1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
# <nbformat>2</nbformat>
# <markdowncell>
# # Parallel Monto-Carlo options pricing
# <markdowncell>
# ## Problem setup
# <codecell>
from __future__ import print_function
import sys
import time
from IPython.parallel import Client
import numpy as np
from mckernel import price_options
from matplotlib import pyplot as plt
# <codecell>
cluster_profile = "default"
price = 100.0 # Initial price
rate = 0.05 # Interest rate
days = 260 # Days to expiration
paths = 10000 # Number of MC paths
n_strikes = 6 # Number of strike values
min_strike = 90.0 # Min strike price
max_strike = 110.0 # Max strike price
n_sigmas = 5 # Number of volatility values
min_sigma = 0.1 # Min volatility
max_sigma = 0.4 # Max volatility
# <codecell>
strike_vals = np.linspace(min_strike, max_strike, n_strikes)
sigma_vals = np.linspace(min_sigma, max_sigma, n_sigmas)
# <markdowncell>
# ## Parallel computation across strike prices and volatilities
# <markdowncell>
# The Client is used to setup the calculation and works with all engines.
# <codecell>
c = Client(profile=cluster_profile)
# <markdowncell>
# A LoadBalancedView is an interface to the engines that provides dynamic load
# balancing at the expense of not knowing which engine will execute the code.
# <codecell>
view = c.load_balanced_view()
# <codecell>
print("Strike prices: ", strike_vals)
print("Volatilities: ", sigma_vals)
# <markdowncell>
# Submit tasks for each (strike, sigma) pair.
# <codecell>
t1 = time.time()
async_results = []
for strike in strike_vals:
for sigma in sigma_vals:
ar = view.apply_async(price_options, price, strike, sigma, rate, days, paths)
async_results.append(ar)
# <codecell>
print("Submitted tasks: ", len(async_results))
# <markdowncell>
# Block until all tasks are completed.
# <codecell>
c.wait(async_results)
t2 = time.time()
t = t2-t1
print("Parallel calculation completed, time = %s s" % t)
# <markdowncell>
# ## Process and visualize results
# <markdowncell>
# Get the results using the `get` method:
# <codecell>
results = [ar.get() for ar in async_results]
# <markdowncell>
# Assemble the result into a structured NumPy array.
# <codecell>
prices = np.empty(n_strikes*n_sigmas,
dtype=[('ecall',float),('eput',float),('acall',float),('aput',float)]
)
for i, price in enumerate(results):
prices[i] = tuple(price)
prices.shape = (n_strikes, n_sigmas)
# <markdowncell>
# Plot the value of the European call in (volatility, strike) space.
# <codecell>
plt.figure()
plt.contourf(sigma_vals, strike_vals, prices['ecall'])
plt.axis('tight')
plt.colorbar()
plt.title('European Call')
plt.xlabel("Volatility")
plt.ylabel("Strike Price")
# <markdowncell>
# Plot the value of the Asian call in (volatility, strike) space.
# <codecell>
plt.figure()
plt.contourf(sigma_vals, strike_vals, prices['acall'])
plt.axis('tight')
plt.colorbar()
plt.title("Asian Call")
plt.xlabel("Volatility")
plt.ylabel("Strike Price")
# <markdowncell>
# Plot the value of the European put in (volatility, strike) space.
# <codecell>
plt.figure()
plt.contourf(sigma_vals, strike_vals, prices['eput'])
plt.axis('tight')
plt.colorbar()
plt.title("European Put")
plt.xlabel("Volatility")
plt.ylabel("Strike Price")
# <markdowncell>
# Plot the value of the Asian put in (volatility, strike) space.
# <codecell>
plt.figure()
plt.contourf(sigma_vals, strike_vals, prices['aput'])
plt.axis('tight')
plt.colorbar()
plt.title("Asian Put")
plt.xlabel("Volatility")
plt.ylabel("Strike Price")
# <codecell>
plt.show()
|