File: execution.py

package info (click to toggle)
ipython 0.13.1-2%2Bdeb7u1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 15,752 kB
  • sloc: python: 69,537; makefile: 355; lisp: 272; sh: 80; objc: 37
file content (1022 lines) | stat: -rw-r--r-- 40,995 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
"""Implementation of execution-related magic functions.
"""
#-----------------------------------------------------------------------------
#  Copyright (c) 2012 The IPython Development Team.
#
#  Distributed under the terms of the Modified BSD License.
#
#  The full license is in the file COPYING.txt, distributed with this software.
#-----------------------------------------------------------------------------

#-----------------------------------------------------------------------------
# Imports
#-----------------------------------------------------------------------------

# Stdlib
import __builtin__ as builtin_mod
import bdb
import os
import sys
import time
from StringIO import StringIO

# cProfile was added in Python2.5
try:
    import cProfile as profile
    import pstats
except ImportError:
    # profile isn't bundled by default in Debian for license reasons
    try:
        import profile, pstats
    except ImportError:
        profile = pstats = None

# Our own packages
from IPython.core import debugger, oinspect
from IPython.core import magic_arguments
from IPython.core import page
from IPython.core.error import UsageError
from IPython.core.macro import Macro
from IPython.core.magic import (Magics, magics_class, line_magic, cell_magic,
                                line_cell_magic, on_off, needs_local_scope)
from IPython.testing.skipdoctest import skip_doctest
from IPython.utils import py3compat
from IPython.utils.io import capture_output
from IPython.utils.ipstruct import Struct
from IPython.utils.module_paths import find_mod
from IPython.utils.path import get_py_filename, unquote_filename
from IPython.utils.timing import clock, clock2
from IPython.utils.warn import warn, error

#-----------------------------------------------------------------------------
# Magic implementation classes
#-----------------------------------------------------------------------------

@magics_class
class ExecutionMagics(Magics):
    """Magics related to code execution, debugging, profiling, etc.

    """

    def __init__(self, shell):
        super(ExecutionMagics, self).__init__(shell)
        if profile is None:
            self.prun = self.profile_missing_notice
        # Default execution function used to actually run user code.
        self.default_runner = None

    def profile_missing_notice(self, *args, **kwargs):
        error("""\
The profile module could not be found. It has been removed from the standard
python packages because of its non-free license. To use profiling, install the
python-profiler package from non-free.""")

    @skip_doctest
    @line_cell_magic
    def prun(self, parameter_s='', cell=None, user_mode=True,
                   opts=None,arg_lst=None,prog_ns=None):

        """Run a statement through the python code profiler.

        Usage, in line mode:
          %prun [options] statement

        Usage, in cell mode:
          %%prun [options] [statement]
          code...
          code...

        In cell mode, the additional code lines are appended to the (possibly
        empty) statement in the first line.  Cell mode allows you to easily
        profile multiline blocks without having to put them in a separate
        function.
        
        The given statement (which doesn't require quote marks) is run via the
        python profiler in a manner similar to the profile.run() function.
        Namespaces are internally managed to work correctly; profile.run
        cannot be used in IPython because it makes certain assumptions about
        namespaces which do not hold under IPython.

        Options:

        -l <limit>: you can place restrictions on what or how much of the
        profile gets printed. The limit value can be:

          * A string: only information for function names containing this string
          is printed.

          * An integer: only these many lines are printed.

          * A float (between 0 and 1): this fraction of the report is printed
          (for example, use a limit of 0.4 to see the topmost 40% only).

        You can combine several limits with repeated use of the option. For
        example, '-l __init__ -l 5' will print only the topmost 5 lines of
        information about class constructors.

        -r: return the pstats.Stats object generated by the profiling. This
        object has all the information about the profile in it, and you can
        later use it for further analysis or in other functions.

       -s <key>: sort profile by given key. You can provide more than one key
        by using the option several times: '-s key1 -s key2 -s key3...'. The
        default sorting key is 'time'.

        The following is copied verbatim from the profile documentation
        referenced below:

        When more than one key is provided, additional keys are used as
        secondary criteria when the there is equality in all keys selected
        before them.

        Abbreviations can be used for any key names, as long as the
        abbreviation is unambiguous.  The following are the keys currently
        defined:

                Valid Arg       Meaning
                  "calls"      call count
                  "cumulative" cumulative time
                  "file"       file name
                  "module"     file name
                  "pcalls"     primitive call count
                  "line"       line number
                  "name"       function name
                  "nfl"        name/file/line
                  "stdname"    standard name
                  "time"       internal time

        Note that all sorts on statistics are in descending order (placing
        most time consuming items first), where as name, file, and line number
        searches are in ascending order (i.e., alphabetical). The subtle
        distinction between "nfl" and "stdname" is that the standard name is a
        sort of the name as printed, which means that the embedded line
        numbers get compared in an odd way.  For example, lines 3, 20, and 40
        would (if the file names were the same) appear in the string order
        "20" "3" and "40".  In contrast, "nfl" does a numeric compare of the
        line numbers.  In fact, sort_stats("nfl") is the same as
        sort_stats("name", "file", "line").

        -T <filename>: save profile results as shown on screen to a text
        file. The profile is still shown on screen.

        -D <filename>: save (via dump_stats) profile statistics to given
        filename. This data is in a format understood by the pstats module, and
        is generated by a call to the dump_stats() method of profile
        objects. The profile is still shown on screen.

        -q: suppress output to the pager.  Best used with -T and/or -D above.

        If you want to run complete programs under the profiler's control, use
        '%run -p [prof_opts] filename.py [args to program]' where prof_opts
        contains profiler specific options as described here.

        You can read the complete documentation for the profile module with::

          In [1]: import profile; profile.help()
        """

        opts_def = Struct(D=[''],l=[],s=['time'],T=[''])

        if user_mode:  # regular user call
            opts,arg_str = self.parse_options(parameter_s,'D:l:rs:T:q',
                                              list_all=True, posix=False)
            namespace = self.shell.user_ns
            if cell is not None:
                arg_str += '\n' + cell
        else:  # called to run a program by %run -p
            try:
                filename = get_py_filename(arg_lst[0])
            except IOError as e:
                try:
                    msg = str(e)
                except UnicodeError:
                    msg = e.message
                error(msg)
                return

            arg_str = 'execfile(filename,prog_ns)'
            namespace = {
                'execfile': self.shell.safe_execfile,
                'prog_ns': prog_ns,
                'filename': filename
                }

        opts.merge(opts_def)

        prof = profile.Profile()
        try:
            prof = prof.runctx(arg_str,namespace,namespace)
            sys_exit = ''
        except SystemExit:
            sys_exit = """*** SystemExit exception caught in code being profiled."""

        stats = pstats.Stats(prof).strip_dirs().sort_stats(*opts.s)

        lims = opts.l
        if lims:
            lims = []  # rebuild lims with ints/floats/strings
            for lim in opts.l:
                try:
                    lims.append(int(lim))
                except ValueError:
                    try:
                        lims.append(float(lim))
                    except ValueError:
                        lims.append(lim)

        # Trap output.
        stdout_trap = StringIO()

        if hasattr(stats,'stream'):
            # In newer versions of python, the stats object has a 'stream'
            # attribute to write into.
            stats.stream = stdout_trap
            stats.print_stats(*lims)
        else:
            # For older versions, we manually redirect stdout during printing
            sys_stdout = sys.stdout
            try:
                sys.stdout = stdout_trap
                stats.print_stats(*lims)
            finally:
                sys.stdout = sys_stdout

        output = stdout_trap.getvalue()
        output = output.rstrip()

        if 'q' not in opts:
            page.page(output)
        print sys_exit,

        dump_file = opts.D[0]
        text_file = opts.T[0]
        if dump_file:
            dump_file = unquote_filename(dump_file)
            prof.dump_stats(dump_file)
            print '\n*** Profile stats marshalled to file',\
                  `dump_file`+'.',sys_exit
        if text_file:
            text_file = unquote_filename(text_file)
            pfile = open(text_file,'w')
            pfile.write(output)
            pfile.close()
            print '\n*** Profile printout saved to text file',\
                  `text_file`+'.',sys_exit

        if opts.has_key('r'):
            return stats
        else:
            return None

    @line_magic
    def pdb(self, parameter_s=''):
        """Control the automatic calling of the pdb interactive debugger.

        Call as '%pdb on', '%pdb 1', '%pdb off' or '%pdb 0'. If called without
        argument it works as a toggle.

        When an exception is triggered, IPython can optionally call the
        interactive pdb debugger after the traceback printout. %pdb toggles
        this feature on and off.

        The initial state of this feature is set in your configuration
        file (the option is ``InteractiveShell.pdb``).

        If you want to just activate the debugger AFTER an exception has fired,
        without having to type '%pdb on' and rerunning your code, you can use
        the %debug magic."""

        par = parameter_s.strip().lower()

        if par:
            try:
                new_pdb = {'off':0,'0':0,'on':1,'1':1}[par]
            except KeyError:
                print ('Incorrect argument. Use on/1, off/0, '
                       'or nothing for a toggle.')
                return
        else:
            # toggle
            new_pdb = not self.shell.call_pdb

        # set on the shell
        self.shell.call_pdb = new_pdb
        print 'Automatic pdb calling has been turned',on_off(new_pdb)

    @line_magic
    def debug(self, parameter_s=''):
        """Activate the interactive debugger in post-mortem mode.

        If an exception has just occurred, this lets you inspect its stack
        frames interactively.  Note that this will always work only on the last
        traceback that occurred, so you must call this quickly after an
        exception that you wish to inspect has fired, because if another one
        occurs, it clobbers the previous one.

        If you want IPython to automatically do this on every exception, see
        the %pdb magic for more details.
        """
        self.shell.debugger(force=True)

    @line_magic
    def tb(self, s):
        """Print the last traceback with the currently active exception mode.

        See %xmode for changing exception reporting modes."""
        self.shell.showtraceback()

    @skip_doctest
    @line_magic
    def run(self, parameter_s='', runner=None,
                  file_finder=get_py_filename):
        """Run the named file inside IPython as a program.

        Usage:\\
          %run [-n -i -t [-N<N>] -d [-b<N>] -p [profile options]] file [args]

        Parameters after the filename are passed as command-line arguments to
        the program (put in sys.argv). Then, control returns to IPython's
        prompt.

        This is similar to running at a system prompt:\\
          $ python file args\\
        but with the advantage of giving you IPython's tracebacks, and of
        loading all variables into your interactive namespace for further use
        (unless -p is used, see below).

        The file is executed in a namespace initially consisting only of
        __name__=='__main__' and sys.argv constructed as indicated. It thus
        sees its environment as if it were being run as a stand-alone program
        (except for sharing global objects such as previously imported
        modules). But after execution, the IPython interactive namespace gets
        updated with all variables defined in the program (except for __name__
        and sys.argv). This allows for very convenient loading of code for
        interactive work, while giving each program a 'clean sheet' to run in.

        Options:

        -n: __name__ is NOT set to '__main__', but to the running file's name
        without extension (as python does under import).  This allows running
        scripts and reloading the definitions in them without calling code
        protected by an ' if __name__ == "__main__" ' clause.

        -i: run the file in IPython's namespace instead of an empty one. This
        is useful if you are experimenting with code written in a text editor
        which depends on variables defined interactively.

        -e: ignore sys.exit() calls or SystemExit exceptions in the script
        being run.  This is particularly useful if IPython is being used to
        run unittests, which always exit with a sys.exit() call.  In such
        cases you are interested in the output of the test results, not in
        seeing a traceback of the unittest module.

        -t: print timing information at the end of the run.  IPython will give
        you an estimated CPU time consumption for your script, which under
        Unix uses the resource module to avoid the wraparound problems of
        time.clock().  Under Unix, an estimate of time spent on system tasks
        is also given (for Windows platforms this is reported as 0.0).

        If -t is given, an additional -N<N> option can be given, where <N>
        must be an integer indicating how many times you want the script to
        run.  The final timing report will include total and per run results.

        For example (testing the script uniq_stable.py)::

            In [1]: run -t uniq_stable

            IPython CPU timings (estimated):\\
              User  :    0.19597 s.\\
              System:        0.0 s.\\

            In [2]: run -t -N5 uniq_stable

            IPython CPU timings (estimated):\\
            Total runs performed: 5\\
              Times :      Total       Per run\\
              User  :   0.910862 s,  0.1821724 s.\\
              System:        0.0 s,        0.0 s.

        -d: run your program under the control of pdb, the Python debugger.
        This allows you to execute your program step by step, watch variables,
        etc.  Internally, what IPython does is similar to calling:

          pdb.run('execfile("YOURFILENAME")')

        with a breakpoint set on line 1 of your file.  You can change the line
        number for this automatic breakpoint to be <N> by using the -bN option
        (where N must be an integer).  For example::

          %run -d -b40 myscript

        will set the first breakpoint at line 40 in myscript.py.  Note that
        the first breakpoint must be set on a line which actually does
        something (not a comment or docstring) for it to stop execution.

        When the pdb debugger starts, you will see a (Pdb) prompt.  You must
        first enter 'c' (without quotes) to start execution up to the first
        breakpoint.

        Entering 'help' gives information about the use of the debugger.  You
        can easily see pdb's full documentation with "import pdb;pdb.help()"
        at a prompt.

        -p: run program under the control of the Python profiler module (which
        prints a detailed report of execution times, function calls, etc).

        You can pass other options after -p which affect the behavior of the
        profiler itself. See the docs for %prun for details.

        In this mode, the program's variables do NOT propagate back to the
        IPython interactive namespace (because they remain in the namespace
        where the profiler executes them).

        Internally this triggers a call to %prun, see its documentation for
        details on the options available specifically for profiling.

        There is one special usage for which the text above doesn't apply:
        if the filename ends with .ipy, the file is run as ipython script,
        just as if the commands were written on IPython prompt.

        -m: specify module name to load instead of script path. Similar to
        the -m option for the python interpreter. Use this option last if you
        want to combine with other %run options. Unlike the python interpreter
        only source modules are allowed no .pyc or .pyo files.
        For example::

            %run -m example

        will run the example module.

        """

        # get arguments and set sys.argv for program to be run.
        opts, arg_lst = self.parse_options(parameter_s, 'nidtN:b:pD:l:rs:T:em:',
                                           mode='list', list_all=1)
        if "m" in opts:
            modulename = opts["m"][0]
            modpath = find_mod(modulename)
            if modpath is None:
                warn('%r is not a valid modulename on sys.path'%modulename)
                return
            arg_lst = [modpath] + arg_lst
        try:
            filename = file_finder(arg_lst[0])
        except IndexError:
            warn('you must provide at least a filename.')
            print '\n%run:\n', oinspect.getdoc(self.run)
            return
        except IOError as e:
            try:
                msg = str(e)
            except UnicodeError:
                msg = e.message
            error(msg)
            return

        if filename.lower().endswith('.ipy'):
            self.shell.safe_execfile_ipy(filename)
            return

        # Control the response to exit() calls made by the script being run
        exit_ignore = 'e' in opts

        # Make sure that the running script gets a proper sys.argv as if it
        # were run from a system shell.
        save_argv = sys.argv # save it for later restoring

        # simulate shell expansion on arguments, at least tilde expansion
        args = [ os.path.expanduser(a) for a in arg_lst[1:] ]

        sys.argv = [filename] + args  # put in the proper filename
        # protect sys.argv from potential unicode strings on Python 2:
        if not py3compat.PY3:
            sys.argv = [ py3compat.cast_bytes(a) for a in sys.argv ]

        if 'i' in opts:
            # Run in user's interactive namespace
            prog_ns = self.shell.user_ns
            __name__save = self.shell.user_ns['__name__']
            prog_ns['__name__'] = '__main__'
            main_mod = self.shell.new_main_mod(prog_ns)
        else:
            # Run in a fresh, empty namespace
            if 'n' in opts:
                name = os.path.splitext(os.path.basename(filename))[0]
            else:
                name = '__main__'

            main_mod = self.shell.new_main_mod()
            prog_ns = main_mod.__dict__
            prog_ns['__name__'] = name

        # Since '%run foo' emulates 'python foo.py' at the cmd line, we must
        # set the __file__ global in the script's namespace
        prog_ns['__file__'] = filename

        # pickle fix.  See interactiveshell for an explanation.  But we need to
        # make sure that, if we overwrite __main__, we replace it at the end
        main_mod_name = prog_ns['__name__']

        if main_mod_name == '__main__':
            restore_main = sys.modules['__main__']
        else:
            restore_main = False

        # This needs to be undone at the end to prevent holding references to
        # every single object ever created.
        sys.modules[main_mod_name] = main_mod

        try:
            stats = None
            with self.shell.readline_no_record:
                if 'p' in opts:
                    stats = self.prun('', None, False, opts, arg_lst, prog_ns)
                else:
                    if 'd' in opts:
                        deb = debugger.Pdb(self.shell.colors)
                        # reset Breakpoint state, which is moronically kept
                        # in a class
                        bdb.Breakpoint.next = 1
                        bdb.Breakpoint.bplist = {}
                        bdb.Breakpoint.bpbynumber = [None]
                        # Set an initial breakpoint to stop execution
                        maxtries = 10
                        bp = int(opts.get('b', [1])[0])
                        checkline = deb.checkline(filename, bp)
                        if not checkline:
                            for bp in range(bp + 1, bp + maxtries + 1):
                                if deb.checkline(filename, bp):
                                    break
                            else:
                                msg = ("\nI failed to find a valid line to set "
                                       "a breakpoint\n"
                                       "after trying up to line: %s.\n"
                                       "Please set a valid breakpoint manually "
                                       "with the -b option." % bp)
                                error(msg)
                                return
                        # if we find a good linenumber, set the breakpoint
                        deb.do_break('%s:%s' % (filename, bp))
                        # Start file run
                        print "NOTE: Enter 'c' at the",
                        print "%s prompt to start your script." % deb.prompt
                        ns = {'execfile': py3compat.execfile, 'prog_ns': prog_ns}
                        try:
                            deb.run('execfile("%s", prog_ns)' % filename, ns)

                        except:
                            etype, value, tb = sys.exc_info()
                            # Skip three frames in the traceback: the %run one,
                            # one inside bdb.py, and the command-line typed by the
                            # user (run by exec in pdb itself).
                            self.shell.InteractiveTB(etype, value, tb, tb_offset=3)
                    else:
                        if runner is None:
                            runner = self.default_runner
                        if runner is None:
                            runner = self.shell.safe_execfile
                        if 't' in opts:
                            # timed execution
                            try:
                                nruns = int(opts['N'][0])
                                if nruns < 1:
                                    error('Number of runs must be >=1')
                                    return
                            except (KeyError):
                                nruns = 1
                            twall0 = time.time()
                            if nruns == 1:
                                t0 = clock2()
                                runner(filename, prog_ns, prog_ns,
                                       exit_ignore=exit_ignore)
                                t1 = clock2()
                                t_usr = t1[0] - t0[0]
                                t_sys = t1[1] - t0[1]
                                print "\nIPython CPU timings (estimated):"
                                print "  User   : %10.2f s." % t_usr
                                print "  System : %10.2f s." % t_sys
                            else:
                                runs = range(nruns)
                                t0 = clock2()
                                for nr in runs:
                                    runner(filename, prog_ns, prog_ns,
                                           exit_ignore=exit_ignore)
                                t1 = clock2()
                                t_usr = t1[0] - t0[0]
                                t_sys = t1[1] - t0[1]
                                print "\nIPython CPU timings (estimated):"
                                print "Total runs performed:", nruns
                                print "  Times  : %10.2f    %10.2f" % ('Total', 'Per run')
                                print "  User   : %10.2f s, %10.2f s." % (t_usr, t_usr / nruns)
                                print "  System : %10.2f s, %10.2f s." % (t_sys, t_sys / nruns)
                            twall1 = time.time()
                            print "Wall time: %10.2f s." % (twall1 - twall0)

                        else:
                            # regular execution
                            runner(filename, prog_ns, prog_ns, exit_ignore=exit_ignore)

                if 'i' in opts:
                    self.shell.user_ns['__name__'] = __name__save
                else:
                    # The shell MUST hold a reference to prog_ns so after %run
                    # exits, the python deletion mechanism doesn't zero it out
                    # (leaving dangling references).
                    self.shell.cache_main_mod(prog_ns, filename)
                    # update IPython interactive namespace

                    # Some forms of read errors on the file may mean the
                    # __name__ key was never set; using pop we don't have to
                    # worry about a possible KeyError.
                    prog_ns.pop('__name__', None)

                    self.shell.user_ns.update(prog_ns)
        finally:
            # It's a bit of a mystery why, but __builtins__ can change from
            # being a module to becoming a dict missing some key data after
            # %run.  As best I can see, this is NOT something IPython is doing
            # at all, and similar problems have been reported before:
            # http://coding.derkeiler.com/Archive/Python/comp.lang.python/2004-10/0188.html
            # Since this seems to be done by the interpreter itself, the best
            # we can do is to at least restore __builtins__ for the user on
            # exit.
            self.shell.user_ns['__builtins__'] = builtin_mod

            # Ensure key global structures are restored
            sys.argv = save_argv
            if restore_main:
                sys.modules['__main__'] = restore_main
            else:
                # Remove from sys.modules the reference to main_mod we'd
                # added.  Otherwise it will trap references to objects
                # contained therein.
                del sys.modules[main_mod_name]

        return stats

    @skip_doctest
    @line_cell_magic
    def timeit(self, line='', cell=None):
        """Time execution of a Python statement or expression

        Usage, in line mode:
          %timeit [-n<N> -r<R> [-t|-c]] statement
        or in cell mode:
          %%timeit [-n<N> -r<R> [-t|-c]] setup_code
          code
          code...

        Time execution of a Python statement or expression using the timeit
        module.  This function can be used both as a line and cell magic:

        - In line mode you can time a single-line statement (though multiple
          ones can be chained with using semicolons).

        - In cell mode, the statement in the first line is used as setup code
          (executed but not timed) and the body of the cell is timed.  The cell
          body has access to any variables created in the setup code.

        Options:
        -n<N>: execute the given statement <N> times in a loop. If this value
        is not given, a fitting value is chosen.

        -r<R>: repeat the loop iteration <R> times and take the best result.
        Default: 3

        -t: use time.time to measure the time, which is the default on Unix.
        This function measures wall time.

        -c: use time.clock to measure the time, which is the default on
        Windows and measures wall time. On Unix, resource.getrusage is used
        instead and returns the CPU user time.

        -p<P>: use a precision of <P> digits to display the timing result.
        Default: 3


        Examples
        --------
        ::

          In [1]: %timeit pass
          10000000 loops, best of 3: 53.3 ns per loop

          In [2]: u = None

          In [3]: %timeit u is None
          10000000 loops, best of 3: 184 ns per loop

          In [4]: %timeit -r 4 u == None
          1000000 loops, best of 4: 242 ns per loop

          In [5]: import time

          In [6]: %timeit -n1 time.sleep(2)
          1 loops, best of 3: 2 s per loop


        The times reported by %timeit will be slightly higher than those
        reported by the timeit.py script when variables are accessed. This is
        due to the fact that %timeit executes the statement in the namespace
        of the shell, compared with timeit.py, which uses a single setup
        statement to import function or create variables. Generally, the bias
        does not matter as long as results from timeit.py are not mixed with
        those from %timeit."""

        import timeit
        import math

        # XXX: Unfortunately the unicode 'micro' symbol can cause problems in
        # certain terminals.  Until we figure out a robust way of
        # auto-detecting if the terminal can deal with it, use plain 'us' for
        # microseconds.  I am really NOT happy about disabling the proper
        # 'micro' prefix, but crashing is worse... If anyone knows what the
        # right solution for this is, I'm all ears...
        #
        # Note: using
        #
        # s = u'\xb5'
        # s.encode(sys.getdefaultencoding())
        #
        # is not sufficient, as I've seen terminals where that fails but
        # print s
        #
        # succeeds
        #
        # See bug: https://bugs.launchpad.net/ipython/+bug/348466

        #units = [u"s", u"ms",u'\xb5',"ns"]
        units = [u"s", u"ms",u'us',"ns"]

        scaling = [1, 1e3, 1e6, 1e9]

        opts, stmt = self.parse_options(line,'n:r:tcp:',
                                        posix=False, strict=False)
        if stmt == "" and cell is None:
            return
        timefunc = timeit.default_timer
        number = int(getattr(opts, "n", 0))
        repeat = int(getattr(opts, "r", timeit.default_repeat))
        precision = int(getattr(opts, "p", 3))
        if hasattr(opts, "t"):
            timefunc = time.time
        if hasattr(opts, "c"):
            timefunc = clock

        timer = timeit.Timer(timer=timefunc)
        # this code has tight coupling to the inner workings of timeit.Timer,
        # but is there a better way to achieve that the code stmt has access
        # to the shell namespace?
        transform  = self.shell.input_splitter.transform_cell
        if cell is None:
            # called as line magic
            setup = 'pass'
            stmt = timeit.reindent(transform(stmt), 8)
        else:
            setup = timeit.reindent(transform(stmt), 4)
            stmt = timeit.reindent(transform(cell), 8)

        # From Python 3.3, this template uses new-style string formatting.
        if sys.version_info >= (3, 3):
            src = timeit.template.format(stmt=stmt, setup=setup)
        else:
            src = timeit.template % dict(stmt=stmt, setup=setup)

        # Track compilation time so it can be reported if too long
        # Minimum time above which compilation time will be reported
        tc_min = 0.1

        t0 = clock()
        code = compile(src, "<magic-timeit>", "exec")
        tc = clock()-t0

        ns = {}
        exec code in self.shell.user_ns, ns
        timer.inner = ns["inner"]

        if number == 0:
            # determine number so that 0.2 <= total time < 2.0
            number = 1
            for i in range(1, 10):
                if timer.timeit(number) >= 0.2:
                    break
                number *= 10

        best = min(timer.repeat(repeat, number)) / number

        if best > 0.0 and best < 1000.0:
            order = min(-int(math.floor(math.log10(best)) // 3), 3)
        elif best >= 1000.0:
            order = 0
        else:
            order = 3
        print u"%d loops, best of %d: %.*g %s per loop" % (number, repeat,
                                                          precision,
                                                          best * scaling[order],
                                                          units[order])
        if tc > tc_min:
            print "Compiler time: %.2f s" % tc

    @skip_doctest
    @needs_local_scope
    @line_magic
    def time(self,parameter_s, user_locals):
        """Time execution of a Python statement or expression.

        The CPU and wall clock times are printed, and the value of the
        expression (if any) is returned.  Note that under Win32, system time
        is always reported as 0, since it can not be measured.

        This function provides very basic timing functionality.  In Python
        2.3, the timeit module offers more control and sophistication, so this
        could be rewritten to use it (patches welcome).

        Examples
        --------
        ::

          In [1]: time 2**128
          CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
          Wall time: 0.00
          Out[1]: 340282366920938463463374607431768211456L

          In [2]: n = 1000000

          In [3]: time sum(range(n))
          CPU times: user 1.20 s, sys: 0.05 s, total: 1.25 s
          Wall time: 1.37
          Out[3]: 499999500000L

          In [4]: time print 'hello world'
          hello world
          CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
          Wall time: 0.00

          Note that the time needed by Python to compile the given expression
          will be reported if it is more than 0.1s.  In this example, the
          actual exponentiation is done by Python at compilation time, so while
          the expression can take a noticeable amount of time to compute, that
          time is purely due to the compilation:

          In [5]: time 3**9999;
          CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
          Wall time: 0.00 s

          In [6]: time 3**999999;
          CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
          Wall time: 0.00 s
          Compiler : 0.78 s
          """

        # fail immediately if the given expression can't be compiled

        expr = self.shell.prefilter(parameter_s,False)

        # Minimum time above which compilation time will be reported
        tc_min = 0.1

        try:
            mode = 'eval'
            t0 = clock()
            code = compile(expr,'<timed eval>',mode)
            tc = clock()-t0
        except SyntaxError:
            mode = 'exec'
            t0 = clock()
            code = compile(expr,'<timed exec>',mode)
            tc = clock()-t0
        # skew measurement as little as possible
        glob = self.shell.user_ns
        wtime = time.time
        # time execution
        wall_st = wtime()
        if mode=='eval':
            st = clock2()
            out = eval(code, glob, user_locals)
            end = clock2()
        else:
            st = clock2()
            exec code in glob, user_locals
            end = clock2()
            out = None
        wall_end = wtime()
        # Compute actual times and report
        wall_time = wall_end-wall_st
        cpu_user = end[0]-st[0]
        cpu_sys = end[1]-st[1]
        cpu_tot = cpu_user+cpu_sys
        print "CPU times: user %.2f s, sys: %.2f s, total: %.2f s" % \
              (cpu_user,cpu_sys,cpu_tot)
        print "Wall time: %.2f s" % wall_time
        if tc > tc_min:
            print "Compiler : %.2f s" % tc
        return out

    @skip_doctest
    @line_magic
    def macro(self, parameter_s=''):
        """Define a macro for future re-execution. It accepts ranges of history,
        filenames or string objects.

        Usage:\\
          %macro [options] name n1-n2 n3-n4 ... n5 .. n6 ...

        Options:

          -r: use 'raw' input.  By default, the 'processed' history is used,
          so that magics are loaded in their transformed version to valid
          Python.  If this option is given, the raw input as typed as the
          command line is used instead.

        This will define a global variable called `name` which is a string
        made of joining the slices and lines you specify (n1,n2,... numbers
        above) from your input history into a single string. This variable
        acts like an automatic function which re-executes those lines as if
        you had typed them. You just type 'name' at the prompt and the code
        executes.

        The syntax for indicating input ranges is described in %history.

        Note: as a 'hidden' feature, you can also use traditional python slice
        notation, where N:M means numbers N through M-1.

        For example, if your history contains (%hist prints it)::

          44: x=1
          45: y=3
          46: z=x+y
          47: print x
          48: a=5
          49: print 'x',x,'y',y

        you can create a macro with lines 44 through 47 (included) and line 49
        called my_macro with::

          In [55]: %macro my_macro 44-47 49

        Now, typing `my_macro` (without quotes) will re-execute all this code
        in one pass.

        You don't need to give the line-numbers in order, and any given line
        number can appear multiple times. You can assemble macros with any
        lines from your input history in any order.

        The macro is a simple object which holds its value in an attribute,
        but IPython's display system checks for macros and executes them as
        code instead of printing them when you type their name.

        You can view a macro's contents by explicitly printing it with::

          print macro_name

        """
        opts,args = self.parse_options(parameter_s,'r',mode='list')
        if not args:   # List existing macros
            return sorted(k for k,v in self.shell.user_ns.iteritems() if\
                                                        isinstance(v, Macro))
        if len(args) == 1:
            raise UsageError(
                "%macro insufficient args; usage '%macro name n1-n2 n3-4...")
        name, codefrom = args[0], " ".join(args[1:])

        #print 'rng',ranges  # dbg
        try:
            lines = self.shell.find_user_code(codefrom, 'r' in opts)
        except (ValueError, TypeError) as e:
            print e.args[0]
            return
        macro = Macro(lines)
        self.shell.define_macro(name, macro)
        print 'Macro `%s` created. To execute, type its name (without quotes).' % name
        print '=== Macro contents: ==='
        print macro,
    
    @magic_arguments.magic_arguments()
    @magic_arguments.argument('output', type=str, default='', nargs='?',
        help="""The name of the variable in which to store output.
        This is a utils.io.CapturedIO object with stdout/err attributes
        for the text of the captured output.
        
        CapturedOutput also has a show() method for displaying the output,
        and __call__ as well, so you can use that to quickly display the
        output.
        
        If unspecified, captured output is discarded.
        """
    )
    @magic_arguments.argument('--no-stderr', action="store_true",
        help="""Don't capture stderr."""
    )
    @magic_arguments.argument('--no-stdout', action="store_true",
        help="""Don't capture stdout."""
    )
    @cell_magic
    def capture(self, line, cell):
        """run the cell, capturing stdout/err"""
        args = magic_arguments.parse_argstring(self.capture, line)
        out = not args.no_stdout
        err = not args.no_stderr
        with capture_output(out, err) as io:
            self.shell.run_cell(cell)
        if args.output:
            self.shell.user_ns[args.output] = io