1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
/*
===========================================================================
Return to Castle Wolfenstein single player GPL Source Code
Copyright (C) 1999-2010 id Software LLC, a ZeniMax Media company.
This file is part of the Return to Castle Wolfenstein single player GPL Source Code (RTCW SP Source Code).
RTCW SP Source Code is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
RTCW SP Source Code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with RTCW SP Source Code. If not, see <http://www.gnu.org/licenses/>.
In addition, the RTCW SP Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the RTCW SP Source Code. If not, please request a copy in writing from id Software at the address below.
If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.
===========================================================================
*/
#ifndef __MATH_MATRIX_H__
#define __MATH_MATRIX_H__
#include <string.h>
#include "math_vector.h"
#ifndef ID_INLINE
#ifdef _WIN32
#define ID_INLINE __inline
#else
#define ID_INLINE inline
#endif
#endif
class quat_t;
class angles_t;
class mat3_t {
public:
idVec3 mat[ 3 ];
mat3_t();
mat3_t( float src[ 3 ][ 3 ] );
mat3_t( idVec3 const &x, idVec3 const &y, idVec3 const &z );
mat3_t( const float xx, const float xy, const float xz, const float yx, const float yy, const float yz, const float zx, const float zy, const float zz );
friend void toMatrix( quat_t const &src, mat3_t &dst );
friend void toMatrix( angles_t const &src, mat3_t &dst );
friend void toMatrix( idVec3 const &src, mat3_t &dst );
idVec3 operator[]( int index ) const;
idVec3 &operator[]( int index );
idVec3 operator*( const idVec3 &vec ) const;
mat3_t operator*( const mat3_t &a ) const;
mat3_t operator*( float a ) const;
mat3_t operator+( mat3_t const &a ) const;
mat3_t operator-( mat3_t const &a ) const;
friend idVec3 operator*( const idVec3 &vec, const mat3_t &mat );
friend mat3_t operator*( float a, mat3_t const &b );
mat3_t &operator*=( float a );
mat3_t &operator+=( mat3_t const &a );
mat3_t &operator-=( mat3_t const &a );
void Clear( void );
void ProjectVector( const idVec3 &src, idVec3 &dst ) const;
void UnprojectVector( const idVec3 &src, idVec3 &dst ) const;
void OrthoNormalize( void );
void Transpose( mat3_t &matrix );
void Transpose( void );
mat3_t Inverse( void ) const;
void Identity( void );
friend void InverseMultiply( const mat3_t &inv, const mat3_t &b, mat3_t &dst );
friend mat3_t SkewSymmetric( idVec3 const &src );
};
ID_INLINE mat3_t::mat3_t() {
}
ID_INLINE mat3_t::mat3_t( float src[ 3 ][ 3 ] ) {
memcpy( mat, src, sizeof( *src ) );
}
ID_INLINE mat3_t::mat3_t( idVec3 const &x, idVec3 const &y, idVec3 const &z ) {
mat[ 0 ].x = x.x; mat[ 0 ].y = x.y; mat[ 0 ].z = x.z;
mat[ 1 ].x = y.x; mat[ 1 ].y = y.y; mat[ 1 ].z = y.z;
mat[ 2 ].x = z.x; mat[ 2 ].y = z.y; mat[ 2 ].z = z.z;
}
ID_INLINE mat3_t::mat3_t( const float xx, const float xy, const float xz, const float yx, const float yy, const float yz, const float zx, const float zy, const float zz ) {
mat[ 0 ].x = xx; mat[ 0 ].y = xy; mat[ 0 ].z = xz;
mat[ 1 ].x = yx; mat[ 1 ].y = yy; mat[ 1 ].z = yz;
mat[ 2 ].x = zx; mat[ 2 ].y = zy; mat[ 2 ].z = zz;
}
ID_INLINE idVec3 mat3_t::operator[]( int index ) const {
assert( ( index >= 0 ) && ( index < 3 ) );
return mat[ index ];
}
ID_INLINE idVec3& mat3_t::operator[]( int index ) {
assert( ( index >= 0 ) && ( index < 3 ) );
return mat[ index ];
}
ID_INLINE idVec3 mat3_t::operator*( const idVec3 &vec ) const {
return idVec3(
mat[ 0 ].x * vec.x + mat[ 1 ].x * vec.y + mat[ 2 ].x * vec.z,
mat[ 0 ].y * vec.x + mat[ 1 ].y * vec.y + mat[ 2 ].y * vec.z,
mat[ 0 ].z * vec.x + mat[ 1 ].z * vec.y + mat[ 2 ].z * vec.z );
}
ID_INLINE mat3_t mat3_t::operator*( const mat3_t &a ) const {
return mat3_t(
mat[0].x * a[0].x + mat[0].y * a[1].x + mat[0].z * a[2].x,
mat[0].x * a[0].y + mat[0].y * a[1].y + mat[0].z * a[2].y,
mat[0].x * a[0].z + mat[0].y * a[1].z + mat[0].z * a[2].z,
mat[1].x * a[0].x + mat[1].y * a[1].x + mat[1].z * a[2].x,
mat[1].x * a[0].y + mat[1].y * a[1].y + mat[1].z * a[2].y,
mat[1].x * a[0].z + mat[1].y * a[1].z + mat[1].z * a[2].z,
mat[2].x * a[0].x + mat[2].y * a[1].x + mat[2].z * a[2].x,
mat[2].x * a[0].y + mat[2].y * a[1].y + mat[2].z * a[2].y,
mat[2].x * a[0].z + mat[2].y * a[1].z + mat[2].z * a[2].z );
}
ID_INLINE mat3_t mat3_t::operator*( float a ) const {
return mat3_t(
mat[0].x * a, mat[0].y * a, mat[0].z * a,
mat[1].x * a, mat[1].y * a, mat[1].z * a,
mat[2].x * a, mat[2].y * a, mat[2].z * a );
}
ID_INLINE mat3_t mat3_t::operator+( mat3_t const &a ) const {
return mat3_t(
mat[0].x + a[0].x, mat[0].y + a[0].y, mat[0].z + a[0].z,
mat[1].x + a[1].x, mat[1].y + a[1].y, mat[1].z + a[1].z,
mat[2].x + a[2].x, mat[2].y + a[2].y, mat[2].z + a[2].z );
}
ID_INLINE mat3_t mat3_t::operator-( mat3_t const &a ) const {
return mat3_t(
mat[0].x - a[0].x, mat[0].y - a[0].y, mat[0].z - a[0].z,
mat[1].x - a[1].x, mat[1].y - a[1].y, mat[1].z - a[1].z,
mat[2].x - a[2].x, mat[2].y - a[2].y, mat[2].z - a[2].z );
}
ID_INLINE idVec3 operator*( const idVec3 &vec, const mat3_t &mat ) {
return idVec3(
mat[ 0 ].x * vec.x + mat[ 1 ].x * vec.y + mat[ 2 ].x * vec.z,
mat[ 0 ].y * vec.x + mat[ 1 ].y * vec.y + mat[ 2 ].y * vec.z,
mat[ 0 ].z * vec.x + mat[ 1 ].z * vec.y + mat[ 2 ].z * vec.z );
}
ID_INLINE mat3_t operator*( float a, mat3_t const &b ) {
return mat3_t(
b[0].x * a, b[0].y * a, b[0].z * a,
b[1].x * a, b[1].y * a, b[1].z * a,
b[2].x * a, b[2].y * a, b[2].z * a );
}
ID_INLINE mat3_t &mat3_t::operator*=( float a ) {
mat[0].x *= a; mat[0].y *= a; mat[0].z *= a;
mat[1].x *= a; mat[1].y *= a; mat[1].z *= a;
mat[2].x *= a; mat[2].y *= a; mat[2].z *= a;
return *this;
}
ID_INLINE mat3_t &mat3_t::operator+=( mat3_t const &a ) {
mat[0].x += a[0].x; mat[0].y += a[0].y; mat[0].z += a[0].z;
mat[1].x += a[1].x; mat[1].y += a[1].y; mat[1].z += a[1].z;
mat[2].x += a[2].x; mat[2].y += a[2].y; mat[2].z += a[2].z;
return *this;
}
ID_INLINE mat3_t &mat3_t::operator-=( mat3_t const &a ) {
mat[0].x -= a[0].x; mat[0].y -= a[0].y; mat[0].z -= a[0].z;
mat[1].x -= a[1].x; mat[1].y -= a[1].y; mat[1].z -= a[1].z;
mat[2].x -= a[2].x; mat[2].y -= a[2].y; mat[2].z -= a[2].z;
return *this;
}
ID_INLINE void mat3_t::OrthoNormalize( void ) {
mat[ 0 ].Normalize();
mat[ 2 ].Cross( mat[ 0 ], mat[ 1 ] );
mat[ 2 ].Normalize();
mat[ 1 ].Cross( mat[ 2 ], mat[ 0 ] );
mat[ 1 ].Normalize();
}
ID_INLINE void mat3_t::Identity( void ) {
mat[ 0 ].x = 1.f; mat[ 0 ].y = 0.f; mat[ 0 ].z = 0.f;
mat[ 1 ].x = 0.f; mat[ 1 ].y = 1.f; mat[ 1 ].z = 0.f;
mat[ 2 ].x = 0.f; mat[ 2 ].y = 0.f; mat[ 2 ].z = 1.f;
}
ID_INLINE void InverseMultiply( const mat3_t &inv, const mat3_t &b, mat3_t &dst ) {
dst[0].x = inv[0].x * b[0].x + inv[1].x * b[1].x + inv[2].x * b[2].x;
dst[0].y = inv[0].x * b[0].y + inv[1].x * b[1].y + inv[2].x * b[2].y;
dst[0].z = inv[0].x * b[0].z + inv[1].x * b[1].z + inv[2].x * b[2].z;
dst[1].x = inv[0].y * b[0].x + inv[1].y * b[1].x + inv[2].y * b[2].x;
dst[1].y = inv[0].y * b[0].y + inv[1].y * b[1].y + inv[2].y * b[2].y;
dst[1].z = inv[0].y * b[0].z + inv[1].y * b[1].z + inv[2].y * b[2].z;
dst[2].x = inv[0].z * b[0].x + inv[1].z * b[1].x + inv[2].z * b[2].x;
dst[2].y = inv[0].z * b[0].y + inv[1].z * b[1].y + inv[2].z * b[2].y;
dst[2].z = inv[0].z * b[0].z + inv[1].z * b[1].z + inv[2].z * b[2].z;
}
ID_INLINE mat3_t SkewSymmetric( idVec3 const &src ) {
return mat3_t( 0.0f, -src.z, src.y, src.z, 0.0f, -src.x, -src.y, src.x, 0.0f );
}
extern mat3_t mat3_default;
#endif /* !__MATH_MATRIX_H__ */
|