, rSECOND, rFIRST );
}
gpr_pos--;
break;
case OP_SUB:
MAYBE_EMIT_CONST();
in( iSUB, rSECOND, rSECOND, rFIRST );
gpr_pos--;
break;
case OP_DIVI:
MAYBE_EMIT_CONST();
in( iDIVW, rSECOND, rSECOND, rFIRST );
gpr_pos--;
break;
case OP_DIVU:
MAYBE_EMIT_CONST();
in( iDIVWU, rSECOND, rSECOND, rFIRST );
gpr_pos--;
break;
case OP_MODI:
MAYBE_EMIT_CONST();
in( iDIVW, r0, rSECOND, rFIRST );
in( iMULLW, r0, r0, rFIRST );
in( iSUB, rSECOND, rSECOND, r0 );
gpr_pos--;
break;
case OP_MODU:
MAYBE_EMIT_CONST();
in( iDIVWU, r0, rSECOND, rFIRST );
in( iMULLW, r0, r0, rFIRST );
in( iSUB, rSECOND, rSECOND, r0 );
gpr_pos--;
break;
case OP_MULI:
case OP_MULU:
MAYBE_EMIT_CONST();
in( iMULLW, rSECOND, rSECOND, rFIRST );
gpr_pos--;
break;
case OP_BAND:
MAYBE_EMIT_CONST();
in( iAND, rSECOND, rSECOND, rFIRST );
gpr_pos--;
break;
case OP_BOR:
MAYBE_EMIT_CONST();
in( iOR, rSECOND, rSECOND, rFIRST );
gpr_pos--;
break;
case OP_BXOR:
MAYBE_EMIT_CONST();
in( iXOR, rSECOND, rSECOND, rFIRST );
gpr_pos--;
break;
case OP_BCOM:
MAYBE_EMIT_CONST();
in( iNOT, rFIRST, rFIRST );
break;
case OP_LSH:
MAYBE_EMIT_CONST();
in( iSLW, rSECOND, rSECOND, rFIRST );
gpr_pos--;
break;
case OP_RSHI:
MAYBE_EMIT_CONST();
in( iSRAW, rSECOND, rSECOND, rFIRST );
gpr_pos--;
break;
case OP_RSHU:
MAYBE_EMIT_CONST();
in( iSRW, rSECOND, rSECOND, rFIRST );
gpr_pos--;
break;
case OP_NEGF:
MAYBE_EMIT_CONST();
in( iFNEG, fFIRST, fFIRST );
break;
case OP_ADDF:
MAYBE_EMIT_CONST();
in( iFADDS, fSECOND, fSECOND, fFIRST );
fpr_pos--;
break;
case OP_SUBF:
MAYBE_EMIT_CONST();
in( iFSUBS, fSECOND, fSECOND, fFIRST );
fpr_pos--;
break;
case OP_DIVF:
MAYBE_EMIT_CONST();
in( iFDIVS, fSECOND, fSECOND, fFIRST );
fpr_pos--;
break;
case OP_MULF:
MAYBE_EMIT_CONST();
in( iFMULS, fSECOND, fSECOND, fFIRST );
fpr_pos--;
break;
case OP_CVIF:
MAYBE_EMIT_CONST();
fpr_pos++;
in( iXORIS, rFIRST, rFIRST, 0x8000 );
in( iLIS, r0, 0x4330 );
in( iSTW, rFIRST, stack_temp + 4, r1 );
in( iSTW, r0, stack_temp, r1 );
in( iLFS, fTMP, VM_Data_Offset( floatBase ), rVMDATA );
in( iLFD, fFIRST, stack_temp, r1 );
in( iFSUB, fFIRST, fFIRST, fTMP );
in( iFRSP, fFIRST, fFIRST );
gpr_pos--;
break;
case OP_CVFI:
MAYBE_EMIT_CONST();
gpr_pos++;
in( iFCTIWZ, fFIRST, fFIRST );
in( iSTFD, fFIRST, stack_temp, r1 );
in( iLWZ, rFIRST, stack_temp + 4, r1 );
fpr_pos--;
break;
}
i_const = NULL;
if ( i_now->op != OP_CONST ) {
// emit the instructions if it isn't OP_CONST
emitEnd();
} else {
// mark in what register the value should be saved
if ( RET_INT )
i_now->regPos = ++gpr_pos;
else
i_now->regPos = ++fpr_pos;
#if OPTIMIZE_HOLE
i_const = i_now;
#else
PPC_EmitConst( i_now );
#endif
}
}
if ( i_const )
DIE( "left (unused) OP_CONST" );
{
// free opcode information, don't free first dummy one
source_instruction_t *i_next = i_first->next;
while ( i_next ) {
i_now = i_next;
i_next = i_now->next;
PPC_Free( i_now );
}
}
}
/*
* check which jumps are short enough to use signed 16bit immediate branch
*/
static void
PPC_ShrinkJumps( void )
{
symbolic_jump_t *sj_now = sj_first;
while ( (sj_now = sj_now->nextJump) ) {
if ( sj_now->bo == branchAlways )
// non-conditional branch has 26bit immediate
sj_now->parent->length = 1;
else {
dest_instruction_t *di = di_pointers[ sj_now->jump_to ];
dest_instruction_t *ji = sj_now->parent;
long int jump_length = 0;
if ( ! di )
DIE( "No instruction to jump to" );
if ( ji->count > di->count ) {
do {
jump_length += di->length;
} while ( ( di = di->next ) != ji );
} else {
jump_length = 1;
while ( ( ji = ji->next ) != di )
jump_length += ji->length;
}
if ( jump_length < 0x2000 )
// jump is short, use normal instruction
sj_now->parent->length = 1;
}
}
}
/*
* puts all the data in one place, it consists of many different tasks
*/
static void
PPC_ComputeCode( vm_t *vm )
{
dest_instruction_t *di_now = di_first;
unsigned long int codeInstructions = 0;
// count total instruciton number
while ( (di_now = di_now->next ) )
codeInstructions += di_now->length;
size_t codeLength = sizeof( vm_data_t )
+ sizeof( unsigned int ) * data_acc
+ sizeof( ppc_instruction_t ) * codeInstructions;
// get the memory for the generated code, smarter ppcs need the
// mem to be marked as executable (whill change later)
unsigned char *dataAndCode = mmap( NULL, codeLength,
PROT_READ|PROT_WRITE, MAP_SHARED|MAP_ANONYMOUS, -1, 0 );
if (dataAndCode == MAP_FAILED)
DIE( "Not enough memory" );
ppc_instruction_t *codeNow, *codeBegin;
codeNow = codeBegin = (ppc_instruction_t *)( dataAndCode + VM_Data_Offset( data[ data_acc ] ) );
ppc_instruction_t nop = IN( iNOP );
// copy instructions to the destination
// fills the jump instructions with nops
// saves pointers of all instructions
di_now = di_first;
while ( (di_now = di_now->next ) ) {
unsigned long int i_count = di_now->i_count;
if ( i_count != FALSE_ICOUNT ) {
if ( ! di_pointers[ i_count ] )
di_pointers[ i_count ] = (void *) codeNow;
}
if ( di_now->jump == NULL ) {
memcpy( codeNow, &(di_now->code[0]), di_now->length * sizeof( ppc_instruction_t ) );
codeNow += di_now->length;
} else {
long int i;
symbolic_jump_t *sj;
for ( i = 0; i < di_now->length; i++ )
codeNow[ i ] = nop;
codeNow += di_now->length;
sj = di_now->jump;
// save position of jumping instruction
sj->parent = (void *)(codeNow - 1);
}
}
// compute the jumps and write corresponding instructions
symbolic_jump_t *sj_now = sj_first;
while ( (sj_now = sj_now->nextJump ) ) {
ppc_instruction_t *jumpFrom = (void *) sj_now->parent;
ppc_instruction_t *jumpTo = (void *) di_pointers[ sj_now->jump_to ];
signed long int jumpLength = jumpTo - jumpFrom;
// if jump is short, just write it
if ( jumpLength >= - 8192 && jumpLength < 8192 ) {
powerpc_iname_t branchConditional = sj_now->ext & branchExtLink ? iBCL : iBC;
*jumpFrom = IN( branchConditional, sj_now->bo, sj_now->bi, jumpLength * 4 );
continue;
}
// jump isn't short so write it as two instructions
//
// the letter one is a non-conditional branch instruction which
// accepts immediate values big enough (26 bits)
*jumpFrom = IN( (sj_now->ext & branchExtLink ? iBL : iB), jumpLength * 4 );
if ( sj_now->bo == branchAlways )
continue;
// there should have been additional space prepared for this case
if ( jumpFrom[ -1 ] != nop )
DIE( "additional space for long jump not prepared" );
// invert instruction condition
long int bo = 0;
switch ( sj_now->bo ) {
case branchTrue:
bo = branchFalse;
break;
case branchFalse:
bo = branchTrue;
break;
default:
DIE( "unrecognized branch type" );
break;
}
// the former instruction is an inverted conditional branch which
// jumps over the non-conditional one
jumpFrom[ -1 ] = IN( iBC, bo, sj_now->bi, +2*4 );
}
vm->codeBase = dataAndCode;
vm->codeLength = codeLength;
vm_data_t *data = (vm_data_t *)dataAndCode;
#if ELF64
// prepare Official Procedure Descriptor for the generated code
// and retrieve real function pointer for helper functions
opd_t *ac = (void *)VM_AsmCall, *bc = (void *)VM_BlockCopy;
data->opd.function = codeBegin;
// trick it into using the same TOC
// this way we won't have to switch TOC before calling AsmCall or BlockCopy
data->opd.toc = ac->toc;
data->opd.env = ac->env;
data->AsmCall = ac->function;
data->BlockCopy = bc->function;
#else
data->AsmCall = VM_AsmCall;
data->BlockCopy = VM_BlockCopy;
#endif
data->dataMask = vm->dataMask;
data->iPointers = (ppc_instruction_t *)vm->instructionPointers;
data->dataLength = VM_Data_Offset( data[ data_acc ] );
data->codeLength = ( codeNow - codeBegin ) * sizeof( ppc_instruction_t );
data->floatBase = 0x59800004;
/* write dynamic data (float constants) */
{
local_data_t *d_next, *d_now = data_first;
long int accumulated = 0;
do {
long int i;
for ( i = 0; i < d_now->count; i++ )
data->data[ accumulated + i ] = d_now->data[ i ];
accumulated += d_now->count;
d_next = d_now->next;
PPC_Free( d_now );
if ( !d_next )
break;
d_now = d_next;
} while (1);
data_first = NULL;
}
/* free most of the compilation memory */
{
di_now = di_first->next;
PPC_Free( di_first );
PPC_Free( sj_first );
while ( di_now ) {
di_first = di_now->next;
if ( di_now->jump )
PPC_Free( di_now->jump );
PPC_Free( di_now );
di_now = di_first;
}
}
}
static void
VM_Destroy_Compiled( vm_t *self )
{
if ( self->codeBase ) {
if ( munmap( self->codeBase, self->codeLength ) )
Com_Printf( S_COLOR_RED "Memory unmap failed, possible memory leak\n" );
}
self->codeBase = NULL;
}
void
VM_Compile( vm_t *vm, vmHeader_t *header )
{
long int pc = 0;
unsigned long int i_count;
char* code;
struct timeval tvstart = {0, 0};
source_instruction_t *i_first /* dummy */, *i_last = NULL, *i_now;
vm->compiled = qfalse;
gettimeofday(&tvstart, NULL);
PPC_MakeFastMask( vm->dataMask );
i_first = PPC_Malloc( sizeof( source_instruction_t ) );
i_first->next = NULL;
// realloc instructionPointers with correct size
// use Z_Malloc so vm.c will be able to free the memory
if ( sizeof( void * ) != sizeof( int ) ) {
Z_Free( vm->instructionPointers );
vm->instructionPointers = Z_Malloc( header->instructionCount * sizeof( void * ) );
}
di_pointers = (void *)vm->instructionPointers;
memset( di_pointers, 0, header->instructionCount * sizeof( void * ) );
PPC_CompileInit();
/*
* read the input program
* divide it into functions and send each function to compiler
*/
code = (char *)header + header->codeOffset;
for ( i_count = 0; i_count < header->instructionCount; ++i_count )
{
unsigned char op = code[ pc++ ];
if ( op == OP_ENTER ) {
if ( i_first->next )
VM_CompileFunction( i_first );
i_first->next = NULL;
i_last = i_first;
}
i_now = PPC_Malloc( sizeof( source_instruction_t ) );
i_now->op = op;
i_now->i_count = i_count;
i_now->arg.i = 0;
i_now->regA1 = 0;
i_now->regA2 = 0;
i_now->regR = 0;
i_now->regPos = 0;
i_now->next = NULL;
if ( vm_opInfo[op] & opImm4 ) {
union {
unsigned char b[4];
unsigned int i;
} c = { { code[ pc + 3 ], code[ pc + 2 ], code[ pc + 1 ], code[ pc + 0 ] }, };
i_now->arg.i = c.i;
pc += 4;
} else if ( vm_opInfo[op] & opImm1 ) {
i_now->arg.b = code[ pc++ ];
}
i_last->next = i_now;
i_last = i_now;
}
VM_CompileFunction( i_first );
PPC_Free( i_first );
PPC_ShrinkJumps();
memset( di_pointers, 0, header->instructionCount * sizeof( void * ) );
PPC_ComputeCode( vm );
/* check for uninitialized pointers */
#ifdef DEBUG_VM
long int i;
for ( i = 0; i < header->instructionCount; i++ )
if ( di_pointers[ i ] == 0 )
Com_Printf( S_COLOR_RED "Pointer %ld not initialized !\n", i );
#endif
/* mark memory as executable and not writeable */
if ( mprotect( vm->codeBase, vm->codeLength, PROT_READ|PROT_EXEC ) ) {
// it has failed, make sure memory is unmapped before throwing the error
VM_Destroy_Compiled( vm );
DIE( "mprotect failed" );
}
vm->destroy = VM_Destroy_Compiled;
vm->compiled = qtrue;
{
struct timeval tvdone = {0, 0};
struct timeval dur = {0, 0};
Com_Printf( "VM file %s compiled to %i bytes of code (%p - %p)\n",
vm->name, vm->codeLength, vm->codeBase, vm->codeBase+vm->codeLength );
gettimeofday(&tvdone, NULL);
timersub(&tvdone, &tvstart, &dur);
Com_Printf( "compilation took %lu.%06lu seconds\n",
(long unsigned int)dur.tv_sec, (long unsigned int)dur.tv_usec );
}
}
int
VM_CallCompiled( vm_t *vm, int *args )
{
int retVal;
int *argPointer;
vm_data_t *vm_dataAndCode = (void *)( vm->codeBase );
int programStack = vm->programStack;
int stackOnEntry = programStack;
byte *image = vm->dataBase;
currentVM = vm;
vm->currentlyInterpreting = qtrue;
programStack -= ( 8 + 4 * MAX_VMMAIN_ARGS );
argPointer = (int *)&image[ programStack + 8 ];
memcpy( argPointer, args, 4 * MAX_VMMAIN_ARGS );
argPointer[ -1 ] = 0;
argPointer[ -2 ] = -1;
#ifdef VM_TIMES
struct tms start_time, stop_time;
clock_t time_diff;
times( &start_time );
time_outside_vm = 0;
#endif
/* call generated code */
{
int ( *entry )( void *, int, void * );
#ifdef __PPC64__
entry = (void *)&(vm_dataAndCode->opd);
#else
entry = (void *)(vm->codeBase + vm_dataAndCode->dataLength);
#endif
retVal = entry( vm->codeBase, programStack, vm->dataBase );
}
#ifdef VM_TIMES
times( &stop_time );
time_diff = stop_time.tms_utime - start_time.tms_utime;
time_total_vm += time_diff - time_outside_vm;
if ( time_diff > 100 ) {
printf( "App clock: %ld, vm total: %ld, vm this: %ld, vm real: %ld, vm out: %ld\n"
"Inside VM %f%% of app time\n",
stop_time.tms_utime,
time_total_vm,
time_diff,
time_diff - time_outside_vm,
time_outside_vm,
(double)100 * time_total_vm / stop_time.tms_utime );
}
#endif
vm->programStack = stackOnEntry;
vm->currentlyInterpreting = qfalse;
return retVal;
}
|