1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
"""Utilities to manipulate JSON objects.
"""
#-----------------------------------------------------------------------------
# Copyright (C) 2010-2011 The IPython Development Team
#
# Distributed under the terms of the BSD License. The full license is in
# the file COPYING.txt, distributed as part of this software.
#-----------------------------------------------------------------------------
#-----------------------------------------------------------------------------
# Imports
#-----------------------------------------------------------------------------
# stdlib
import math
import re
import sys
import types
from base64 import encodestring
from datetime import datetime
from IPython.utils import py3compat
from IPython.utils.encoding import DEFAULT_ENCODING
from IPython.utils import text
next_attr_name = '__next__' if py3compat.PY3 else 'next'
#-----------------------------------------------------------------------------
# Globals and constants
#-----------------------------------------------------------------------------
# timestamp formats
ISO8601="%Y-%m-%dT%H:%M:%S.%f"
ISO8601_PAT=re.compile(r"^\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}\.\d+$")
#-----------------------------------------------------------------------------
# Classes and functions
#-----------------------------------------------------------------------------
def rekey(dikt):
"""Rekey a dict that has been forced to use str keys where there should be
ints by json."""
for k in dikt.iterkeys():
if isinstance(k, basestring):
ik=fk=None
try:
ik = int(k)
except ValueError:
try:
fk = float(k)
except ValueError:
continue
if ik is not None:
nk = ik
else:
nk = fk
if nk in dikt:
raise KeyError("already have key %r"%nk)
dikt[nk] = dikt.pop(k)
return dikt
def extract_dates(obj):
"""extract ISO8601 dates from unpacked JSON"""
if isinstance(obj, dict):
obj = dict(obj) # don't clobber
for k,v in obj.iteritems():
obj[k] = extract_dates(v)
elif isinstance(obj, (list, tuple)):
obj = [ extract_dates(o) for o in obj ]
elif isinstance(obj, basestring):
if ISO8601_PAT.match(obj):
obj = datetime.strptime(obj, ISO8601)
return obj
def squash_dates(obj):
"""squash datetime objects into ISO8601 strings"""
if isinstance(obj, dict):
obj = dict(obj) # don't clobber
for k,v in obj.iteritems():
obj[k] = squash_dates(v)
elif isinstance(obj, (list, tuple)):
obj = [ squash_dates(o) for o in obj ]
elif isinstance(obj, datetime):
obj = obj.strftime(ISO8601)
return obj
def date_default(obj):
"""default function for packing datetime objects in JSON."""
if isinstance(obj, datetime):
return obj.strftime(ISO8601)
else:
raise TypeError("%r is not JSON serializable"%obj)
# constants for identifying png/jpeg data
PNG = b'\x89PNG\r\n\x1a\n'
JPEG = b'\xff\xd8'
def encode_images(format_dict):
"""b64-encodes images in a displaypub format dict
Perhaps this should be handled in json_clean itself?
Parameters
----------
format_dict : dict
A dictionary of display data keyed by mime-type
Returns
-------
format_dict : dict
A copy of the same dictionary,
but binary image data ('image/png' or 'image/jpeg')
is base64-encoded.
"""
encoded = format_dict.copy()
pngdata = format_dict.get('image/png')
if isinstance(pngdata, bytes) and pngdata[:8] == PNG:
encoded['image/png'] = encodestring(pngdata).decode('ascii')
jpegdata = format_dict.get('image/jpeg')
if isinstance(jpegdata, bytes) and jpegdata[:2] == JPEG:
encoded['image/jpeg'] = encodestring(jpegdata).decode('ascii')
return encoded
def json_clean(obj):
"""Clean an object to ensure it's safe to encode in JSON.
Atomic, immutable objects are returned unmodified. Sets and tuples are
converted to lists, lists are copied and dicts are also copied.
Note: dicts whose keys could cause collisions upon encoding (such as a dict
with both the number 1 and the string '1' as keys) will cause a ValueError
to be raised.
Parameters
----------
obj : any python object
Returns
-------
out : object
A version of the input which will not cause an encoding error when
encoded as JSON. Note that this function does not *encode* its inputs,
it simply sanitizes it so that there will be no encoding errors later.
Examples
--------
>>> json_clean(4)
4
>>> json_clean(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> sorted(json_clean(dict(x=1, y=2)).items())
[('x', 1), ('y', 2)]
>>> sorted(json_clean(dict(x=1, y=2, z=[1,2,3])).items())
[('x', 1), ('y', 2), ('z', [1, 2, 3])]
>>> json_clean(True)
True
"""
# types that are 'atomic' and ok in json as-is. bool doesn't need to be
# listed explicitly because bools pass as int instances
atomic_ok = (unicode, int, types.NoneType)
# containers that we need to convert into lists
container_to_list = (tuple, set, types.GeneratorType)
if isinstance(obj, float):
# cast out-of-range floats to their reprs
if math.isnan(obj) or math.isinf(obj):
return repr(obj)
return obj
if isinstance(obj, atomic_ok):
return obj
if isinstance(obj, bytes):
return obj.decode(DEFAULT_ENCODING, 'replace')
if isinstance(obj, container_to_list) or (
hasattr(obj, '__iter__') and hasattr(obj, next_attr_name)):
obj = list(obj)
if isinstance(obj, list):
return [json_clean(x) for x in obj]
if isinstance(obj, dict):
# First, validate that the dict won't lose data in conversion due to
# key collisions after stringification. This can happen with keys like
# True and 'true' or 1 and '1', which collide in JSON.
nkeys = len(obj)
nkeys_collapsed = len(set(map(str, obj)))
if nkeys != nkeys_collapsed:
raise ValueError('dict can not be safely converted to JSON: '
'key collision would lead to dropped values')
# If all OK, proceed by making the new dict that will be json-safe
out = {}
for k,v in obj.iteritems():
out[str(k)] = json_clean(v)
return out
# If we get here, we don't know how to handle the object, so we just get
# its repr and return that. This will catch lambdas, open sockets, class
# objects, and any other complicated contraption that json can't encode
return repr(obj)
|