File: tr_main.c

package info (click to toggle)
iortcw 1.51.c%2Bdfsg1-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 25,304 kB
  • sloc: ansic: 457,326; cpp: 6,507; makefile: 4,737; sh: 1,292; asm: 1,176; xml: 31
file content (1772 lines) | stat: -rw-r--r-- 48,569 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
/*
===========================================================================

Return to Castle Wolfenstein single player GPL Source Code
Copyright (C) 1999-2010 id Software LLC, a ZeniMax Media company. 

This file is part of the Return to Castle Wolfenstein single player GPL Source Code (“RTCW SP Source Code”).  

RTCW SP Source Code is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

RTCW SP Source Code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with RTCW SP Source Code.  If not, see <http://www.gnu.org/licenses/>.

In addition, the RTCW SP Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the RTCW SP Source Code.  If not, please request a copy in writing from id Software at the address below.

If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.

===========================================================================
*/

/*
 * name:		tr_main.c
 *
 * desc:		main control flow for each frame
 *
*/

#include "tr_local.h"

#include <string.h> // memcpy

trGlobals_t tr;

static float s_flipMatrix[16] = {
	// convert from our coordinate system (looking down X)
	// to OpenGL's coordinate system (looking down -Z)
	0, 0, -1, 0,
	-1, 0, 0, 0,
	0, 1, 0, 0,
	0, 0, 0, 1
};


refimport_t ri;

// entities that will have procedurally generated surfaces will just
// point at this for their sorting surface
surfaceType_t entitySurface = SF_ENTITY;

// fog stuff
glfog_t glfogsettings[NUM_FOGS];
glfogType_t glfogNum = FOG_NONE;
qboolean fogIsOn = qfalse;


/*
=================
R_Fog (void)
=================
*/
void R_Fog( glfog_t *curfog ) {

	if ( !r_wolffog->integer ) {
		R_FogOff();
		return;
	}

	if ( !curfog->registered ) {   //----(SA)
		R_FogOff();
		return;
	}

	//----(SA) assme values of '0' for these parameters means 'use default'
	if ( !curfog->density ) {
		curfog->density = 1;
	}
	if ( !curfog->hint ) {
		curfog->hint = GL_DONT_CARE;
	}
	if ( !curfog->mode ) {
		curfog->mode = GL_LINEAR;
	}
	//----(SA)	end


	R_FogOn();

	qglFogi( GL_FOG_MODE, curfog->mode );
	qglFogfv( GL_FOG_COLOR, curfog->color );
	qglFogf( GL_FOG_DENSITY, curfog->density );
	qglHint( GL_FOG_HINT, curfog->hint );

	if ( backEnd.refdef.rdflags & RDF_SNOOPERVIEW ) {
		qglFogf( GL_FOG_START, curfog->end );       // snooper starts GL fog out further
	} else {
		qglFogf( GL_FOG_START, curfog->start );
	}

	if ( r_zfar->value ) {             // (SA) allow override for helping level designers test fog distances
		qglFogf( GL_FOG_END, r_zfar->value );
	} else {
		if ( backEnd.refdef.rdflags & RDF_SNOOPERVIEW ) {
			qglFogf( GL_FOG_END, curfog->end + 1000 );      // snooper ends GL fog out further.  this works fine with our maps, but could be 'funky' with later maps
		}
		else {
			qglFogf( GL_FOG_END, curfog->end );
		}
	}

#ifndef USE_OPENGLES
//----(SA)	added
	// NV fog mode
	if ( glConfig.NVFogAvailable ) {
		qglFogi( GL_FOG_DISTANCE_MODE_NV, glConfig.NVFogMode );
	}
//----(SA)	end
#endif

	qglClearColor( curfog->color[0], curfog->color[1], curfog->color[2], curfog->color[3] );


}

// Ridah, allow disabling fog temporarily
void R_FogOff( void ) {
	if ( !fogIsOn ) {
		return;
	}
	qglDisable( GL_FOG );
	fogIsOn = qfalse;
}

void R_FogOn( void ) {
	if ( fogIsOn ) {
		return;
	}

//	if(r_uiFullScreen->integer) {	// don't fog in the menu
//		R_FogOff();
//		return;
//	}

	if ( backEnd.projection2D ) {  // no fog in 2d
		R_FogOff();
		return;
	}

	if ( !r_wolffog->integer ) {
		return;
	}

//	if(backEnd.viewParms.isGLFogged) {
//		if(!(backEnd.viewParms.glFog.registered))
//			return;
//	}

	if ( backEnd.refdef.rdflags & RDF_SKYBOXPORTAL ) { // don't force world fog on portal sky
		if ( !( glfogsettings[FOG_PORTALVIEW].registered ) ) {
			return;
		}
	} else if ( !glfogNum )     {
		return;
	}

	qglEnable( GL_FOG );
	fogIsOn = qtrue;
}
// done.



//----(SA)
/*
==============
R_SetFog

  if fogvar == FOG_CMD_SWITCHFOG {
	fogvar is the command
	var1 is the fog to switch to
	var2 is the time to transition
  }
  else {
	fogvar is the fog that's being set
	var1 is the near fog z value
	var2 is the far fog z value
	rgb = color
	density is density, and is used to derive the values of 'mode', 'drawsky', and 'clearscreen'
  }
==============
*/
void R_SetFog( int fogvar, int var1, int var2, float r, float g, float b, float density ) {
	if ( fogvar != FOG_CMD_SWITCHFOG ) {   // just set the parameters and return

		if ( var1 == 0 && var2 == 0 ) {    // clear this fog
			glfogsettings[fogvar].registered = qfalse;
			return;
		}

		glfogsettings[fogvar].color[0]      = r;
		glfogsettings[fogvar].color[1]      = g;
		glfogsettings[fogvar].color[2]      = b;
		glfogsettings[fogvar].color[3]      = 1;
		glfogsettings[fogvar].start         = var1;
		glfogsettings[fogvar].end           = var2;
		if ( density >= 1 ) {
			glfogsettings[fogvar].mode          = GL_LINEAR;
			glfogsettings[fogvar].drawsky       = qfalse;
			glfogsettings[fogvar].clearscreen   = qtrue;
			glfogsettings[fogvar].density       = 1.0;
		} else
		{
			glfogsettings[fogvar].mode          = GL_EXP;
			glfogsettings[fogvar].drawsky       = qtrue;
			glfogsettings[fogvar].clearscreen   = qfalse;
			glfogsettings[fogvar].density       = density;
		}
		glfogsettings[fogvar].hint          = GL_DONT_CARE;
		glfogsettings[fogvar].registered    = qtrue;

		return;
	}

	// FOG_MAP now used to mean 'no fog'
	if ( var1 == FOG_MAP ) {

		// transitioning from...
		if ( glfogsettings[FOG_CURRENT].registered ) {
			memcpy( &glfogsettings[FOG_LAST], &glfogsettings[FOG_CURRENT], sizeof( glfog_t ) );
		}

		memcpy( &glfogsettings[FOG_TARGET], &glfogsettings[glfogNum], sizeof( glfog_t ) );


		// clear, clear, clear
		memset( &glfogsettings[FOG_MAP], 0, sizeof( glfog_t ) );
//		memset(&glfogsettings[FOG_CURRENT], 0, sizeof(glfog_t));
		memset( &glfogsettings[FOG_TARGET], 0, sizeof( glfog_t ) );
//		glfogsettings[FOG_CURRENT].registered = qfalse;
//		glfogsettings[FOG_TARGET].registered = qfalse;
		glfogNum = FOG_NONE;
		return;
	}

	// don't switch to invalid fogs
	if ( glfogsettings[var1].registered != qtrue ) {
		return;
	}


	glfogNum = var1;

	// transitioning to new fog, store the current values as the 'from'

	if ( glfogsettings[FOG_CURRENT].registered ) {
		memcpy( &glfogsettings[FOG_LAST], &glfogsettings[FOG_CURRENT], sizeof( glfog_t ) );
	} else {
		// if no current fog fall back to world fog
		// FIXME: handle transition if there is no FOG_MAP fog
//		memcpy(&glfogsettings[FOG_LAST], &glfogsettings[FOG_MAP], sizeof(glfog_t));
		memcpy( &glfogsettings[FOG_LAST], &glfogsettings[glfogNum], sizeof( glfog_t ) );
	}

	memcpy( &glfogsettings[FOG_TARGET], &glfogsettings[glfogNum], sizeof( glfog_t ) );

	if ( !var2 ) { // instant
		glfogsettings[FOG_TARGET].startTime = 0;
		glfogsettings[FOG_TARGET].finishTime = 0;
		glfogsettings[FOG_TARGET].dirty = 1;
		glfogsettings[FOG_CURRENT].dirty = 1;
	} else {
		// setup transition times
		glfogsettings[FOG_TARGET].startTime = tr.refdef.time;
		glfogsettings[FOG_TARGET].finishTime = tr.refdef.time + var2;
	}
}

//----(SA) end

/*
=================
R_CullLocalBox

Returns CULL_IN, CULL_CLIP, or CULL_OUT
=================
*/
int R_CullLocalBox( vec3_t bounds[2] ) {
	int i, j;
	vec3_t transformed[8];
	float dists[8];
	vec3_t v;
	cplane_t    *frust;
	int anyBack;
	int front, back;

	if ( r_nocull->integer ) {
		return CULL_CLIP;
	}

	// transform into world space
	for ( i = 0 ; i < 8 ; i++ ) {
		v[0] = bounds[i & 1][0];
		v[1] = bounds[( i >> 1 ) & 1][1];
		v[2] = bounds[( i >> 2 ) & 1][2];

		VectorCopy( tr.or.origin, transformed[i] );
		VectorMA( transformed[i], v[0], tr.or.axis[0], transformed[i] );
		VectorMA( transformed[i], v[1], tr.or.axis[1], transformed[i] );
		VectorMA( transformed[i], v[2], tr.or.axis[2], transformed[i] );
	}

	// check against frustum planes
	anyBack = 0;
	for ( i = 0 ; i < 4 ; i++ ) {
		frust = &tr.viewParms.frustum[i];

		front = back = 0;
		for ( j = 0 ; j < 8 ; j++ ) {
			dists[j] = DotProduct( transformed[j], frust->normal );
			if ( dists[j] > frust->dist ) {
				front = 1;
				if ( back ) {
					break;      // a point is in front
				}
			} else {
				back = 1;
			}
		}
		if ( !front ) {
			// all points were behind one of the planes
			return CULL_OUT;
		}
		anyBack |= back;
	}

	if ( !anyBack ) {
		return CULL_IN;     // completely inside frustum
	}

	return CULL_CLIP;       // partially clipped
}

/*
** R_CullLocalPointAndRadius
*/
int R_CullLocalPointAndRadius( vec3_t pt, float radius ) {
	vec3_t transformed;

	R_LocalPointToWorld( pt, transformed );

	return R_CullPointAndRadius( transformed, radius );
}

/*
** R_CullPointAndRadius
*/
int R_CullPointAndRadius( vec3_t pt, float radius ) {
	int i;
	float dist;
	cplane_t    *frust;
	qboolean mightBeClipped = qfalse;

	if ( r_nocull->integer ) {
		return CULL_CLIP;
	}

	// check against frustum planes
	for ( i = 0 ; i < 4 ; i++ )
	{
		frust = &tr.viewParms.frustum[i];

		dist = DotProduct( pt, frust->normal ) - frust->dist;
		if ( dist < -radius ) {
			return CULL_OUT;
		} else if ( dist <= radius )   {
			mightBeClipped = qtrue;
		}
	}

	if ( mightBeClipped ) {
		return CULL_CLIP;
	}

	return CULL_IN;     // completely inside frustum
}


/*
=================
R_LocalNormalToWorld

=================
*/
void R_LocalNormalToWorld( vec3_t local, vec3_t world ) {
	world[0] = local[0] * tr.or.axis[0][0] + local[1] * tr.or.axis[1][0] + local[2] * tr.or.axis[2][0];
	world[1] = local[0] * tr.or.axis[0][1] + local[1] * tr.or.axis[1][1] + local[2] * tr.or.axis[2][1];
	world[2] = local[0] * tr.or.axis[0][2] + local[1] * tr.or.axis[1][2] + local[2] * tr.or.axis[2][2];
}

/*
=================
R_LocalPointToWorld

=================
*/
void R_LocalPointToWorld( vec3_t local, vec3_t world ) {
	world[0] = local[0] * tr.or.axis[0][0] + local[1] * tr.or.axis[1][0] + local[2] * tr.or.axis[2][0] + tr.or.origin[0];
	world[1] = local[0] * tr.or.axis[0][1] + local[1] * tr.or.axis[1][1] + local[2] * tr.or.axis[2][1] + tr.or.origin[1];
	world[2] = local[0] * tr.or.axis[0][2] + local[1] * tr.or.axis[1][2] + local[2] * tr.or.axis[2][2] + tr.or.origin[2];
}

/*
=================
R_WorldToLocal

=================
*/
void R_WorldToLocal( vec3_t world, vec3_t local ) {
	local[0] = DotProduct( world, tr.or.axis[0] );
	local[1] = DotProduct( world, tr.or.axis[1] );
	local[2] = DotProduct( world, tr.or.axis[2] );
}

/*
==========================
R_TransformModelToClip

==========================
*/
void R_TransformModelToClip( const vec3_t src, const float *modelMatrix, const float *projectionMatrix,
							 vec4_t eye, vec4_t dst ) {
	int i;

	for ( i = 0 ; i < 4 ; i++ ) {
		eye[i] =
			src[0] * modelMatrix[ i + 0 * 4 ] +
			src[1] * modelMatrix[ i + 1 * 4 ] +
			src[2] * modelMatrix[ i + 2 * 4 ] +
			1 * modelMatrix[ i + 3 * 4 ];
	}

	for ( i = 0 ; i < 4 ; i++ ) {
		dst[i] =
			eye[0] * projectionMatrix[ i + 0 * 4 ] +
			eye[1] * projectionMatrix[ i + 1 * 4 ] +
			eye[2] * projectionMatrix[ i + 2 * 4 ] +
			eye[3] * projectionMatrix[ i + 3 * 4 ];
	}
}

/*
==========================
R_TransformClipToWindow

==========================
*/
void R_TransformClipToWindow( const vec4_t clip, const viewParms_t *view, vec4_t normalized, vec4_t window ) {
	normalized[0] = clip[0] / clip[3];
	normalized[1] = clip[1] / clip[3];
	normalized[2] = ( clip[2] + clip[3] ) / ( 2 * clip[3] );

	window[0] = 0.5f * ( 1.0f + normalized[0] ) * view->viewportWidth;
	window[1] = 0.5f * ( 1.0f + normalized[1] ) * view->viewportHeight;
	window[2] = normalized[2];

	window[0] = (int) ( window[0] + 0.5 );
	window[1] = (int) ( window[1] + 0.5 );
}


/*
==========================
myGlMultMatrix

==========================
*/
void myGlMultMatrix( const float *a, const float *b, float *out ) {
	int i, j;

	for ( i = 0 ; i < 4 ; i++ ) {
		for ( j = 0 ; j < 4 ; j++ ) {
			out[ i * 4 + j ] =
				a [ i * 4 + 0 ] * b [ 0 * 4 + j ]
				+ a [ i * 4 + 1 ] * b [ 1 * 4 + j ]
				+ a [ i * 4 + 2 ] * b [ 2 * 4 + j ]
				+ a [ i * 4 + 3 ] * b [ 3 * 4 + j ];
		}
	}
}

/*
=================
R_RotateForEntity

Generates an orientation for an entity and viewParms
Does NOT produce any GL calls
Called by both the front end and the back end
=================
*/
void R_RotateForEntity( const trRefEntity_t *ent, const viewParms_t *viewParms,
						orientationr_t *or ) {
	float glMatrix[16];
	vec3_t delta;
	float axisLength;

	if ( ent->e.reType != RT_MODEL ) {
		*or = viewParms->world;
		return;
	}

	VectorCopy( ent->e.origin, or->origin );

	VectorCopy( ent->e.axis[0], or->axis[0] );
	VectorCopy( ent->e.axis[1], or->axis[1] );
	VectorCopy( ent->e.axis[2], or->axis[2] );

	glMatrix[0] = or->axis[0][0];
	glMatrix[4] = or->axis[1][0];
	glMatrix[8] = or->axis[2][0];
	glMatrix[12] = or->origin[0];

	glMatrix[1] = or->axis[0][1];
	glMatrix[5] = or->axis[1][1];
	glMatrix[9] = or->axis[2][1];
	glMatrix[13] = or->origin[1];

	glMatrix[2] = or->axis[0][2];
	glMatrix[6] = or->axis[1][2];
	glMatrix[10] = or->axis[2][2];
	glMatrix[14] = or->origin[2];

	glMatrix[3] = 0;
	glMatrix[7] = 0;
	glMatrix[11] = 0;
	glMatrix[15] = 1;

	myGlMultMatrix( glMatrix, viewParms->world.modelMatrix, or->modelMatrix );

	// calculate the viewer origin in the model's space
	// needed for fog, specular, and environment mapping
	VectorSubtract( viewParms->or.origin, or->origin, delta );

	// compensate for scale in the axes if necessary
	if ( ent->e.nonNormalizedAxes ) {
		axisLength = VectorLength( ent->e.axis[0] );
		if ( !axisLength ) {
			axisLength = 0;
		} else {
			axisLength = 1.0f / axisLength;
		}
	} else {
		axisLength = 1.0f;
	}

	or->viewOrigin[0] = DotProduct( delta, or->axis[0] ) * axisLength;
	or->viewOrigin[1] = DotProduct( delta, or->axis[1] ) * axisLength;
	or->viewOrigin[2] = DotProduct( delta, or->axis[2] ) * axisLength;
}

/*
=================
R_RotateForViewer

Sets up the modelview matrix for a given viewParm
=================
*/
void R_RotateForViewer( void ) {
	float viewerMatrix[16];
	vec3_t origin;

	memset( &tr.or, 0, sizeof( tr.or ) );
	tr.or.axis[0][0] = 1;
	tr.or.axis[1][1] = 1;
	tr.or.axis[2][2] = 1;
	VectorCopy( tr.viewParms.or.origin, tr.or.viewOrigin );

	// transform by the camera placement
	VectorCopy( tr.viewParms.or.origin, origin );

	viewerMatrix[0] = tr.viewParms.or.axis[0][0];
	viewerMatrix[4] = tr.viewParms.or.axis[0][1];
	viewerMatrix[8] = tr.viewParms.or.axis[0][2];
	viewerMatrix[12] = -origin[0] * viewerMatrix[0] + - origin[1] * viewerMatrix[4] + - origin[2] * viewerMatrix[8];

	viewerMatrix[1] = tr.viewParms.or.axis[1][0];
	viewerMatrix[5] = tr.viewParms.or.axis[1][1];
	viewerMatrix[9] = tr.viewParms.or.axis[1][2];
	viewerMatrix[13] = -origin[0] * viewerMatrix[1] + - origin[1] * viewerMatrix[5] + - origin[2] * viewerMatrix[9];

	viewerMatrix[2] = tr.viewParms.or.axis[2][0];
	viewerMatrix[6] = tr.viewParms.or.axis[2][1];
	viewerMatrix[10] = tr.viewParms.or.axis[2][2];
	viewerMatrix[14] = -origin[0] * viewerMatrix[2] + - origin[1] * viewerMatrix[6] + - origin[2] * viewerMatrix[10];

	viewerMatrix[3] = 0;
	viewerMatrix[7] = 0;
	viewerMatrix[11] = 0;
	viewerMatrix[15] = 1;

	// convert from our coordinate system (looking down X)
	// to OpenGL's coordinate system (looking down -Z)
	myGlMultMatrix( viewerMatrix, s_flipMatrix, tr.or.modelMatrix );

	tr.viewParms.world = tr.or;

}



/*
==============
R_SetFrameFog
==============
*/
void R_SetFrameFog( void ) {

	if ( r_speeds->integer == 5 ) {
		if ( !glfogsettings[FOG_TARGET].registered ) {
			ri.Printf( PRINT_ALL, "no fog - calc zFar: %0.1f\n", tr.viewParms.zFar );
			return;
		}
	}

	// still fading
	if ( glfogsettings[FOG_TARGET].finishTime && glfogsettings[FOG_TARGET].finishTime >= tr.refdef.time ) {
		float lerpPos;
		int fadeTime;

		// transitioning from density to distance
		if ( glfogsettings[FOG_LAST].mode == GL_EXP && glfogsettings[FOG_TARGET].mode == GL_LINEAR ) {
			// for now just fast transition to the target when dissimilar fogs are
			memcpy( &glfogsettings[FOG_CURRENT], &glfogsettings[FOG_TARGET], sizeof( glfog_t ) );
			glfogsettings[FOG_TARGET].finishTime = 0;
		}
		// transitioning from distance to density
		else if ( glfogsettings[FOG_LAST].mode == GL_LINEAR && glfogsettings[FOG_TARGET].mode == GL_EXP ) {
			memcpy( &glfogsettings[FOG_CURRENT], &glfogsettings[FOG_TARGET], sizeof( glfog_t ) );
			glfogsettings[FOG_TARGET].finishTime = 0;
		}
		// transitioning like fog modes
		else {

			fadeTime = glfogsettings[FOG_TARGET].finishTime - glfogsettings[FOG_TARGET].startTime;
			if ( fadeTime <= 0 ) {
				fadeTime = 1;   // avoid divide by zero


			}
			lerpPos = (float)( tr.refdef.time - glfogsettings[FOG_TARGET].startTime ) / (float)fadeTime;
			if ( lerpPos > 1 ) {
				lerpPos = 1;
			}

			// lerp near/far
			glfogsettings[FOG_CURRENT].start        = glfogsettings[FOG_LAST].start + ( ( glfogsettings[FOG_TARGET].start - glfogsettings[FOG_LAST].start ) * lerpPos );
			glfogsettings[FOG_CURRENT].end          = glfogsettings[FOG_LAST].end + ( ( glfogsettings[FOG_TARGET].end - glfogsettings[FOG_LAST].end ) * lerpPos );

			// lerp color
			glfogsettings[FOG_CURRENT].color[0]     = glfogsettings[FOG_LAST].color[0] + ( ( glfogsettings[FOG_TARGET].color[0] - glfogsettings[FOG_LAST].color[0] ) * lerpPos );
			glfogsettings[FOG_CURRENT].color[1]     = glfogsettings[FOG_LAST].color[1] + ( ( glfogsettings[FOG_TARGET].color[1] - glfogsettings[FOG_LAST].color[1] ) * lerpPos );
			glfogsettings[FOG_CURRENT].color[2]     = glfogsettings[FOG_LAST].color[2] + ( ( glfogsettings[FOG_TARGET].color[2] - glfogsettings[FOG_LAST].color[2] ) * lerpPos );

			glfogsettings[FOG_CURRENT].density      = glfogsettings[FOG_TARGET].density;
			glfogsettings[FOG_CURRENT].mode         = glfogsettings[FOG_TARGET].mode;
			glfogsettings[FOG_CURRENT].registered   = qtrue;

			// if either fog in the transition clears the screen, clear the background this frame to avoid hall of mirrors
			glfogsettings[FOG_CURRENT].clearscreen  = ( glfogsettings[FOG_TARGET].clearscreen || glfogsettings[FOG_LAST].clearscreen );
		}

		glfogsettings[FOG_CURRENT].dirty = 1;
	} else {
		// potential FIXME: since this is the most common occurance, diff first and only set changes
//		if(glfogsettings[FOG_CURRENT].dirty) {
		memcpy( &glfogsettings[FOG_CURRENT], &glfogsettings[FOG_TARGET], sizeof( glfog_t ) );
		glfogsettings[FOG_CURRENT].dirty = 0;
//		}
	}


	// shorten the far clip if the fog opaque distance is closer than the procedural farcip dist

	if ( glfogsettings[FOG_CURRENT].mode == GL_LINEAR ) {
		if ( glfogsettings[FOG_CURRENT].end < tr.viewParms.zFar ) {
			tr.viewParms.zFar = glfogsettings[FOG_CURRENT].end;
		}
		if ( backEnd.refdef.rdflags & RDF_SNOOPERVIEW ) {
			tr.viewParms.zFar += 1000;  // zfar out slightly further for snooper.  this works fine with our maps, but could be 'funky' with later maps

		}
	}
//	else
//		glfogsettings[FOG_CURRENT].end = 5;


	if ( r_speeds->integer == 5 ) {
		if ( glfogsettings[FOG_CURRENT].mode == GL_LINEAR ) {
			ri.Printf( PRINT_ALL, "farclip fog - den: %0.1f  calc zFar: %0.1f  fog zfar: %0.1f\n", glfogsettings[FOG_CURRENT].density, tr.viewParms.zFar, glfogsettings[FOG_CURRENT].end );
		} else {
			ri.Printf( PRINT_ALL, "density fog - den: %0.6f  calc zFar: %0.1f  fog zFar: %0.1f\n", glfogsettings[FOG_CURRENT].density, tr.viewParms.zFar, glfogsettings[FOG_CURRENT].end );
		}
	}
}


/*
==============
R_SetFarClip
==============
*/
static void R_SetFarClip( void ) {
	float farthestCornerDistance = 0;
	int i;

	// if not rendering the world (icons, menus, etc)
	// set a 2k far clip plane
	if ( tr.refdef.rdflags & RDF_NOWORLDMODEL ) {
		tr.viewParms.zFar = 2048;
		return;
	}

	//----(SA)	this lets you use r_zfar from the command line to experiment with different
	//			distances, but setting it back to 0 uses the map (or procedurally generated) default
	if ( r_zfar->value ) {

		tr.viewParms.zFar = r_zfar->integer;
		R_SetFrameFog();

		if ( r_speeds->integer == 5 ) {
			ri.Printf( PRINT_ALL, "r_zfar value forcing farclip at: %f\n", tr.viewParms.zFar );
		}

		return;
	}

	//
	// set far clipping planes dynamically
	//
	farthestCornerDistance = 0;
	for ( i = 0; i < 8; i++ )
	{
		vec3_t v;
		vec3_t vecTo;
		float distance;

		if ( i & 1 ) {
			v[0] = tr.viewParms.visBounds[0][0];
		} else
		{
			v[0] = tr.viewParms.visBounds[1][0];
		}

		if ( i & 2 ) {
			v[1] = tr.viewParms.visBounds[0][1];
		} else
		{
			v[1] = tr.viewParms.visBounds[1][1];
		}

		if ( i & 4 ) {
			v[2] = tr.viewParms.visBounds[0][2];
		} else
		{
			v[2] = tr.viewParms.visBounds[1][2];
		}

		VectorSubtract( v, tr.viewParms.or.origin, vecTo );

		distance = vecTo[0] * vecTo[0] + vecTo[1] * vecTo[1] + vecTo[2] * vecTo[2];

		if ( distance > farthestCornerDistance ) {
			farthestCornerDistance = distance;
		}
	}

	tr.viewParms.zFar = sqrt( farthestCornerDistance );
	R_SetFrameFog();
}

/*
=================
R_SetupFrustum

Set up the culling frustum planes for the current view using the results we got from computing the first two rows of
the projection matrix.
=================
*/
void R_SetupFrustum (viewParms_t *dest, float xmin, float xmax, float ymax, float zProj, float stereoSep)
{
	vec3_t ofsorigin;
	float oppleg, adjleg, length;
	int i;
	
	if(stereoSep == 0 && xmin == -xmax)
	{
		// symmetric case can be simplified
		VectorCopy(dest->or.origin, ofsorigin);

		length = sqrt(xmax * xmax + zProj * zProj);
		oppleg = xmax / length;
		adjleg = zProj / length;

		VectorScale(dest->or.axis[0], oppleg, dest->frustum[0].normal);
		VectorMA(dest->frustum[0].normal, adjleg, dest->or.axis[1], dest->frustum[0].normal);

		VectorScale(dest->or.axis[0], oppleg, dest->frustum[1].normal);
		VectorMA(dest->frustum[1].normal, -adjleg, dest->or.axis[1], dest->frustum[1].normal);
	}
	else
	{
		// In stereo rendering, due to the modification of the projection matrix, dest->or.origin is not the
		// actual origin that we're rendering so offset the tip of the view pyramid.
		VectorMA(dest->or.origin, stereoSep, dest->or.axis[1], ofsorigin);
	
		oppleg = xmax + stereoSep;
		length = sqrt(oppleg * oppleg + zProj * zProj);
		VectorScale(dest->or.axis[0], oppleg / length, dest->frustum[0].normal);
		VectorMA(dest->frustum[0].normal, zProj / length, dest->or.axis[1], dest->frustum[0].normal);

		oppleg = xmin + stereoSep;
		length = sqrt(oppleg * oppleg + zProj * zProj);
		VectorScale(dest->or.axis[0], -oppleg / length, dest->frustum[1].normal);
		VectorMA(dest->frustum[1].normal, -zProj / length, dest->or.axis[1], dest->frustum[1].normal);
	}

	length = sqrt(ymax * ymax + zProj * zProj);
	oppleg = ymax / length;
	adjleg = zProj / length;

	VectorScale(dest->or.axis[0], oppleg, dest->frustum[2].normal);
	VectorMA(dest->frustum[2].normal, adjleg, dest->or.axis[2], dest->frustum[2].normal);

	VectorScale(dest->or.axis[0], oppleg, dest->frustum[3].normal);
	VectorMA(dest->frustum[3].normal, -adjleg, dest->or.axis[2], dest->frustum[3].normal);
	
	for (i=0 ; i<4 ; i++) {
		dest->frustum[i].type = PLANE_NON_AXIAL;
		dest->frustum[i].dist = DotProduct (ofsorigin, dest->frustum[i].normal);
		SetPlaneSignbits( &dest->frustum[i] );
	}
}

/*
===============
R_SetupProjection
===============
*/
void R_SetupProjection(viewParms_t *dest, float zProj, qboolean computeFrustum)
{
	float	xmin, xmax, ymin, ymax;
	float	width, height, stereoSep = r_stereoSeparation->value;

	/*
	 * offset the view origin of the viewer for stereo rendering 
	 * by setting the projection matrix appropriately.
	 */

	if(stereoSep != 0)
	{
		if(dest->stereoFrame == STEREO_LEFT)
			stereoSep = zProj / stereoSep;
		else if(dest->stereoFrame == STEREO_RIGHT)
			stereoSep = zProj / -stereoSep;
		else
			stereoSep = 0;
	}

	ymax = zProj * tan(dest->fovY * M_PI / 360.0f);
	ymin = -ymax;

	xmax = zProj * tan(dest->fovX * M_PI / 360.0f);
	xmin = -xmax;

	width = xmax - xmin;
	height = ymax - ymin;

	dest->projectionMatrix[0] = 2 * zProj / width;
	dest->projectionMatrix[4] = 0;
	dest->projectionMatrix[8] = (xmax + xmin + 2 * stereoSep) / width;
	dest->projectionMatrix[12] = 2 * zProj * stereoSep / width;

	dest->projectionMatrix[1] = 0;
	dest->projectionMatrix[5] = 2 * zProj / height;
	dest->projectionMatrix[9] = ( ymax + ymin ) / height;	// normally 0
	dest->projectionMatrix[13] = 0;

	dest->projectionMatrix[3] = 0;
	dest->projectionMatrix[7] = 0;
	dest->projectionMatrix[11] = -1;
	dest->projectionMatrix[15] = 0;
	
	// Now that we have all the data for the projection matrix we can also setup the view frustum.
	if(computeFrustum)
		R_SetupFrustum(dest, xmin, xmax, ymax, zProj, stereoSep);
}

/*
===============
R_SetupProjectionZ

Sets the z-component transformation part in the projection matrix
===============
*/
void R_SetupProjectionZ(viewParms_t *dest)
{
	float zNear, zFar, depth;
	
	zNear	= r_znear->value;
	zFar	= dest->zFar;	
	depth	= zFar - zNear;

	dest->projectionMatrix[2] = 0;
	dest->projectionMatrix[6] = 0;
	dest->projectionMatrix[10] = -( zFar + zNear ) / depth;
	dest->projectionMatrix[14] = -2 * zFar * zNear / depth;
}


/*
=================
R_MirrorPoint
=================
*/
void R_MirrorPoint( vec3_t in, orientation_t *surface, orientation_t *camera, vec3_t out ) {
	int i;
	vec3_t local;
	vec3_t transformed;
	float d;

	VectorSubtract( in, surface->origin, local );

	VectorClear( transformed );
	for ( i = 0 ; i < 3 ; i++ ) {
		d = DotProduct( local, surface->axis[i] );
		VectorMA( transformed, d, camera->axis[i], transformed );
	}

	VectorAdd( transformed, camera->origin, out );
}

void R_MirrorVector( vec3_t in, orientation_t *surface, orientation_t *camera, vec3_t out ) {
	int i;
	float d;

	VectorClear( out );
	for ( i = 0 ; i < 3 ; i++ ) {
		d = DotProduct( in, surface->axis[i] );
		VectorMA( out, d, camera->axis[i], out );
	}
}


/*
=============
R_PlaneForSurface
=============
*/
void R_PlaneForSurface( surfaceType_t *surfType, cplane_t *plane ) {
	srfTriangles_t  *tri;
	srfPoly_t       *poly;
	drawVert_t      *v1, *v2, *v3;
	vec4_t plane4;

	if ( !surfType ) {
		memset( plane, 0, sizeof( *plane ) );
		plane->normal[0] = 1;
		return;
	}
	switch ( *surfType ) {
	case SF_FACE:
		*plane = ( (srfSurfaceFace_t *)surfType )->plane;
		return;
	case SF_TRIANGLES:
		tri = (srfTriangles_t *)surfType;
		v1 = tri->verts + tri->indexes[0];
		v2 = tri->verts + tri->indexes[1];
		v3 = tri->verts + tri->indexes[2];
		PlaneFromPoints( plane4, v1->xyz, v2->xyz, v3->xyz );
		VectorCopy( plane4, plane->normal );
		plane->dist = plane4[3];
		return;
	case SF_POLY:
		poly = (srfPoly_t *)surfType;
		PlaneFromPoints( plane4, poly->verts[0].xyz, poly->verts[1].xyz, poly->verts[2].xyz );
		VectorCopy( plane4, plane->normal );
		plane->dist = plane4[3];
		return;
	default:
		memset( plane, 0, sizeof( *plane ) );
		plane->normal[0] = 1;
		return;
	}
}

/*
=================
R_GetPortalOrientation

entityNum is the entity that the portal surface is a part of, which may
be moving and rotating.

Returns qtrue if it should be mirrored
=================
*/
qboolean R_GetPortalOrientations( drawSurf_t *drawSurf, int entityNum,
								  orientation_t *surface, orientation_t *camera,
								  vec3_t pvsOrigin, qboolean *mirror ) {
	int i;
	cplane_t originalPlane, plane;
	trRefEntity_t   *e;
	float d;
	vec3_t transformed;

	// create plane axis for the portal we are seeing
	R_PlaneForSurface( drawSurf->surface, &originalPlane );

	// rotate the plane if necessary
	if ( entityNum != REFENTITYNUM_WORLD ) {
		tr.currentEntityNum = entityNum;
		tr.currentEntity = &tr.refdef.entities[entityNum];

		// get the orientation of the entity
		R_RotateForEntity( tr.currentEntity, &tr.viewParms, &tr.or );

		// rotate the plane, but keep the non-rotated version for matching
		// against the portalSurface entities
		R_LocalNormalToWorld( originalPlane.normal, plane.normal );
		plane.dist = originalPlane.dist + DotProduct( plane.normal, tr.or.origin );

		// translate the original plane
		originalPlane.dist = originalPlane.dist + DotProduct( originalPlane.normal, tr.or.origin );
	} else {
		plane = originalPlane;
	}

	VectorCopy( plane.normal, surface->axis[0] );
	PerpendicularVector( surface->axis[1], surface->axis[0] );
	CrossProduct( surface->axis[0], surface->axis[1], surface->axis[2] );

	// locate the portal entity closest to this plane.
	// origin will be the origin of the portal, origin2 will be
	// the origin of the camera
	for ( i = 0 ; i < tr.refdef.num_entities ; i++ ) {
		e = &tr.refdef.entities[i];
		if ( e->e.reType != RT_PORTALSURFACE ) {
			continue;
		}

		d = DotProduct( e->e.origin, originalPlane.normal ) - originalPlane.dist;
		if ( d > 64 || d < -64 ) {
			continue;
		}

		// get the pvsOrigin from the entity
		VectorCopy( e->e.oldorigin, pvsOrigin );

		// if the entity is just a mirror, don't use as a camera point
		if ( e->e.oldorigin[0] == e->e.origin[0] &&
			 e->e.oldorigin[1] == e->e.origin[1] &&
			 e->e.oldorigin[2] == e->e.origin[2] ) {
			VectorScale( plane.normal, plane.dist, surface->origin );
			VectorCopy( surface->origin, camera->origin );
			VectorSubtract( vec3_origin, surface->axis[0], camera->axis[0] );
			VectorCopy( surface->axis[1], camera->axis[1] );
			VectorCopy( surface->axis[2], camera->axis[2] );

			*mirror = qtrue;
			return qtrue;
		}

		// project the origin onto the surface plane to get
		// an origin point we can rotate around
		d = DotProduct( e->e.origin, plane.normal ) - plane.dist;
		VectorMA( e->e.origin, -d, surface->axis[0], surface->origin );

		// now get the camera origin and orientation
		VectorCopy( e->e.oldorigin, camera->origin );
		AxisCopy( e->e.axis, camera->axis );
		VectorSubtract( vec3_origin, camera->axis[0], camera->axis[0] );
		VectorSubtract( vec3_origin, camera->axis[1], camera->axis[1] );

		// optionally rotate
		if ( e->e.oldframe ) {
			// if a speed is specified
			if ( e->e.frame ) {
				// continuous rotate
				d = ( tr.refdef.time / 1000.0f ) * e->e.frame;
				VectorCopy( camera->axis[1], transformed );
				RotatePointAroundVector( camera->axis[1], camera->axis[0], transformed, d );
				CrossProduct( camera->axis[0], camera->axis[1], camera->axis[2] );
			} else {
				// bobbing rotate, with skinNum being the rotation offset
				d = sin( tr.refdef.time * 0.003f );
				d = e->e.skinNum + d * 4;
				VectorCopy( camera->axis[1], transformed );
				RotatePointAroundVector( camera->axis[1], camera->axis[0], transformed, d );
				CrossProduct( camera->axis[0], camera->axis[1], camera->axis[2] );
			}
		} else if ( e->e.skinNum )   {
			d = e->e.skinNum;
			VectorCopy( camera->axis[1], transformed );
			RotatePointAroundVector( camera->axis[1], camera->axis[0], transformed, d );
			CrossProduct( camera->axis[0], camera->axis[1], camera->axis[2] );
		}
		*mirror = qfalse;
		return qtrue;
	}

	// if we didn't locate a portal entity, don't render anything.
	// We don't want to just treat it as a mirror, because without a
	// portal entity the server won't have communicated a proper entity set
	// in the snapshot

	// unfortunately, with local movement prediction it is easily possible
	// to see a surface before the server has communicated the matching
	// portal surface entity, so we don't want to print anything here...

	//ri.Printf( PRINT_ALL, "Portal surface without a portal entity\n" );

	return qfalse;
}

static qboolean IsMirror( const drawSurf_t *drawSurf, int entityNum ) {
	int i;
	cplane_t originalPlane, plane;
	trRefEntity_t   *e;
	float d;

	// create plane axis for the portal we are seeing
	R_PlaneForSurface( drawSurf->surface, &originalPlane );

	// rotate the plane if necessary
	if ( entityNum != REFENTITYNUM_WORLD ) {
		tr.currentEntityNum = entityNum;
		tr.currentEntity = &tr.refdef.entities[entityNum];

		// get the orientation of the entity
		R_RotateForEntity( tr.currentEntity, &tr.viewParms, &tr.or );

		// rotate the plane, but keep the non-rotated version for matching
		// against the portalSurface entities
		R_LocalNormalToWorld( originalPlane.normal, plane.normal );
		plane.dist = originalPlane.dist + DotProduct( plane.normal, tr.or.origin );

		// translate the original plane
		originalPlane.dist = originalPlane.dist + DotProduct( originalPlane.normal, tr.or.origin );
	}

	// locate the portal entity closest to this plane.
	// origin will be the origin of the portal, origin2 will be
	// the origin of the camera
	for ( i = 0 ; i < tr.refdef.num_entities ; i++ )
	{
		e = &tr.refdef.entities[i];
		if ( e->e.reType != RT_PORTALSURFACE ) {
			continue;
		}

		d = DotProduct( e->e.origin, originalPlane.normal ) - originalPlane.dist;
		if ( d > 64 || d < -64 ) {
			continue;
		}

		// if the entity is just a mirror, don't use as a camera point
		if ( e->e.oldorigin[0] == e->e.origin[0] &&
			 e->e.oldorigin[1] == e->e.origin[1] &&
			 e->e.oldorigin[2] == e->e.origin[2] ) {
			return qtrue;
		}

		return qfalse;
	}
	return qfalse;
}

/*
** SurfIsOffscreen
**
** Determines if a surface is completely offscreen.
*/
static qboolean SurfIsOffscreen( const drawSurf_t *drawSurf, vec4_t clipDest[128] ) {
	float shortest = 100000000;
	int entityNum;
	int numTriangles;
	shader_t *shader;
	int fogNum;
	int dlighted;
// GR - tessellation flag
	int atiTess;
	vec4_t clip, eye;
	int i;
	unsigned int pointOr = 0;
	unsigned int pointAnd = (unsigned int)~0;

	R_RotateForViewer();

// GR - decompose with tessellation flag
	R_DecomposeSort( drawSurf->sort, &entityNum, &shader, &fogNum, &dlighted, &atiTess );
	RB_BeginSurface( shader, fogNum );
	rb_surfaceTable[ *drawSurf->surface ]( drawSurf->surface );

	assert( tess.numVertexes < 128 );

	for ( i = 0; i < tess.numVertexes; i++ )
	{
		int j;
		unsigned int pointFlags = 0;

		R_TransformModelToClip( tess.xyz[i], tr.or.modelMatrix, tr.viewParms.projectionMatrix, eye, clip );

		for ( j = 0; j < 3; j++ )
		{
			if ( clip[j] >= clip[3] ) {
				pointFlags |= ( 1 << ( j * 2 ) );
			} else if ( clip[j] <= -clip[3] )   {
				pointFlags |= ( 1 << ( j * 2 + 1 ) );
			}
		}
		pointAnd &= pointFlags;
		pointOr |= pointFlags;
	}

	// trivially reject
	if ( pointAnd ) {
		return qtrue;
	}

	// determine if this surface is backfaced and also determine the distance
	// to the nearest vertex so we can cull based on portal range.  Culling
	// based on vertex distance isn't 100% correct (we should be checking for
	// range to the surface), but it's good enough for the types of portals
	// we have in the game right now.
	numTriangles = tess.numIndexes / 3;

	for ( i = 0; i < tess.numIndexes; i += 3 )
	{
		vec3_t normal;
		float len;

		VectorSubtract( tess.xyz[tess.indexes[i]], tr.viewParms.or.origin, normal );

		len = VectorLengthSquared( normal );            // lose the sqrt
		if ( len < shortest ) {
			shortest = len;
		}

		if ( DotProduct( normal, tess.normal[tess.indexes[i]] ) >= 0 )
 		{
			numTriangles--;
		}
	}
	if ( !numTriangles ) {
		return qtrue;
	}

	// mirrors can early out at this point, since we don't do a fade over distance
	// with them (although we could)
	if ( IsMirror( drawSurf, entityNum ) ) {
		return qfalse;
	}

	if ( shortest > ( tess.shader->portalRange * tess.shader->portalRange ) ) {
		return qtrue;
	}

	return qfalse;
}

/*
========================
R_MirrorViewBySurface

Returns qtrue if another view has been rendered
========================
*/
qboolean R_MirrorViewBySurface( drawSurf_t *drawSurf, int entityNum ) {
	vec4_t clipDest[128];
	viewParms_t newParms;
	viewParms_t oldParms;
	orientation_t surface, camera;

	// don't recursively mirror
	if ( tr.viewParms.isPortal ) {
		ri.Printf( PRINT_DEVELOPER, "WARNING: recursive mirror/portal found\n" );
		return qfalse;
	}

//	if ( r_noportals->integer || r_fastsky->integer || tr.levelGLFog) {
	if ( r_noportals->integer || r_fastsky->integer ) {
		return qfalse;
	}

	// trivially reject portal/mirror
	if ( SurfIsOffscreen( drawSurf, clipDest ) ) {
		return qfalse;
	}

	// save old viewParms so we can return to it after the mirror view
	oldParms = tr.viewParms;

	newParms = tr.viewParms;
	newParms.isPortal = qtrue;
	if ( !R_GetPortalOrientations( drawSurf, entityNum, &surface, &camera,
								   newParms.pvsOrigin, &newParms.isMirror ) ) {
		return qfalse;      // bad portal, no portalentity
	}

	R_MirrorPoint( oldParms.or.origin, &surface, &camera, newParms.or.origin );

	VectorSubtract( vec3_origin, camera.axis[0], newParms.portalPlane.normal );
	newParms.portalPlane.dist = DotProduct( camera.origin, newParms.portalPlane.normal );

	R_MirrorVector( oldParms.or.axis[0], &surface, &camera, newParms.or.axis[0] );
	R_MirrorVector( oldParms.or.axis[1], &surface, &camera, newParms.or.axis[1] );
	R_MirrorVector( oldParms.or.axis[2], &surface, &camera, newParms.or.axis[2] );

	// OPTIMIZE: restrict the viewport on the mirrored view

	// render the mirror view
	R_RenderView( &newParms );

	tr.viewParms = oldParms;

	return qtrue;
}

/*
=================
R_SpriteFogNum

See if a sprite is inside a fog volume
=================
*/
int R_SpriteFogNum( trRefEntity_t *ent ) {
	int i, j;
	fog_t           *fog;

	if ( tr.refdef.rdflags & RDF_NOWORLDMODEL ) {
		return 0;
	}

	if ( ent->e.renderfx & RF_CROSSHAIR ) {
		return 0;
	}

	for ( i = 1 ; i < tr.world->numfogs ; i++ ) {
		fog = &tr.world->fogs[i];
		for ( j = 0 ; j < 3 ; j++ ) {
			if ( ent->e.origin[j] - ent->e.radius >= fog->bounds[1][j] ) {
				break;
			}
			if ( ent->e.origin[j] + ent->e.radius <= fog->bounds[0][j] ) {
				break;
			}
		}
		if ( j == 3 ) {
			return i;
		}
	}

	return 0;
}

/*
==========================================================================================

DRAWSURF SORTING

==========================================================================================
*/

/*
===============
R_Radix
===============
*/
static ID_INLINE void R_Radix( int byte, int size, drawSurf_t *source, drawSurf_t *dest )
{
  int           count[ 256 ] = { 0 };
  int           index[ 256 ];
  int           i;
  unsigned char *sortKey = NULL;
  unsigned char *end = NULL;

  sortKey = ( (unsigned char *)&source[ 0 ].sort ) + byte;
  end = sortKey + ( size * sizeof( drawSurf_t ) );
  for( ; sortKey < end; sortKey += sizeof( drawSurf_t ) )
    ++count[ *sortKey ];

  index[ 0 ] = 0;

  for( i = 1; i < 256; ++i )
    index[ i ] = index[ i - 1 ] + count[ i - 1 ];

  sortKey = ( (unsigned char *)&source[ 0 ].sort ) + byte;
  for( i = 0; i < size; ++i, sortKey += sizeof( drawSurf_t ) )
    dest[ index[ *sortKey ]++ ] = source[ i ];
}

/*
===============
R_RadixSort

Radix sort with 4 byte size buckets
===============
*/
static void R_RadixSort( drawSurf_t *source, int size )
{
  static drawSurf_t scratch[ MAX_DRAWSURFS ];
#ifdef Q3_LITTLE_ENDIAN
  R_Radix( 0, size, source, scratch );
  R_Radix( 1, size, scratch, source );
  R_Radix( 2, size, source, scratch );
  R_Radix( 3, size, scratch, source );
#else
  R_Radix( 3, size, source, scratch );
  R_Radix( 2, size, scratch, source );
  R_Radix( 1, size, source, scratch );
  R_Radix( 0, size, scratch, source );
#endif //Q3_LITTLE_ENDIAN
}

//==========================================================================================

/*
=================
R_AddDrawSurf
=================
*/
void R_AddDrawSurf( surfaceType_t *surface, shader_t *shader,
					int fogIndex, int dlightMap, int atiTess ) {
	int index;

	// instead of checking for overflow, we just mask the index
	// so it wraps around
	index = tr.refdef.numDrawSurfs & DRAWSURF_MASK;
	// the sort data is packed into a single 32 bit value so it can be
	// compared quickly during the qsorting process
// GR - add tesselation flag to the sort
	tr.refdef.drawSurfs[index].sort = ( shader->sortedIndex << QSORT_SHADERNUM_SHIFT )
									  | ( atiTess << QSORT_ATI_TESS_SHIFT )
									  | tr.shiftedEntityNum | ( fogIndex << QSORT_FOGNUM_SHIFT ) | (int)dlightMap;
	tr.refdef.drawSurfs[index].surface = surface;
	tr.refdef.numDrawSurfs++;
}

/*
=================
R_DecomposeSort
=================
*/
// GR - decompose  with tessellation flag
void R_DecomposeSort( unsigned sort, int *entityNum, shader_t **shader,
					  int *fogNum, int *dlightMap, int *atiTess ) {
	*fogNum = ( sort >> QSORT_FOGNUM_SHIFT ) & 31;
	*shader = tr.sortedShaders[ ( sort >> QSORT_SHADERNUM_SHIFT ) & ( MAX_SHADERS - 1 ) ];
//	*entityNum = ( sort >> QSORT_REFENTITYNUM_SHIFT ) & ( MAX_GENTITIES - 1 );   // (SA) uppded entity count for Wolf to 11 bits
	*entityNum = ( sort >> QSORT_REFENTITYNUM_SHIFT ) & REFENTITYNUM_MASK;
	*dlightMap = sort & 3;
//GR - extract tessellation flag
	*atiTess = ( sort >> QSORT_ATI_TESS_SHIFT ) & 1;
}

/*
=================
R_SortDrawSurfs
=================
*/
void R_SortDrawSurfs( drawSurf_t *drawSurfs, int numDrawSurfs ) {
	shader_t        *shader;
	int fogNum;
	int entityNum;
	int dlighted;
	int i;
// GR - tessellation flag
	int atiTess;

	// it is possible for some views to not have any surfaces
	if ( numDrawSurfs < 1 ) {
		// we still need to add it for hyperspace cases
		R_AddDrawSurfCmd( drawSurfs, numDrawSurfs );
		return;
	}

	// sort the drawsurfs by sort type, then orientation, then shader
	R_RadixSort( drawSurfs, numDrawSurfs );

	// check for any pass through drawing, which
	// may cause another view to be rendered first
	for ( i = 0 ; i < numDrawSurfs ; i++ ) {
// GR - decompose with tessellation flag
		R_DecomposeSort( ( drawSurfs + i )->sort, &entityNum, &shader, &fogNum, &dlighted, &atiTess );

		if ( shader->sort > SS_PORTAL ) {
			break;
		}

		// no shader should ever have this sort type
		if ( shader->sort == SS_BAD ) {
			ri.Error( ERR_DROP, "Shader '%s'with sort == SS_BAD", shader->name );
		}

		// if the mirror was completely clipped away, we may need to check another surface
		if ( R_MirrorViewBySurface( ( drawSurfs + i ), entityNum ) ) {
			// this is a debug option to see exactly what is being mirrored
			if ( r_portalOnly->integer ) {
				return;
			}
			break;      // only one mirror view at a time
		}
	}

	R_AddDrawSurfCmd( drawSurfs, numDrawSurfs );
}

/*
=============
R_AddEntitySurfaces
=============
*/
void R_AddEntitySurfaces( void ) {
	trRefEntity_t   *ent;
	shader_t        *shader;

	if ( !r_drawentities->integer ) {
		return;
	}

	for ( tr.currentEntityNum = 0;
		  tr.currentEntityNum < tr.refdef.num_entities;
		  tr.currentEntityNum++ ) {
		ent = tr.currentEntity = &tr.refdef.entities[tr.currentEntityNum];

		ent->needDlights = qfalse;

		// preshift the value we are going to OR into the drawsurf sort
		tr.shiftedEntityNum = tr.currentEntityNum << QSORT_REFENTITYNUM_SHIFT;

		//
		// the weapon model must be handled special --
		// we don't want the hacked weapon position showing in
		// mirrors, because the true body position will already be drawn
		//
		if ( ( ent->e.renderfx & RF_FIRST_PERSON ) && tr.viewParms.isPortal ) {
			continue;
		}

		// simple generated models, like sprites and beams, are not culled
		switch ( ent->e.reType ) {
		case RT_PORTALSURFACE:
			break;      // don't draw anything
		case RT_SPRITE:
		case RT_SPLASH:
		case RT_BEAM:
		case RT_LIGHTNING:
		case RT_RAIL_CORE:
		case RT_RAIL_CORE_TAPER:
		case RT_RAIL_RINGS:
			// self blood sprites, talk balloons, etc should not be drawn in the primary
			// view.  We can't just do this check for all entities, because md3
			// entities may still want to cast shadows from them
			if ( ( ent->e.renderfx & RF_THIRD_PERSON ) && !tr.viewParms.isPortal ) {
				continue;
			}
			shader = R_GetShaderByHandle( ent->e.customShader );
// GR - these entities are not tessellated
			R_AddDrawSurf( &entitySurface, shader, R_SpriteFogNum( ent ), 0, ATI_TESS_NONE );
			break;

		case RT_MODEL:
			// we must set up parts of tr.or for model culling
			R_RotateForEntity( ent, &tr.viewParms, &tr.or );

			tr.currentModel = R_GetModelByHandle( ent->e.hModel );
			if ( !tr.currentModel ) {
// GR - not tessellated
				R_AddDrawSurf( &entitySurface, tr.defaultShader, 0, 0, ATI_TESS_NONE );
			} else {
				switch ( tr.currentModel->type ) {
				case MOD_MESH:
					R_AddMD3Surfaces( ent );
					break;
					// Ridah
				case MOD_MDC:
					R_AddMDCSurfaces( ent );
					break;
					// done.
				case MOD_MDS:
					R_AddAnimSurfaces( ent );
					break;
				case MOD_MDR:
					R_MDRAddAnimSurfaces( ent );
					break;
				case MOD_IQM:
					R_AddIQMSurfaces( ent );
					break;
				case MOD_BRUSH:
					R_AddBrushModelSurfaces( ent );
					break;
				case MOD_BAD:       // null model axis
					if ( ( ent->e.renderfx & RF_THIRD_PERSON ) && !tr.viewParms.isPortal ) {
						break;
					}
					R_AddDrawSurf( &entitySurface, tr.defaultShader, 0, 0, ATI_TESS_NONE );
					break;
				default:
					ri.Error( ERR_DROP, "R_AddEntitySurfaces: Bad modeltype" );
					break;
				}
			}
			break;
		default:
			ri.Error( ERR_DROP, "R_AddEntitySurfaces: Bad reType" );
		}
	}

}


/*
====================
R_GenerateDrawSurfs
====================
*/
void R_GenerateDrawSurfs( void ) {
	R_AddWorldSurfaces();

	R_AddPolygonSurfaces();

	// set the projection matrix with the minimum zfar
	// now that we have the world bounded
	// this needs to be done before entities are
	// added, because they use the projection
	// matrix for lod calculation

	// dynamically compute far clip plane distance
	R_SetFarClip();

	// we know the size of the clipping volume. Now set the rest of the projection matrix.
	R_SetupProjectionZ (&tr.viewParms);

	R_AddEntitySurfaces();
}

/*
================
R_DebugPolygon
================
*/
void R_DebugPolygon( int color, int numPoints, float *points ) {
#ifndef USE_OPENGLES
	int i;
#endif

	GL_State( GLS_DEPTHMASK_TRUE | GLS_SRCBLEND_ONE | GLS_DSTBLEND_ONE );

	// draw solid shade

#ifdef USE_OPENGLES
	qglColor4f( color&1, (color>>1)&1, (color>>2)&1, 1.0f );
	qglVertexPointer  ( 3, GL_FLOAT, 0, points );
	qglDrawArrays( GL_TRIANGLE_FAN, 0, numPoints );
#else
	qglColor3f( color & 1, ( color >> 1 ) & 1, ( color >> 2 ) & 1 );
	qglBegin( GL_POLYGON );
	for ( i = 0 ; i < numPoints ; i++ ) {
		qglVertex3fv( points + i * 3 );
	}
	qglEnd();
#endif

	// draw wireframe outline
#ifndef USE_OPENGLES
	GL_State( GLS_POLYMODE_LINE | GLS_DEPTHMASK_TRUE | GLS_SRCBLEND_ONE | GLS_DSTBLEND_ONE );
#endif
	qglDepthRange( 0, 0 );
#ifdef USE_OPENGLES
	qglColor4f( 1.0f, 1.0f, 1.0f, 1.0f );
	qglVertexPointer  ( 3, GL_FLOAT, 0, points );
	qglDrawArrays( GL_LINES, 0, numPoints );
#else
	qglColor3f( 1, 1, 1 );
	qglBegin( GL_POLYGON );
	for ( i = 0 ; i < numPoints ; i++ ) {
		qglVertex3fv( points + i * 3 );
	}
	qglEnd();
#endif
	qglDepthRange( 0, 1 );
}

/*
====================
R_DebugGraphics

Visualization aid for movement clipping debugging
====================
*/
void R_DebugGraphics( void ) {
	if ( tr.refdef.rdflags & RDF_NOWORLDMODEL ) {
		return;
	}
	if ( !r_debugSurface->integer ) {
		return;
	}

	R_FogOff(); // moved this in here to keep from /always/ doing the fog state change

	R_IssuePendingRenderCommands();

	GL_Bind( tr.whiteImage );
	GL_Cull( CT_FRONT_SIDED );
	ri.CM_DrawDebugSurface( R_DebugPolygon );
}


/*
================
R_RenderView

A view may be either the actual camera view,
or a mirror / remote location
================
*/
void R_RenderView( viewParms_t *parms ) {
	int firstDrawSurf;
	int numDrawSurfs;

	if ( parms->viewportWidth <= 0 || parms->viewportHeight <= 0 ) {
		return;
	}

	tr.viewCount++;

	tr.viewParms = *parms;
	tr.viewParms.frameSceneNum = tr.frameSceneNum;
	tr.viewParms.frameCount = tr.frameCount;

	firstDrawSurf = tr.refdef.numDrawSurfs;

	tr.viewCount++;

	// set viewParms.world
	R_RotateForViewer();

	R_SetupProjection(&tr.viewParms, r_zproj->value, qtrue);

	R_GenerateDrawSurfs();

	// if we overflowed MAX_DRAWSURFS, the drawsurfs
	// wrapped around in the buffer and we will be missing
	// the first surfaces, not the last ones
	numDrawSurfs = tr.refdef.numDrawSurfs;
	if ( numDrawSurfs > MAX_DRAWSURFS ) {
		numDrawSurfs = MAX_DRAWSURFS;
	}

	R_SortDrawSurfs( tr.refdef.drawSurfs + firstDrawSurf, numDrawSurfs - firstDrawSurf );

	// draw main system development information (surface outlines, etc)
	R_FogOff();
	R_DebugGraphics();
	R_FogOn();

}