File: wavesolver.py

package info (click to toggle)
ipyparallel 8.8.0-6
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 12,412 kB
  • sloc: python: 21,991; javascript: 267; makefile: 29; sh: 28
file content (324 lines) | stat: -rwxr-xr-x 11,643 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
#!/usr/bin/env python
"""
A simple WaveSolver class for evolving the wave equation in 2D.
This works in parallel by using a RectPartitioner object.

Authors
-------

 * Xing Cai
 * Min Ragan-Kelley

"""

import time

from numpy import arange, newaxis, sqrt, zeros


def iseq(start=0, stop=None, inc=1):
    """
    Generate integers from start to (and including!) stop,
    with increment of inc. Alternative to range/xrange.
    """
    if stop is None:  # allow isequence(3) to be 0, 1, 2, 3
        # take 1st arg as stop, start as 0, and inc=1
        stop = start
        start = 0
        inc = 1
    return arange(start, stop + inc, inc)


class WaveSolver:
    """
    Solve the 2D wave equation u_tt = u_xx + u_yy + f(x,y,t) with
    u = bc(x,y,t) on the boundary and initial condition du/dt = 0.

    Parallelization by using a RectPartitioner object 'partitioner'

    nx and ny are the total number of global grid cells in the x and y
    directions. The global grid points are numbered as (0,0), (1,0), (2,0),
    ..., (nx,0), (0,1), (1,1), ..., (nx, ny).

    dt is the time step. If dt<=0, an optimal time step is used.

    tstop is the stop time for the simulation.

    I, f are functions: I(x,y), f(x,y,t)

    user_action: function of (u, x, y, t) called at each time
    level (x and y are one-dimensional coordinate vectors).
    This function allows the calling code to plot the solution,
    compute errors, etc.

    implementation: a dictionary specifying how the initial
    condition ('ic'), the scheme over inner points ('inner'),
    and the boundary conditions ('bc') are to be implemented.
    Normally, values are legal: 'scalar' or 'vectorized'.
    'scalar' means straight loops over grid points, while
    'vectorized' means special NumPy vectorized operations.

    If a key in the implementation dictionary is missing, it
    defaults in this function to 'scalar' (the safest strategy).
    Note that if 'vectorized' is specified, the functions I, f,
    and bc must work in vectorized mode. It is always recommended
    to first run the 'scalar' mode and then compare 'vectorized'
    results with the 'scalar' results to check that I, f, and bc
    work.

    verbose: true if a message at each time step is written,
    false implies no output during the simulation.

    final_test: true means the discrete L2-norm of the final solution is
    to be computed.
    """

    def __init__(
        self,
        I,
        f,
        c,
        bc,
        Lx,
        Ly,
        partitioner=None,
        dt=-1,
        user_action=None,
        implementation={
            'ic': 'vectorized',  # or 'scalar'
            'inner': 'vectorized',
            'bc': 'vectorized',
        },
    ):
        nx = partitioner.global_num_cells[0]  # number of global cells in x dir
        ny = partitioner.global_num_cells[1]  # number of global cells in y dir
        dx = Lx / float(nx)
        dy = Ly / float(ny)
        loc_nx, loc_ny = partitioner.get_num_loc_cells()
        nx = loc_nx
        ny = loc_ny  # now use loc_nx and loc_ny instead
        lo_ix0 = partitioner.subd_lo_ix[0]
        lo_ix1 = partitioner.subd_lo_ix[1]
        hi_ix0 = partitioner.subd_hi_ix[0]
        hi_ix1 = partitioner.subd_hi_ix[1]
        x = iseq(dx * lo_ix0, dx * hi_ix0, dx)  # local grid points in x dir
        y = iseq(dy * lo_ix1, dy * hi_ix1, dy)  # local grid points in y dir
        self.x = x
        self.y = y
        xv = x[:, newaxis]  # for vectorized expressions with f(xv,yv)
        yv = y[newaxis, :]  # -- " --
        if dt <= 0:
            dt = (1 / float(c)) * (1 / sqrt(1 / dx**2 + 1 / dy**2))  # max time step
        Cx2 = (c * dt / dx) ** 2
        Cy2 = (c * dt / dy) ** 2
        dt2 = dt**2  # help variables

        u = zeros((nx + 1, ny + 1))  # solution array
        u_1 = u.copy()  # solution at t-dt
        u_2 = u.copy()  # solution at t-2*dt

        # preserve for self.solve
        implementation = dict(implementation)  # copy

        if 'ic' not in implementation:
            implementation['ic'] = 'scalar'
        if 'bc' not in implementation:
            implementation['bc'] = 'scalar'
        if 'inner' not in implementation:
            implementation['inner'] = 'scalar'

        self.implementation = implementation
        self.Lx = Lx
        self.Ly = Ly
        self.I = I
        self.f = f
        self.c = c
        self.bc = bc
        self.user_action = user_action
        self.partitioner = partitioner

        # set initial condition (pointwise - allows straight if-tests in I(x,y)):
        t = 0.0
        if implementation['ic'] == 'scalar':
            for i in range(0, nx + 1):
                for j in range(0, ny + 1):
                    u_1[i, j] = I(x[i], y[j])

            for i in range(1, nx):
                for j in range(1, ny):
                    u_2[i, j] = (
                        u_1[i, j]
                        + 0.5 * Cx2 * (u_1[i - 1, j] - 2 * u_1[i, j] + u_1[i + 1, j])
                        + 0.5 * Cy2 * (u_1[i, j - 1] - 2 * u_1[i, j] + u_1[i, j + 1])
                        + dt2 * f(x[i], y[j], 0.0)
                    )

            # boundary values of u_2 (equals u(t=dt) due to du/dt=0)
            i = 0
            for j in range(0, ny + 1):
                u_2[i, j] = bc(x[i], y[j], t + dt)
            j = 0
            for i in range(0, nx + 1):
                u_2[i, j] = bc(x[i], y[j], t + dt)
            i = nx
            for j in range(0, ny + 1):
                u_2[i, j] = bc(x[i], y[j], t + dt)
            j = ny
            for i in range(0, nx + 1):
                u_2[i, j] = bc(x[i], y[j], t + dt)

        elif implementation['ic'] == 'vectorized':
            u_1 = I(xv, yv)
            u_2[1:nx, 1:ny] = (
                u_1[1:nx, 1:ny]
                + 0.5
                * Cx2
                * (u_1[0 : nx - 1, 1:ny] - 2 * u_1[1:nx, 1:ny] + u_1[2 : nx + 1, 1:ny])
                + 0.5
                * Cy2
                * (u_1[1:nx, 0 : ny - 1] - 2 * u_1[1:nx, 1:ny] + u_1[1:nx, 2 : ny + 1])
                + dt2 * (f(xv[1:nx, 1:ny], yv[1:nx, 1:ny], 0.0))
            )
            # boundary values (t=dt):
            i = 0
            u_2[i, :] = bc(x[i], y, t + dt)
            j = 0
            u_2[:, j] = bc(x, y[j], t + dt)
            i = nx
            u_2[i, :] = bc(x[i], y, t + dt)
            j = ny
            u_2[:, j] = bc(x, y[j], t + dt)

        if user_action is not None:
            user_action(u_1, x, y, t)  # allow user to plot etc.
        # print(list(self.us[2][2]))
        self.us = (u, u_1, u_2)

    def solve(self, tstop, dt=-1, user_action=None, verbose=False, final_test=False):
        t0 = time.time()
        f = self.f
        c = self.c
        bc = self.bc
        partitioner = self.partitioner
        implementation = self.implementation
        nx = partitioner.global_num_cells[0]  # number of global cells in x dir
        ny = partitioner.global_num_cells[1]  # number of global cells in y dir
        dx = self.Lx / float(nx)
        dy = self.Ly / float(ny)
        loc_nx, loc_ny = partitioner.get_num_loc_cells()
        nx = loc_nx
        ny = loc_ny  # now use loc_nx and loc_ny instead
        x = self.x
        y = self.y
        xv = x[:, newaxis]  # for vectorized expressions with f(xv,yv)
        yv = y[newaxis, :]  # -- " --
        if dt <= 0:
            dt = (1 / float(c)) * (1 / sqrt(1 / dx**2 + 1 / dy**2))  # max time step
        Cx2 = (c * dt / dx) ** 2
        Cy2 = (c * dt / dy) ** 2
        dt2 = dt**2  # help variables
        # id for the four possible neighbor subdomains
        lower_x_neigh = partitioner.lower_neighbors[0]
        upper_x_neigh = partitioner.upper_neighbors[0]
        lower_y_neigh = partitioner.lower_neighbors[1]
        upper_y_neigh = partitioner.upper_neighbors[1]
        u, u_1, u_2 = self.us
        # u_1 = self.u_1

        t = 0.0
        while t <= tstop:
            t_old = t
            t += dt
            if verbose:
                print(
                    'solving ({} version) at t={:g}'.format(implementation['inner'], t)
                )
            # update all inner points:
            if implementation['inner'] == 'scalar':
                for i in range(1, nx):
                    for j in range(1, ny):
                        u[i, j] = (
                            -u_2[i, j]
                            + 2 * u_1[i, j]
                            + Cx2 * (u_1[i - 1, j] - 2 * u_1[i, j] + u_1[i + 1, j])
                            + Cy2 * (u_1[i, j - 1] - 2 * u_1[i, j] + u_1[i, j + 1])
                            + dt2 * f(x[i], y[j], t_old)
                        )
            elif implementation['inner'] == 'vectorized':
                u[1:nx, 1:ny] = (
                    -u_2[1:nx, 1:ny]
                    + 2 * u_1[1:nx, 1:ny]
                    + Cx2
                    * (
                        u_1[0 : nx - 1, 1:ny]
                        - 2 * u_1[1:nx, 1:ny]
                        + u_1[2 : nx + 1, 1:ny]
                    )
                    + Cy2
                    * (
                        u_1[1:nx, 0 : ny - 1]
                        - 2 * u_1[1:nx, 1:ny]
                        + u_1[1:nx, 2 : ny + 1]
                    )
                    + dt2 * f(xv[1:nx, 1:ny], yv[1:nx, 1:ny], t_old)
                )

            # insert boundary conditions (if there's no neighbor):
            if lower_x_neigh < 0:
                if implementation['bc'] == 'scalar':
                    i = 0
                    for j in range(0, ny + 1):
                        u[i, j] = bc(x[i], y[j], t)
                elif implementation['bc'] == 'vectorized':
                    u[0, :] = bc(x[0], y, t)
            if upper_x_neigh < 0:
                if implementation['bc'] == 'scalar':
                    i = nx
                    for j in range(0, ny + 1):
                        u[i, j] = bc(x[i], y[j], t)
                elif implementation['bc'] == 'vectorized':
                    u[nx, :] = bc(x[nx], y, t)
            if lower_y_neigh < 0:
                if implementation['bc'] == 'scalar':
                    j = 0
                    for i in range(0, nx + 1):
                        u[i, j] = bc(x[i], y[j], t)
                elif implementation['bc'] == 'vectorized':
                    u[:, 0] = bc(x, y[0], t)
            if upper_y_neigh < 0:
                if implementation['bc'] == 'scalar':
                    j = ny
                    for i in range(0, nx + 1):
                        u[i, j] = bc(x[i], y[j], t)
                elif implementation['bc'] == 'vectorized':
                    u[:, ny] = bc(x, y[ny], t)

            # communication
            partitioner.update_internal_boundary(u)

            if user_action is not None:
                user_action(u, x, y, t)
            # update data structures for next step
            u_2, u_1, u = u_1, u, u_2

        t1 = time.time()
        print(
            'my_id=%2d, dt=%g, %s version, slice_copy=%s, net Wtime=%g'
            % (
                partitioner.my_id,
                dt,
                implementation['inner'],
                partitioner.slice_copy,
                t1 - t0,
            )
        )
        # save the us
        self.us = u, u_1, u_2
        # check final results; compute discrete L2-norm of the solution
        if final_test:
            loc_res = 0.0
            for i in iseq(start=1, stop=nx - 1):
                for j in iseq(start=1, stop=ny - 1):
                    loc_res += u_1[i, j] ** 2
            return loc_res
        return dt