File: math_angles.h

package info (click to toggle)
iortcw 1.51.c%2Bdfsg1-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 25,304 kB
  • sloc: ansic: 457,326; cpp: 6,507; makefile: 4,737; sh: 1,292; asm: 1,176; xml: 31
file content (203 lines) | stat: -rw-r--r-- 5,518 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
/*
===========================================================================

Return to Castle Wolfenstein single player GPL Source Code
Copyright (C) 1999-2010 id Software LLC, a ZeniMax Media company. 

This file is part of the Return to Castle Wolfenstein single player GPL Source Code (“RTCW SP Source Code”).  

RTCW SP Source Code is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

RTCW SP Source Code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with RTCW SP Source Code.  If not, see <http://www.gnu.org/licenses/>.

In addition, the RTCW SP Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the RTCW SP Source Code.  If not, please request a copy in writing from id Software at the address below.

If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.

===========================================================================
*/

#ifndef __MATH_ANGLES_H__
#define __MATH_ANGLES_H__

#include <stdlib.h>
#include <assert.h>

#include "math_vector.h"

class mat3_t;
class quat_t;
class idVec3;
typedef idVec3 &vec3_p;

class angles_t {
public:
float pitch;
float yaw;
float roll;

angles_t();
angles_t( float pitch, float yaw, float roll );
angles_t( const idVec3 &vec );

friend void     toAngles( idVec3 &src, angles_t &dst );
friend void     toAngles( quat_t &src, angles_t &dst );
friend void     toAngles( mat3_t &src, angles_t &dst );

operator vec3_p();

float operator[]( int index ) const;
float&          operator[]( int index );

void            set( float pitch, float yaw, float roll );

void operator=( angles_t const &a );
void operator=( idVec3 const &a );

friend angles_t operator+( const angles_t &a, const angles_t &b );
angles_t        &operator+=( angles_t const &a );
angles_t        &operator+=( idVec3 const &a );

friend angles_t operator-( angles_t &a, angles_t &b );
angles_t        &operator-=( angles_t &a );

friend angles_t operator*( const angles_t &a, float b );
friend angles_t operator*( float a, const angles_t &b );
angles_t        &operator*=( float a );

friend int operator==( angles_t &a, angles_t &b );

friend int operator!=( angles_t &a, angles_t &b );

void            toVectors( idVec3 *forward, idVec3 *right = NULL, idVec3 *up = NULL );
idVec3          toForward( void );

angles_t        &Zero( void );

angles_t        &Normalize360( void );
angles_t        &Normalize180( void );
};

extern angles_t ang_zero;

inline angles_t::angles_t() {
}

inline angles_t::angles_t( float pitch, float yaw, float roll ) {
	this->pitch = pitch;
	this->yaw   = yaw;
	this->roll  = roll;
}

inline angles_t::angles_t( const idVec3 &vec ) {
	this->pitch = vec.x;
	this->yaw   = vec.y;
	this->roll  = vec.z;
}

inline float angles_t::operator[]( int index ) const {
	assert( ( index >= 0 ) && ( index < 3 ) );
	return ( &pitch )[ index ];
}

inline float& angles_t::operator[]( int index ) {
	assert( ( index >= 0 ) && ( index < 3 ) );
	return ( &pitch )[ index ];
}

inline angles_t::operator vec3_p( void ) {
	return *( idVec3 * )&pitch;
}

inline void angles_t::set( float pitch, float yaw, float roll ) {
	this->pitch = pitch;
	this->yaw   = yaw;
	this->roll  = roll;
}

inline void angles_t::operator=( angles_t const &a ) {
	pitch   = a.pitch;
	yaw     = a.yaw;
	roll    = a.roll;
}

inline void angles_t::operator=( idVec3 const &a ) {
	pitch   = a[ 0 ];
	yaw     = a[ 1 ];
	roll    = a[ 2 ];
}

inline angles_t operator+( const angles_t &a, const angles_t &b ) {
	return angles_t( a.pitch + b.pitch, a.yaw + b.yaw, a.roll + b.roll );
}

inline angles_t& angles_t::operator+=( angles_t const &a ) {
	pitch   += a.pitch;
	yaw     += a.yaw;
	roll    += a.roll;

	return *this;
}

inline angles_t& angles_t::operator+=( idVec3 const &a ) {
	pitch   += a.x;
	yaw += a.y;
	roll    += a.z;

	return *this;
}

inline angles_t operator-( angles_t &a, angles_t &b ) {
	return angles_t( a.pitch - b.pitch, a.yaw - b.yaw, a.roll - b.roll );
}

inline angles_t& angles_t::operator-=( angles_t &a ) {
	pitch   -= a.pitch;
	yaw     -= a.yaw;
	roll    -= a.roll;

	return *this;
}

inline angles_t operator*( const angles_t &a, float b ) {
	return angles_t( a.pitch * b, a.yaw * b, a.roll * b );
}

inline angles_t operator*( float a, const angles_t &b ) {
	return angles_t( a * b.pitch, a * b.yaw, a * b.roll );
}

inline angles_t& angles_t::operator*=( float a ) {
	pitch   *= a;
	yaw     *= a;
	roll    *= a;

	return *this;
}

inline int operator==( angles_t &a, angles_t &b ) {
	return ( ( a.pitch == b.pitch ) && ( a.yaw == b.yaw ) && ( a.roll == b.roll ) );
}

inline int operator!=( angles_t &a, angles_t &b ) {
	return ( ( a.pitch != b.pitch ) || ( a.yaw != b.yaw ) || ( a.roll != b.roll ) );
}

inline angles_t& angles_t::Zero( void ) {
	pitch   = 0.0f;
	yaw     = 0.0f;
	roll    = 0.0f;

	return *this;
}

#endif /* !__MATH_ANGLES_H__ */