File: rmagic.py

package info (click to toggle)
ipython 0.13.1-2%2Bdeb7u1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 15,752 kB
  • sloc: python: 69,537; makefile: 355; lisp: 272; sh: 80; objc: 37
file content (587 lines) | stat: -rw-r--r-- 18,366 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
# -*- coding: utf-8 -*-
"""
======
Rmagic
======

Magic command interface for interactive work with R via rpy2

Usage
=====

``%R``

{R_DOC}

``%Rpush``

{RPUSH_DOC}

``%Rpull``

{RPULL_DOC}

``%Rget``

{RGET_DOC}

"""

#-----------------------------------------------------------------------------
#  Copyright (C) 2012 The IPython Development Team
#
#  Distributed under the terms of the BSD License.  The full license is in
#  the file COPYING, distributed as part of this software.
#-----------------------------------------------------------------------------

import sys
import tempfile
from glob import glob
from shutil import rmtree
from getopt import getopt

# numpy and rpy2 imports

import numpy as np

import rpy2.rinterface as ri
import rpy2.robjects as ro
from rpy2.robjects.numpy2ri import numpy2ri
ro.conversion.py2ri = numpy2ri

# IPython imports

from IPython.core.displaypub import publish_display_data
from IPython.core.magic import (Magics, magics_class, cell_magic, line_magic,
                                line_cell_magic)
from IPython.testing.skipdoctest import skip_doctest
from IPython.core.magic_arguments import (
    argument, magic_arguments, parse_argstring
)
from IPython.utils.py3compat import str_to_unicode, unicode_to_str, PY3

class RInterpreterError(ri.RRuntimeError):
    """An error when running R code in a %%R magic cell."""
    def __init__(self, line, err, stdout):
        self.line = line
        self.err = err.rstrip()
        self.stdout = stdout.rstrip()
    
    def __unicode__(self):
        s = 'Failed to parse and evaluate line %r.\nR error message: %r' % \
                (self.line, self.err)
        if self.stdout and (self.stdout != self.err):
            s += '\nR stdout:\n' + self.stdout
        return s
    
    if PY3:
        __str__ = __unicode__
    else:
        def __str__(self):
            return unicode_to_str(unicode(self), 'utf-8')

def Rconverter(Robj, dataframe=False):
    """
    Convert an object in R's namespace to one suitable
    for ipython's namespace.

    For a data.frame, it tries to return a structured array.
    It first checks for colnames, then names.
    If all are NULL, it returns np.asarray(Robj), else
    it tries to construct a recarray

    Parameters
    ----------

    Robj: an R object returned from rpy2
    """
    is_data_frame = ro.r('is.data.frame')
    colnames = ro.r('colnames')
    rownames = ro.r('rownames') # with pandas, these could be used for the index
    names = ro.r('names')

    if dataframe:
        as_data_frame = ro.r('as.data.frame')
        cols = colnames(Robj)
        _names = names(Robj)
        if cols != ri.NULL:
            Robj = as_data_frame(Robj)
            names = tuple(np.array(cols))
        elif _names != ri.NULL:
            names = tuple(np.array(_names))
        else: # failed to find names
            return np.asarray(Robj)
        Robj = np.rec.fromarrays(Robj, names = names)
    return np.asarray(Robj)

@magics_class
class RMagics(Magics):
    """A set of magics useful for interactive work with R via rpy2.
    """

    def __init__(self, shell, Rconverter=Rconverter,
                 pyconverter=np.asarray,
                 cache_display_data=False):
        """
        Parameters
        ----------

        shell : IPython shell

        pyconverter : callable
            To be called on values in ipython namespace before 
            assigning to variables in rpy2.

        cache_display_data : bool
            If True, the published results of the final call to R are 
            cached in the variable 'display_cache'.

        """
        super(RMagics, self).__init__(shell)
        self.cache_display_data = cache_display_data

        self.r = ro.R()

        self.Rstdout_cache = []
        self.pyconverter = pyconverter
        self.Rconverter = Rconverter

    def eval(self, line):
        '''
        Parse and evaluate a line with rpy2.
        Returns the output to R's stdout() connection
        and the value of eval(parse(line)).
        '''
        old_writeconsole = ri.get_writeconsole()
        ri.set_writeconsole(self.write_console)
        try:
            value = ri.baseenv['eval'](ri.parse(line))
        except (ri.RRuntimeError, ValueError) as exception:
            warning_or_other_msg = self.flush() # otherwise next return seems to have copy of error
            raise RInterpreterError(line, str_to_unicode(str(exception)), warning_or_other_msg)
        text_output = self.flush()
        ri.set_writeconsole(old_writeconsole)
        return text_output, value

    def write_console(self, output):
        '''
        A hook to capture R's stdout in a cache.
        '''
        self.Rstdout_cache.append(output)

    def flush(self):
        '''
        Flush R's stdout cache to a string, returning the string.
        '''
        value = ''.join([str_to_unicode(s, 'utf-8') for s in self.Rstdout_cache])
        self.Rstdout_cache = []
        return value

    @skip_doctest
    @line_magic
    def Rpush(self, line):
        '''
        A line-level magic for R that pushes
        variables from python to rpy2. The line should be made up
        of whitespace separated variable names in the IPython
        namespace::

            In [7]: import numpy as np

            In [8]: X = np.array([4.5,6.3,7.9])

            In [9]: X.mean()
            Out[9]: 6.2333333333333343

            In [10]: %Rpush X

            In [11]: %R mean(X)
            Out[11]: array([ 6.23333333])

        '''

        inputs = line.split(' ')
        for input in inputs:
            self.r.assign(input, self.pyconverter(self.shell.user_ns[input]))

    @skip_doctest
    @magic_arguments()
    @argument(
        '-d', '--as_dataframe', action='store_true',
        default=False,
        help='Convert objects to data.frames before returning to ipython.'
        )
    @argument(
        'outputs',
        nargs='*',
        )
    @line_magic
    def Rpull(self, line):
        '''
        A line-level magic for R that pulls
        variables from python to rpy2::

            In [18]: _ = %R x = c(3,4,6.7); y = c(4,6,7); z = c('a',3,4)

            In [19]: %Rpull x  y z

            In [20]: x
            Out[20]: array([ 3. ,  4. ,  6.7])

            In [21]: y
            Out[21]: array([ 4.,  6.,  7.])

            In [22]: z
            Out[22]:
            array(['a', '3', '4'],
                  dtype='|S1')


        If --as_dataframe, then each object is returned as a structured array
        after first passed through "as.data.frame" in R before
        being calling self.Rconverter. 
        This is useful when a structured array is desired as output, or
        when the object in R has mixed data types. 
        See the %%R docstring for more examples.

        Notes
        -----

        Beware that R names can have '.' so this is not fool proof.
        To avoid this, don't name your R objects with '.'s...

        '''
        args = parse_argstring(self.Rpull, line)
        outputs = args.outputs
        for output in outputs:
            self.shell.push({output:self.Rconverter(self.r(output),dataframe=args.as_dataframe)})

    @skip_doctest
    @magic_arguments()
    @argument(
        '-d', '--as_dataframe', action='store_true',
        default=False,
        help='Convert objects to data.frames before returning to ipython.'
        )
    @argument(
        'output',
        nargs=1,
        type=str,
        )
    @line_magic
    def Rget(self, line):
        '''
        Return an object from rpy2, possibly as a structured array (if possible).
        Similar to Rpull except only one argument is accepted and the value is 
        returned rather than pushed to self.shell.user_ns::

            In [3]: dtype=[('x', '<i4'), ('y', '<f8'), ('z', '|S1')]

            In [4]: datapy = np.array([(1, 2.9, 'a'), (2, 3.5, 'b'), (3, 2.1, 'c'), (4, 5, 'e')], dtype=dtype)

            In [5]: %R -i datapy

            In [6]: %Rget datapy
            Out[6]: 
            array([['1', '2', '3', '4'],
                   ['2', '3', '2', '5'],
                   ['a', 'b', 'c', 'e']], 
                  dtype='|S1')

            In [7]: %Rget -d datapy
            Out[7]: 
            array([(1, 2.9, 'a'), (2, 3.5, 'b'), (3, 2.1, 'c'), (4, 5.0, 'e')], 
                  dtype=[('x', '<i4'), ('y', '<f8'), ('z', '|S1')])

        '''
        args = parse_argstring(self.Rget, line)
        output = args.output
        return self.Rconverter(self.r(output[0]),dataframe=args.as_dataframe)


    @skip_doctest
    @magic_arguments()
    @argument(
        '-i', '--input', action='append',
        help='Names of input variable from shell.user_ns to be assigned to R variables of the same names after calling self.pyconverter. Multiple names can be passed separated only by commas with no whitespace.'
        )
    @argument(
        '-o', '--output', action='append',
        help='Names of variables to be pushed from rpy2 to shell.user_ns after executing cell body and applying self.Rconverter. Multiple names can be passed separated only by commas with no whitespace.'
        )
    @argument(
        '-w', '--width', type=int,
        help='Width of png plotting device sent as an argument to *png* in R.'
        )
    @argument(
        '-h', '--height', type=int,
        help='Height of png plotting device sent as an argument to *png* in R.'
        )

    @argument(
        '-d', '--dataframe', action='append',
        help='Convert these objects to data.frames and return as structured arrays.'
        )
    @argument(
        '-u', '--units', type=int,
        help='Units of png plotting device sent as an argument to *png* in R. One of ["px", "in", "cm", "mm"].'
        )
    @argument(
        '-p', '--pointsize', type=int,
        help='Pointsize of png plotting device sent as an argument to *png* in R.'
        )
    @argument(
        '-b', '--bg',
        help='Background of png plotting device sent as an argument to *png* in R.'
        )
    @argument(
        '-n', '--noreturn',
        help='Force the magic to not return anything.',
        action='store_true',
        default=False
        )
    @argument(
        'code',
        nargs='*',
        )
    @line_cell_magic
    def R(self, line, cell=None):
        '''
        Execute code in R, and pull some of the results back into the Python namespace.

        In line mode, this will evaluate an expression and convert the returned value to a Python object.
        The return value is determined by rpy2's behaviour of returning the result of evaluating the
        final line. 

        Multiple R lines can be executed by joining them with semicolons::

            In [9]: %R X=c(1,4,5,7); sd(X); mean(X)
            Out[9]: array([ 4.25])

        As a cell, this will run a block of R code, without bringing anything back by default::

            In [10]: %%R
               ....: Y = c(2,4,3,9)
               ....: print(summary(lm(Y~X)))
               ....:

            Call:
            lm(formula = Y ~ X)

            Residuals:
                1     2     3     4
             0.88 -0.24 -2.28  1.64

            Coefficients:
                        Estimate Std. Error t value Pr(>|t|)
            (Intercept)   0.0800     2.3000   0.035    0.975
            X             1.0400     0.4822   2.157    0.164

            Residual standard error: 2.088 on 2 degrees of freedom
            Multiple R-squared: 0.6993,Adjusted R-squared: 0.549
            F-statistic: 4.651 on 1 and 2 DF,  p-value: 0.1638

        In the notebook, plots are published as the output of the cell.

        %R plot(X, Y)

        will create a scatter plot of X bs Y.

        If cell is not None and line has some R code, it is prepended to
        the R code in cell.

        Objects can be passed back and forth between rpy2 and python via the -i -o flags in line::

            In [14]: Z = np.array([1,4,5,10])

            In [15]: %R -i Z mean(Z)
            Out[15]: array([ 5.])


            In [16]: %R -o W W=Z*mean(Z)
            Out[16]: array([  5.,  20.,  25.,  50.])

            In [17]: W
            Out[17]: array([  5.,  20.,  25.,  50.])

        The return value is determined by these rules:

        * If the cell is not None, the magic returns None.

        * If the cell evaluates as False, the resulting value is returned
        unless the final line prints something to the console, in
        which case None is returned.

        * If the final line results in a NULL value when evaluated
        by rpy2, then None is returned.

        * No attempt is made to convert the final value to a structured array.
        Use the --dataframe flag or %Rget to push / return a structured array.

        * If the -n flag is present, there is no return value.

        * A trailing ';' will also result in no return value as the last
        value in the line is an empty string.

        The --dataframe argument will attempt to return structured arrays. 
        This is useful for dataframes with
        mixed data types. Note also that for a data.frame, 
        if it is returned as an ndarray, it is transposed::

            In [18]: dtype=[('x', '<i4'), ('y', '<f8'), ('z', '|S1')]

            In [19]: datapy = np.array([(1, 2.9, 'a'), (2, 3.5, 'b'), (3, 2.1, 'c'), (4, 5, 'e')], dtype=dtype)

            In [20]: %%R -o datar
            datar = datapy
               ....: 

            In [21]: datar
            Out[21]: 
            array([['1', '2', '3', '4'],
                   ['2', '3', '2', '5'],
                   ['a', 'b', 'c', 'e']], 
                  dtype='|S1')

            In [22]: %%R -d datar
            datar = datapy
               ....: 

            In [23]: datar
            Out[23]: 
            array([(1, 2.9, 'a'), (2, 3.5, 'b'), (3, 2.1, 'c'), (4, 5.0, 'e')], 
                  dtype=[('x', '<i4'), ('y', '<f8'), ('z', '|S1')])

        The --dataframe argument first tries colnames, then names.
        If both are NULL, it returns an ndarray (i.e. unstructured)::

            In [1]: %R mydata=c(4,6,8.3); NULL

            In [2]: %R -d mydata

            In [3]: mydata
            Out[3]: array([ 4. ,  6. ,  8.3])

            In [4]: %R names(mydata) = c('a','b','c'); NULL

            In [5]: %R -d mydata

            In [6]: mydata
            Out[6]: 
            array((4.0, 6.0, 8.3), 
                  dtype=[('a', '<f8'), ('b', '<f8'), ('c', '<f8')])

            In [7]: %R -o mydata

            In [8]: mydata
            Out[8]: array([ 4. ,  6. ,  8.3])

        '''

        args = parse_argstring(self.R, line)

        # arguments 'code' in line are prepended to
        # the cell lines
        if not cell:
            code = ''
            return_output = True
            line_mode = True
        else:
            code = cell
            return_output = False
            line_mode = False

        code = ' '.join(args.code) + code

        if args.input:
            for input in ','.join(args.input).split(','):
                self.r.assign(input, self.pyconverter(self.shell.user_ns[input]))

        png_argdict = dict([(n, getattr(args, n)) for n in ['units', 'height', 'width', 'bg', 'pointsize']])
        png_args = ','.join(['%s=%s' % (o,v) for o, v in png_argdict.items() if v is not None])
        # execute the R code in a temporary directory

        tmpd = tempfile.mkdtemp()
        self.r('png("%s/Rplots%%03d.png",%s)' % (tmpd, png_args))

        text_output = ''
        if line_mode:
            for line in code.split(';'):
                text_result, result = self.eval(line)
                text_output += text_result
            if text_result:
                # the last line printed something to the console so we won't return it
                return_output = False
        else:
            text_result, result = self.eval(code)
            text_output += text_result

        self.r('dev.off()')

        # read out all the saved .png files

        images = [open(imgfile, 'rb').read() for imgfile in glob("%s/Rplots*png" % tmpd)]

        # now publish the images
        # mimicking IPython/zmq/pylab/backend_inline.py
        fmt = 'png'
        mimetypes = { 'png' : 'image/png', 'svg' : 'image/svg+xml' }
        mime = mimetypes[fmt]

        # publish the printed R objects, if any

        display_data = []
        if text_output:
            display_data.append(('RMagic.R', {'text/plain':text_output}))

        # flush text streams before sending figures, helps a little with output
        for image in images:
            # synchronization in the console (though it's a bandaid, not a real sln)
            sys.stdout.flush(); sys.stderr.flush()
            display_data.append(('RMagic.R', {mime: image}))

        # kill the temporary directory
        rmtree(tmpd)

        # try to turn every output into a numpy array
        # this means that output are assumed to be castable
        # as numpy arrays

        if args.output:
            for output in ','.join(args.output).split(','):
                self.shell.push({output:self.Rconverter(self.r(output), dataframe=False)})

        if args.dataframe:
            for output in ','.join(args.dataframe).split(','):
                self.shell.push({output:self.Rconverter(self.r(output), dataframe=True)})

        for tag, disp_d in display_data:
            publish_display_data(tag, disp_d)

        # this will keep a reference to the display_data
        # which might be useful to other objects who happen to use
        # this method

        if self.cache_display_data:
            self.display_cache = display_data

        # if in line mode and return_output, return the result as an ndarray
        if return_output and not args.noreturn:
            if result != ri.NULL:
                return self.Rconverter(result, dataframe=False)

__doc__ = __doc__.format(
                R_DOC = ' '*8 + RMagics.R.__doc__,
                RPUSH_DOC = ' '*8 + RMagics.Rpush.__doc__,
                RPULL_DOC = ' '*8 + RMagics.Rpull.__doc__,
                RGET_DOC = ' '*8 + RMagics.Rget.__doc__
)


_loaded = False
def load_ipython_extension(ip):
    """Load the extension in IPython."""
    global _loaded
    if not _loaded:
        ip.register_magics(RMagics)
        _loaded = True