1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
|
#!/usr/bin/env python
"""
A simple WaveSolver class for evolving the wave equation in 2D.
This works in parallel by using a RectPartitioner object.
Authors
-------
* Xing Cai
* Min Ragan-Kelley
"""
import time
from numpy import arange, newaxis, sqrt, zeros
def iseq(start=0, stop=None, inc=1):
"""
Generate integers from start to (and including!) stop,
with increment of inc. Alternative to range/xrange.
"""
if stop is None: # allow isequence(3) to be 0, 1, 2, 3
# take 1st arg as stop, start as 0, and inc=1
stop = start
start = 0
inc = 1
return arange(start, stop + inc, inc)
class WaveSolver:
"""
Solve the 2D wave equation u_tt = u_xx + u_yy + f(x,y,t) with
u = bc(x,y,t) on the boundary and initial condition du/dt = 0.
Parallelization by using a RectPartitioner object 'partitioner'
nx and ny are the total number of global grid cells in the x and y
directions. The global grid points are numbered as (0,0), (1,0), (2,0),
..., (nx,0), (0,1), (1,1), ..., (nx, ny).
dt is the time step. If dt<=0, an optimal time step is used.
tstop is the stop time for the simulation.
I, f are functions: I(x,y), f(x,y,t)
user_action: function of (u, x, y, t) called at each time
level (x and y are one-dimensional coordinate vectors).
This function allows the calling code to plot the solution,
compute errors, etc.
implementation: a dictionary specifying how the initial
condition ('ic'), the scheme over inner points ('inner'),
and the boundary conditions ('bc') are to be implemented.
Normally, values are legal: 'scalar' or 'vectorized'.
'scalar' means straight loops over grid points, while
'vectorized' means special NumPy vectorized operations.
If a key in the implementation dictionary is missing, it
defaults in this function to 'scalar' (the safest strategy).
Note that if 'vectorized' is specified, the functions I, f,
and bc must work in vectorized mode. It is always recommended
to first run the 'scalar' mode and then compare 'vectorized'
results with the 'scalar' results to check that I, f, and bc
work.
verbose: true if a message at each time step is written,
false implies no output during the simulation.
final_test: true means the discrete L2-norm of the final solution is
to be computed.
"""
def __init__(
self,
I,
f,
c,
bc,
Lx,
Ly,
partitioner=None,
dt=-1,
user_action=None,
implementation={
'ic': 'vectorized', # or 'scalar'
'inner': 'vectorized',
'bc': 'vectorized',
},
):
nx = partitioner.global_num_cells[0] # number of global cells in x dir
ny = partitioner.global_num_cells[1] # number of global cells in y dir
dx = Lx / float(nx)
dy = Ly / float(ny)
loc_nx, loc_ny = partitioner.get_num_loc_cells()
nx = loc_nx
ny = loc_ny # now use loc_nx and loc_ny instead
lo_ix0 = partitioner.subd_lo_ix[0]
lo_ix1 = partitioner.subd_lo_ix[1]
hi_ix0 = partitioner.subd_hi_ix[0]
hi_ix1 = partitioner.subd_hi_ix[1]
x = iseq(dx * lo_ix0, dx * hi_ix0, dx) # local grid points in x dir
y = iseq(dy * lo_ix1, dy * hi_ix1, dy) # local grid points in y dir
self.x = x
self.y = y
xv = x[:, newaxis] # for vectorized expressions with f(xv,yv)
yv = y[newaxis, :] # -- " --
if dt <= 0:
dt = (1 / float(c)) * (1 / sqrt(1 / dx**2 + 1 / dy**2)) # max time step
Cx2 = (c * dt / dx) ** 2
Cy2 = (c * dt / dy) ** 2
dt2 = dt**2 # help variables
u = zeros((nx + 1, ny + 1)) # solution array
u_1 = u.copy() # solution at t-dt
u_2 = u.copy() # solution at t-2*dt
# preserve for self.solve
implementation = dict(implementation) # copy
if 'ic' not in implementation:
implementation['ic'] = 'scalar'
if 'bc' not in implementation:
implementation['bc'] = 'scalar'
if 'inner' not in implementation:
implementation['inner'] = 'scalar'
self.implementation = implementation
self.Lx = Lx
self.Ly = Ly
self.I = I
self.f = f
self.c = c
self.bc = bc
self.user_action = user_action
self.partitioner = partitioner
# set initial condition (pointwise - allows straight if-tests in I(x,y)):
t = 0.0
if implementation['ic'] == 'scalar':
for i in range(0, nx + 1):
for j in range(0, ny + 1):
u_1[i, j] = I(x[i], y[j])
for i in range(1, nx):
for j in range(1, ny):
u_2[i, j] = (
u_1[i, j]
+ 0.5 * Cx2 * (u_1[i - 1, j] - 2 * u_1[i, j] + u_1[i + 1, j])
+ 0.5 * Cy2 * (u_1[i, j - 1] - 2 * u_1[i, j] + u_1[i, j + 1])
+ dt2 * f(x[i], y[j], 0.0)
)
# boundary values of u_2 (equals u(t=dt) due to du/dt=0)
i = 0
for j in range(0, ny + 1):
u_2[i, j] = bc(x[i], y[j], t + dt)
j = 0
for i in range(0, nx + 1):
u_2[i, j] = bc(x[i], y[j], t + dt)
i = nx
for j in range(0, ny + 1):
u_2[i, j] = bc(x[i], y[j], t + dt)
j = ny
for i in range(0, nx + 1):
u_2[i, j] = bc(x[i], y[j], t + dt)
elif implementation['ic'] == 'vectorized':
u_1 = I(xv, yv)
u_2[1:nx, 1:ny] = (
u_1[1:nx, 1:ny]
+ 0.5
* Cx2
* (u_1[0 : nx - 1, 1:ny] - 2 * u_1[1:nx, 1:ny] + u_1[2 : nx + 1, 1:ny])
+ 0.5
* Cy2
* (u_1[1:nx, 0 : ny - 1] - 2 * u_1[1:nx, 1:ny] + u_1[1:nx, 2 : ny + 1])
+ dt2 * (f(xv[1:nx, 1:ny], yv[1:nx, 1:ny], 0.0))
)
# boundary values (t=dt):
i = 0
u_2[i, :] = bc(x[i], y, t + dt)
j = 0
u_2[:, j] = bc(x, y[j], t + dt)
i = nx
u_2[i, :] = bc(x[i], y, t + dt)
j = ny
u_2[:, j] = bc(x, y[j], t + dt)
if user_action is not None:
user_action(u_1, x, y, t) # allow user to plot etc.
# print(list(self.us[2][2]))
self.us = (u, u_1, u_2)
def solve(self, tstop, dt=-1, user_action=None, verbose=False, final_test=False):
t0 = time.time()
f = self.f
c = self.c
bc = self.bc
partitioner = self.partitioner
implementation = self.implementation
nx = partitioner.global_num_cells[0] # number of global cells in x dir
ny = partitioner.global_num_cells[1] # number of global cells in y dir
dx = self.Lx / float(nx)
dy = self.Ly / float(ny)
loc_nx, loc_ny = partitioner.get_num_loc_cells()
nx = loc_nx
ny = loc_ny # now use loc_nx and loc_ny instead
x = self.x
y = self.y
xv = x[:, newaxis] # for vectorized expressions with f(xv,yv)
yv = y[newaxis, :] # -- " --
if dt <= 0:
dt = (1 / float(c)) * (1 / sqrt(1 / dx**2 + 1 / dy**2)) # max time step
Cx2 = (c * dt / dx) ** 2
Cy2 = (c * dt / dy) ** 2
dt2 = dt**2 # help variables
# id for the four possible neighbor subdomains
lower_x_neigh = partitioner.lower_neighbors[0]
upper_x_neigh = partitioner.upper_neighbors[0]
lower_y_neigh = partitioner.lower_neighbors[1]
upper_y_neigh = partitioner.upper_neighbors[1]
u, u_1, u_2 = self.us
# u_1 = self.u_1
t = 0.0
while t <= tstop:
t_old = t
t += dt
if verbose:
print(
'solving ({} version) at t={:g}'.format(implementation['inner'], t)
)
# update all inner points:
if implementation['inner'] == 'scalar':
for i in range(1, nx):
for j in range(1, ny):
u[i, j] = (
-u_2[i, j]
+ 2 * u_1[i, j]
+ Cx2 * (u_1[i - 1, j] - 2 * u_1[i, j] + u_1[i + 1, j])
+ Cy2 * (u_1[i, j - 1] - 2 * u_1[i, j] + u_1[i, j + 1])
+ dt2 * f(x[i], y[j], t_old)
)
elif implementation['inner'] == 'vectorized':
u[1:nx, 1:ny] = (
-u_2[1:nx, 1:ny]
+ 2 * u_1[1:nx, 1:ny]
+ Cx2
* (
u_1[0 : nx - 1, 1:ny]
- 2 * u_1[1:nx, 1:ny]
+ u_1[2 : nx + 1, 1:ny]
)
+ Cy2
* (
u_1[1:nx, 0 : ny - 1]
- 2 * u_1[1:nx, 1:ny]
+ u_1[1:nx, 2 : ny + 1]
)
+ dt2 * f(xv[1:nx, 1:ny], yv[1:nx, 1:ny], t_old)
)
# insert boundary conditions (if there's no neighbor):
if lower_x_neigh < 0:
if implementation['bc'] == 'scalar':
i = 0
for j in range(0, ny + 1):
u[i, j] = bc(x[i], y[j], t)
elif implementation['bc'] == 'vectorized':
u[0, :] = bc(x[0], y, t)
if upper_x_neigh < 0:
if implementation['bc'] == 'scalar':
i = nx
for j in range(0, ny + 1):
u[i, j] = bc(x[i], y[j], t)
elif implementation['bc'] == 'vectorized':
u[nx, :] = bc(x[nx], y, t)
if lower_y_neigh < 0:
if implementation['bc'] == 'scalar':
j = 0
for i in range(0, nx + 1):
u[i, j] = bc(x[i], y[j], t)
elif implementation['bc'] == 'vectorized':
u[:, 0] = bc(x, y[0], t)
if upper_y_neigh < 0:
if implementation['bc'] == 'scalar':
j = ny
for i in range(0, nx + 1):
u[i, j] = bc(x[i], y[j], t)
elif implementation['bc'] == 'vectorized':
u[:, ny] = bc(x, y[ny], t)
# communication
partitioner.update_internal_boundary(u)
if user_action is not None:
user_action(u, x, y, t)
# update data structures for next step
u_2, u_1, u = u_1, u, u_2
t1 = time.time()
print(
'my_id=%2d, dt=%g, %s version, slice_copy=%s, net Wtime=%g'
% (
partitioner.my_id,
dt,
implementation['inner'],
partitioner.slice_copy,
t1 - t0,
)
)
# save the us
self.us = u, u_1, u_2
# check final results; compute discrete L2-norm of the solution
if final_test:
loc_res = 0.0
for i in iseq(start=1, stop=nx - 1):
for j in iseq(start=1, stop=ny - 1):
loc_res += u_1[i, j] ** 2
return loc_res
return dt
|