File: math_vector.h

package info (click to toggle)
iortcw 1.51.c%2Bdfsg1-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 25,304 kB
  • sloc: ansic: 457,326; cpp: 6,507; makefile: 4,737; sh: 1,292; asm: 1,176; xml: 31
file content (586 lines) | stat: -rw-r--r-- 14,422 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
/*
===========================================================================

Return to Castle Wolfenstein single player GPL Source Code
Copyright (C) 1999-2010 id Software LLC, a ZeniMax Media company. 

This file is part of the Return to Castle Wolfenstein single player GPL Source Code (“RTCW SP Source Code”).  

RTCW SP Source Code is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

RTCW SP Source Code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with RTCW SP Source Code.  If not, see <http://www.gnu.org/licenses/>.

In addition, the RTCW SP Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the RTCW SP Source Code.  If not, please request a copy in writing from id Software at the address below.

If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.

===========================================================================
*/

#ifndef __MATH_VECTOR_H__
#define __MATH_VECTOR_H__

#if defined( _MSC_VER )
#pragma warning(disable : 4244)
#endif

#include <math.h>
#include <assert.h>

//#define DotProduct(a,b)			((a)[0]*(b)[0]+(a)[1]*(b)[1]+(a)[2]*(b)[2])
//#define VectorSubtract(a,b,c)	((c)[0]=(a)[0]-(b)[0],(c)[1]=(a)[1]-(b)[1],(c)[2]=(a)[2]-(b)[2])
//#define VectorAdd(a,b,c)		((c)[0]=(a)[0]+(b)[0],(c)[1]=(a)[1]+(b)[1],(c)[2]=(a)[2]+(b)[2])
//#define VectorCopy(a,b)			((b)[0]=(a)[0],(b)[1]=(a)[1],(b)[2]=(a)[2])
//#define VectorCopy(a,b)			((b).x=(a).x,(b).y=(a).y,(b).z=(a).z])

//#define	VectorScale(v, s, o)	((o)[0]=(v)[0]*(s),(o)[1]=(v)[1]*(s),(o)[2]=(v)[2]*(s))
#define __VectorMA( v, s, b, o )  ( ( o )[0] = ( v )[0] + ( b )[0] * ( s ),( o )[1] = ( v )[1] + ( b )[1] * ( s ),( o )[2] = ( v )[2] + ( b )[2] * ( s ) )
//#define CrossProduct(a,b,c)		((c)[0]=(a)[1]*(b)[2]-(a)[2]*(b)[1],(c)[1]=(a)[2]*(b)[0]-(a)[0]*(b)[2],(c)[2]=(a)[0]*(b)[1]-(a)[1]*(b)[0])

#define DotProduct4( x,y )        ( ( x )[0] * ( y )[0] + ( x )[1] * ( y )[1] + ( x )[2] * ( y )[2] + ( x )[3] * ( y )[3] )
#define VectorSubtract4( a,b,c )  ( ( c )[0] = ( a )[0] - ( b )[0],( c )[1] = ( a )[1] - ( b )[1],( c )[2] = ( a )[2] - ( b )[2],( c )[3] = ( a )[3] - ( b )[3] )
#define VectorAdd4( a,b,c )       ( ( c )[0] = ( a )[0] + ( b )[0],( c )[1] = ( a )[1] + ( b )[1],( c )[2] = ( a )[2] + ( b )[2],( c )[3] = ( a )[3] + ( b )[3] )
#define VectorCopy4(a,b)		((b)[0]=(a)[0],(b)[1]=(a)[1],(b)[2]=(a)[2],(b)[3]=(a)[3])
#define VectorScale4( v, s, o )   ( ( o )[0] = ( v )[0] * ( s ),( o )[1] = ( v )[1] * ( s ),( o )[2] = ( v )[2] * ( s ),( o )[3] = ( v )[3] * ( s ) )
#define VectorMA4( v, s, b, o )   ( ( o )[0] = ( v )[0] + ( b )[0] * ( s ),( o )[1] = ( v )[1] + ( b )[1] * ( s ),( o )[2] = ( v )[2] + ( b )[2] * ( s ),( o )[3] = ( v )[3] + ( b )[3] * ( s ) )


//#define VectorClear(a)			((a)[0]=(a)[1]=(a)[2]=0)
#define VectorNegate( a,b )       ( ( b )[0] = -( a )[0],( b )[1] = -( a )[1],( b )[2] = -( a )[2] )
//#define VectorSet(v, x, y, z)	((v)[0]=(x), (v)[1]=(y), (v)[2]=(z))
#define Vector4Copy( a,b )        ( ( b )[0] = ( a )[0],( b )[1] = ( a )[1],( b )[2] = ( a )[2],( b )[3] = ( a )[3] )

#define SnapVector( v ) {v[0] = ( (int)( v[0] ) ); v[1] = ( (int)( v[1] ) ); v[2] = ( (int)( v[2] ) );}

//#include "util_heap.h"

#ifndef EQUAL_EPSILON
#define EQUAL_EPSILON   0.001
#endif

float Q_fabs( float f );

#ifndef ID_INLINE
#ifdef _WIN32
#define ID_INLINE __inline
#else
#define ID_INLINE inline
#endif
#endif

// if this is defined, vec3 will take four elements, which may allow
// easier SIMD optimizations
//#define	FAT_VEC3
//#ifdef __ppc__
//#pragma align(16)
//#endif

class angles_t;
#ifdef __ppc__
// Vanilla PPC code, but since PPC has a reciprocal square root estimate instruction,
// runs *much* faster than calling sqrt(). We'll use two Newton-Raphson
// refinement steps to get bunch more precision in the 1/sqrt() value for very little cost.
// We'll then multiply 1/sqrt times the original value to get the sqrt.
// This is about 12.4 times faster than sqrt() and according to my testing (not exhaustive)
// it returns fairly accurate results (error below 1.0e-5 up to 100000.0 in 0.1 increments).

static inline float idSqrt( float x ) {
	const float half = 0.5;
	const float one = 1.0;
	float B, y0, y1;

	// This'll NaN if it hits frsqrte. Handle both +0.0 and -0.0
	if ( fabs( x ) == 0.0 ) {
		return x;
	}
	B = x;

#ifdef __GNUC__
	asm ( "frsqrte %0,%1" : "=f" ( y0 ) : "f" ( B ) );
#else
	y0 = __frsqrte( B );
#endif
	/* First refinement step */

	y1 = y0 + half * y0 * ( one - B * y0 * y0 );

	/* Second refinement step -- copy the output of the last step to the input of this step */

	y0 = y1;
	y1 = y0 + half * y0 * ( one - B * y0 * y0 );

	/* Get sqrt(x) from x * 1/sqrt(x) */
	return x * y1;
}
#else
static inline double idSqrt( double x ) {
	return sqrt( x );
}
#endif


//class idVec3  : public idHeap<idVec3> {
class idVec3 {
public:
#ifndef FAT_VEC3
	float x,y,z;
#else
	float x,y,z,dist;
#endif

#ifndef FAT_VEC3
	idVec3() {
	};
#else
	idVec3() {
		dist = 0.0f;
	};
#endif
	idVec3( const float x, const float y, const float z );

	operator float*();

	float operator[]( const int index ) const;
	float           &operator[]( const int index );

	void            set( const float x, const float y, const float z );

	idVec3 operator-() const;

	idVec3          &operator=( const idVec3 &a );

	float operator*( const idVec3 &a ) const;
	idVec3 operator*( const float a ) const;
	friend idVec3 operator*( float a, idVec3 b );

	idVec3 operator+( const idVec3 &a ) const;
	idVec3 operator-( const idVec3 &a ) const;

	idVec3          &operator+=( const idVec3 &a );
	idVec3          &operator-=( const idVec3 &a );
	idVec3          &operator*=( const float a );

	int operator==( const idVec3 &a ) const;
	int operator!=( const idVec3 &a ) const;

	idVec3          Cross( const idVec3 &a ) const;
	idVec3          &Cross( const idVec3 &a, const idVec3 &b );

	float           Length( void ) const;
	float           Normalize( void );

	void            Zero( void );
	void            Snap( void );
	void            SnapTowards( const idVec3 &to );

	float           toYaw( void );
	float           toPitch( void );
	angles_t        toAngles( void );
	friend idVec3   LerpVector( const idVec3 &w1, const idVec3 &w2, const float t );

	char            *string( void );
};

extern idVec3 vec_zero;

ID_INLINE idVec3::idVec3( const float x, const float y, const float z ) {
	this->x = x;
	this->y = y;
	this->z = z;
#ifdef  FAT_VEC3
	this->dist = 0.0f;
#endif
}

ID_INLINE float idVec3::operator[]( const int index ) const {
	return ( &x )[ index ];
}

ID_INLINE float &idVec3::operator[]( const int index ) {
	return ( &x )[ index ];
}

ID_INLINE idVec3::operator float*( void ) {
	return &x;
}

ID_INLINE idVec3 idVec3::operator-() const {
	return idVec3( -x, -y, -z );
}

ID_INLINE idVec3 &idVec3::operator=( const idVec3 &a ) {
	x = a.x;
	y = a.y;
	z = a.z;

	return *this;
}

ID_INLINE void idVec3::set( const float x, const float y, const float z ) {
	this->x = x;
	this->y = y;
	this->z = z;
}

ID_INLINE idVec3 idVec3::operator-( const idVec3 &a ) const {
	return idVec3( x - a.x, y - a.y, z - a.z );
}

ID_INLINE float idVec3::operator*( const idVec3 &a ) const {
	return x * a.x + y * a.y + z * a.z;
}

ID_INLINE idVec3 idVec3::operator*( const float a ) const {
	return idVec3( x * a, y * a, z * a );
}

ID_INLINE idVec3 operator*( const float a, const idVec3 b ) {
	return idVec3( b.x * a, b.y * a, b.z * a );
}

ID_INLINE idVec3 idVec3::operator+( const idVec3 &a ) const {
	return idVec3( x + a.x, y + a.y, z + a.z );
}

ID_INLINE idVec3 &idVec3::operator+=( const idVec3 &a ) {
	x += a.x;
	y += a.y;
	z += a.z;

	return *this;
}

ID_INLINE idVec3 &idVec3::operator-=( const idVec3 &a ) {
	x -= a.x;
	y -= a.y;
	z -= a.z;

	return *this;
}

ID_INLINE idVec3 &idVec3::operator*=( const float a ) {
	x *= a;
	y *= a;
	z *= a;

	return *this;
}

ID_INLINE int idVec3::operator==( const idVec3 &a ) const {
	if ( Q_fabs( x - a.x ) > EQUAL_EPSILON ) {
		return false;
	}

	if ( Q_fabs( y - a.y ) > EQUAL_EPSILON ) {
		return false;
	}

	if ( Q_fabs( z - a.z ) > EQUAL_EPSILON ) {
		return false;
	}

	return true;
}

ID_INLINE int idVec3::operator!=( const idVec3 &a ) const {
	if ( Q_fabs( x - a.x ) > EQUAL_EPSILON ) {
		return true;
	}

	if ( Q_fabs( y - a.y ) > EQUAL_EPSILON ) {
		return true;
	}

	if ( Q_fabs( z - a.z ) > EQUAL_EPSILON ) {
		return true;
	}

	return false;
}

ID_INLINE idVec3 idVec3::Cross( const idVec3 &a ) const {
	return idVec3( y * a.z - z * a.y, z * a.x - x * a.z, x * a.y - y * a.x );
}

ID_INLINE idVec3 &idVec3::Cross( const idVec3 &a, const idVec3 &b ) {
	x = a.y * b.z - a.z * b.y;
	y = a.z * b.x - a.x * b.z;
	z = a.x * b.y - a.y * b.x;

	return *this;
}

ID_INLINE float idVec3::Length( void ) const {
	float length;

	length = x * x + y * y + z * z;
	return ( float )idSqrt( length );
}

ID_INLINE float idVec3::Normalize( void ) {
	float length;
	float ilength;

	length = this->Length();
	if ( length ) {
		ilength = 1.0f / length;
		x *= ilength;
		y *= ilength;
		z *= ilength;
	}

	return length;
}

ID_INLINE void idVec3::Zero( void ) {
	x = 0.0f;
	y = 0.0f;
	z = 0.0f;
}

ID_INLINE void idVec3::Snap( void ) {
	x = float( int( x ) );
	y = float( int( y ) );
	z = float( int( z ) );
}

/*
======================
SnapTowards

Round a vector to integers for more efficient network
transmission, but make sure that it rounds towards a given point
rather than blindly truncating.  This prevents it from truncating
into a wall.
======================
*/
ID_INLINE void idVec3::SnapTowards( const idVec3 &to ) {
	if ( to.x <= x ) {
		x = float( int( x ) );
	} else {
		x = float( int( x ) + 1 );
	}

	if ( to.y <= y ) {
		y = float( int( y ) );
	} else {
		y = float( int( y ) + 1 );
	}

	if ( to.z <= z ) {
		z = float( int( z ) );
	} else {
		z = float( int( z ) + 1 );
	}
}

//===============================================================

class Bounds {
public:
	idVec3 b[2];

	Bounds();
	Bounds( const idVec3 &mins, const idVec3 &maxs );

	void    Clear();
	void    Zero();
	float   Radius();       // radius from origin, not from center
	idVec3  Center();
	void    AddPoint( const idVec3 &v );
	void    AddBounds( const Bounds &bb );
	bool    IsCleared();
	bool    ContainsPoint( const idVec3 &p );
	bool    IntersectsBounds( const Bounds &b2 );   // touching is NOT intersecting
};

extern Bounds boundsZero;

ID_INLINE Bounds::Bounds() {
}

ID_INLINE bool Bounds::IsCleared() {
	return b[0][0] > b[1][0];
}

ID_INLINE bool Bounds::ContainsPoint( const idVec3 &p ) {
	if ( p[0] < b[0][0] || p[1] < b[0][1] || p[2] < b[0][2]
		 || p[0] > b[1][0] || p[1] > b[1][1] || p[2] > b[1][2] ) {
		return false;
	}
	return true;
}

ID_INLINE bool Bounds::IntersectsBounds( const Bounds &b2 ) {
	if ( b2.b[1][0] < b[0][0] || b2.b[1][1] < b[0][1] || b2.b[1][2] < b[0][2]
		 || b2.b[0][0] > b[1][0] || b2.b[0][1] > b[1][1] || b2.b[0][2] > b[1][2] ) {
		return false;
	}
	return true;
}

ID_INLINE Bounds::Bounds( const idVec3 &mins, const idVec3 &maxs ) {
	b[0] = mins;
	b[1] = maxs;
}

ID_INLINE idVec3 Bounds::Center() {
	return idVec3( ( b[1][0] + b[0][0] ) * 0.5f, ( b[1][1] + b[0][1] ) * 0.5f, ( b[1][2] + b[0][2] ) * 0.5f );
}

ID_INLINE void Bounds::Clear() {
	b[0][0] = b[0][1] = b[0][2] = 99999;
	b[1][0] = b[1][1] = b[1][2] = -99999;
}

ID_INLINE void Bounds::Zero() {
	b[0][0] = b[0][1] = b[0][2] =
							b[1][0] = b[1][1] = b[1][2] = 0;
}

ID_INLINE void Bounds::AddPoint( const idVec3 &v ) {
	if ( v[0] < b[0][0] ) {
		b[0][0] = v[0];
	}
	if ( v[0] > b[1][0] ) {
		b[1][0] = v[0];
	}
	if ( v[1] < b[0][1] ) {
		b[0][1] = v[1];
	}
	if ( v[1] > b[1][1] ) {
		b[1][1] = v[1];
	}
	if ( v[2] < b[0][2] ) {
		b[0][2] = v[2];
	}
	if ( v[2] > b[1][2] ) {
		b[1][2] = v[2];
	}
}


ID_INLINE void Bounds::AddBounds( const Bounds &bb ) {
	if ( bb.b[0][0] < b[0][0] ) {
		b[0][0] = bb.b[0][0];
	}
	if ( bb.b[0][1] < b[0][1] ) {
		b[0][1] = bb.b[0][1];
	}
	if ( bb.b[0][2] < b[0][2] ) {
		b[0][2] = bb.b[0][2];
	}

	if ( bb.b[1][0] > b[1][0] ) {
		b[1][0] = bb.b[1][0];
	}
	if ( bb.b[1][1] > b[1][1] ) {
		b[1][1] = bb.b[1][1];
	}
	if ( bb.b[1][2] > b[1][2] ) {
		b[1][2] = bb.b[1][2];
	}
}

ID_INLINE float Bounds::Radius() {
	int i;
	float total;
	float a, aa;

	total = 0;
	for ( i = 0 ; i < 3 ; i++ ) {
		a = (float)fabs( b[0][i] );
		aa = (float)fabs( b[1][i] );
		if ( aa > a ) {
			a = aa;
		}
		total += a * a;
	}

	return (float)idSqrt( total );
}

//===============================================================


class idVec2 {
public:
	float x;
	float y;

	operator float*();
	float operator[]( int index ) const;
	float           &operator[]( int index );
};

ID_INLINE float idVec2::operator[]( int index ) const {
	return ( &x )[ index ];
}

ID_INLINE float& idVec2::operator[]( int index ) {
	return ( &x )[ index ];
}

ID_INLINE idVec2::operator float*( void ) {
	return &x;
}

class idVec4 : public idVec3 {
public:
#ifndef FAT_VEC3
	float dist;
#endif
	idVec4();
	~idVec4() {
	};

	idVec4( float x, float y, float z, float dist );
	float operator[]( int index ) const;
	float           &operator[]( int index );
};

ID_INLINE idVec4::idVec4() {
}
ID_INLINE idVec4::idVec4( float x, float y, float z, float dist ) {
	this->x = x;
	this->y = y;
	this->z = z;
	this->dist = dist;
}

ID_INLINE float idVec4::operator[]( int index ) const {
	return ( &x )[ index ];
}

ID_INLINE float& idVec4::operator[]( int index ) {
	return ( &x )[ index ];
}


class idVec5_t : public idVec3 {
public:
	float s;
	float t;
	float operator[]( int index ) const;
	float           &operator[]( int index );
};


ID_INLINE float idVec5_t::operator[]( int index ) const {
	return ( &x )[ index ];
}

ID_INLINE float& idVec5_t::operator[]( int index ) {
	return ( &x )[ index ];
}

#endif /* !__MATH_VECTOR_H__ */