1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
|
/*
* Experimental data distribution table generator
* Taken from the uncopyrighted NISTnet code (public domain).
*
* Read in a series of "random" data values, either
* experimentally or generated from some probability distribution.
* From this, create the inverse distribution table used to approximate
* the distribution.
*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <malloc.h>
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
double *
readdoubles(FILE *fp, int *number)
{
struct stat info;
double *x;
int limit;
int n=0, i;
fstat(fileno(fp), &info);
if (info.st_size > 0) {
limit = 2*info.st_size/sizeof(double); /* @@ approximate */
} else {
limit = 10000;
}
x = calloc(limit, sizeof(double));
if (!x) {
perror("double alloc");
exit(3);
}
for (i=0; i<limit; ++i){
fscanf(fp, "%lf", &x[i]);
if (feof(fp))
break;
++n;
}
*number = n;
return x;
}
void
arraystats(double *x, int limit, double *mu, double *sigma, double *rho)
{
int n=0, i;
double sumsquare=0.0, sum=0.0, top=0.0;
double sigma2=0.0;
for (i=0; i<limit; ++i){
sumsquare += x[i]*x[i];
sum += x[i];
++n;
}
*mu = sum/(double)n;
*sigma = sqrt((sumsquare - (double)n*(*mu)*(*mu))/(double)(n-1));
for (i=1; i < n; ++i){
top += ((double)x[i]- *mu)*((double)x[i-1]- *mu);
sigma2 += ((double)x[i-1] - *mu)*((double)x[i-1] - *mu);
}
*rho = top/sigma2;
}
/* Create a (normalized) distribution table from a set of observed
* values. The table is fixed to run from (as it happens) -4 to +4,
* with granularity .00002.
*/
#define TABLESIZE 16384/4
#define TABLEFACTOR 8192
#ifndef MINSHORT
#define MINSHORT -32768
#define MAXSHORT 32767
#endif
/* Since entries in the inverse are scaled by TABLEFACTOR, and can't be bigger
* than MAXSHORT, we don't bother looking at a larger domain than this:
*/
#define DISTTABLEDOMAIN ((MAXSHORT/TABLEFACTOR)+1)
#define DISTTABLEGRANULARITY 50000
#define DISTTABLESIZE (DISTTABLEDOMAIN*DISTTABLEGRANULARITY*2)
static int *
makedist(double *x, int limit, double mu, double sigma)
{
int *table;
int i, index, first=DISTTABLESIZE, last=0;
double input;
table = calloc(DISTTABLESIZE, sizeof(int));
if (!table) {
perror("table alloc");
exit(3);
}
for (i=0; i < limit; ++i) {
/* Normalize value */
input = (x[i]-mu)/sigma;
index = (int)rint((input+DISTTABLEDOMAIN)*DISTTABLEGRANULARITY);
if (index < 0) index = 0;
if (index >= DISTTABLESIZE) index = DISTTABLESIZE-1;
++table[index];
if (index > last)
last = index +1;
if (index < first)
first = index;
}
return table;
}
/* replace an array by its cumulative distribution */
static void
cumulativedist(int *table, int limit, int *total)
{
int accum=0;
while (--limit >= 0) {
accum += *table;
*table++ = accum;
}
*total = accum;
}
static short *
inverttable(int *table, int inversesize, int tablesize, int cumulative)
{
int i, inverseindex, inversevalue;
short *inverse;
double findex, fvalue;
inverse = (short *)malloc(inversesize*sizeof(short));
for (i=0; i < inversesize; ++i) {
inverse[i] = MINSHORT;
}
for (i=0; i < tablesize; ++i) {
findex = ((double)i/(double)DISTTABLEGRANULARITY) - DISTTABLEDOMAIN;
fvalue = (double)table[i]/(double)cumulative;
inverseindex = (int)rint(fvalue*inversesize);
inversevalue = (int)rint(findex*TABLEFACTOR);
if (inversevalue <= MINSHORT) inversevalue = MINSHORT+1;
if (inversevalue > MAXSHORT) inversevalue = MAXSHORT;
inverse[inverseindex] = inversevalue;
}
return inverse;
}
/* Run simple linear interpolation over the table to fill in missing entries */
static void
interpolatetable(short *table, int limit)
{
int i, j, last, lasti = -1;
last = MINSHORT;
for (i=0; i < limit; ++i) {
if (table[i] == MINSHORT) {
for (j=i; j < limit; ++j)
if (table[j] != MINSHORT)
break;
if (j < limit) {
table[i] = last + (i-lasti)*(table[j]-last)/(j-lasti);
} else {
table[i] = last + (i-lasti)*(MAXSHORT-last)/(limit-lasti);
}
} else {
last = table[i];
lasti = i;
}
}
}
static void
printtable(const short *table, int limit)
{
int i;
printf("# This is the distribution table for the experimental distribution.\n");
for (i=0 ; i < limit; ++i) {
printf("%d%c", table[i],
(i % 8) == 7 ? '\n' : ' ');
}
}
int
main(int argc, char **argv)
{
FILE *fp;
double *x;
double mu, sigma, rho;
int limit;
int *table;
short *inverse;
int total;
if (argc > 1) {
if (!(fp = fopen(argv[1], "r"))) {
perror(argv[1]);
exit(1);
}
} else {
fp = stdin;
}
x = readdoubles(fp, &limit);
if (limit <= 0) {
fprintf(stderr, "Nothing much read!\n");
exit(2);
}
arraystats(x, limit, &mu, &sigma, &rho);
#ifdef DEBUG
fprintf(stderr, "%d values, mu %10.4f, sigma %10.4f, rho %10.4f\n",
limit, mu, sigma, rho);
#endif
table = makedist(x, limit, mu, sigma);
free((void *) x);
cumulativedist(table, DISTTABLESIZE, &total);
inverse = inverttable(table, TABLESIZE, DISTTABLESIZE, total);
interpolatetable(inverse, TABLESIZE);
printtable(inverse, TABLESIZE);
return 0;
}
|