1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
|
import re
import asyncio
import tokenize
from io import StringIO
from typing import Callable, List, Optional, Union, Generator, Tuple, ClassVar, Any
import warnings
import prompt_toolkit
from prompt_toolkit.buffer import Buffer
from prompt_toolkit.key_binding import KeyPressEvent
from prompt_toolkit.key_binding.bindings import named_commands as nc
from prompt_toolkit.auto_suggest import AutoSuggestFromHistory, Suggestion
from prompt_toolkit.document import Document
from prompt_toolkit.history import History
from prompt_toolkit.shortcuts import PromptSession
from prompt_toolkit.layout.processors import (
Processor,
Transformation,
TransformationInput,
)
from IPython.core.getipython import get_ipython
from IPython.utils.tokenutil import generate_tokens
from .filters import pass_through
def _get_query(document: Document):
return document.lines[document.cursor_position_row]
class AppendAutoSuggestionInAnyLine(Processor):
"""
Append the auto suggestion to lines other than the last (appending to the
last line is natively supported by the prompt toolkit).
This has a private `_debug` attribute that can be set to True to display
debug information as virtual suggestion on the end of any line. You can do
so with:
>>> from IPython.terminal.shortcuts.auto_suggest import AppendAutoSuggestionInAnyLine
>>> AppendAutoSuggestionInAnyLine._debug = True
"""
_debug: ClassVar[bool] = False
def __init__(self, style: str = "class:auto-suggestion") -> None:
self.style = style
def apply_transformation(self, ti: TransformationInput) -> Transformation:
"""
Apply transformation to the line that is currently being edited.
This is a variation of the original implementation in prompt toolkit
that allows to not only append suggestions to any line, but also to show
multi-line suggestions.
As transformation are applied on a line-by-line basis; we need to trick
a bit, and elide any line that is after the line we are currently
editing, until we run out of completions. We cannot shift the existing
lines
There are multiple cases to handle:
The completions ends before the end of the buffer:
We can resume showing the normal line, and say that some code may
be hidden.
The completions ends at the end of the buffer
We can just say that some code may be hidden.
And separately:
The completions ends beyond the end of the buffer
We need to both say that some code may be hidden, and that some
lines are not shown.
"""
last_line_number = ti.document.line_count - 1
is_last_line = ti.lineno == last_line_number
noop = lambda text: Transformation(
fragments=ti.fragments + [(self.style, " " + text if self._debug else "")]
)
if ti.document.line_count == 1:
return noop("noop:oneline")
if ti.document.cursor_position_row == last_line_number and is_last_line:
# prompt toolkit already appends something; just leave it be
return noop("noop:last line and cursor")
# first everything before the current line is unchanged.
if ti.lineno < ti.document.cursor_position_row:
return noop("noop:before cursor")
buffer = ti.buffer_control.buffer
if not buffer.suggestion or not ti.document.is_cursor_at_the_end_of_line:
return noop("noop:not eol")
delta = ti.lineno - ti.document.cursor_position_row
suggestions = buffer.suggestion.text.splitlines()
if len(suggestions) == 0:
return noop("noop: no suggestions")
if prompt_toolkit.VERSION < (3, 0, 49):
if len(suggestions) > 1 and prompt_toolkit.VERSION < (3, 0, 49):
if ti.lineno == ti.document.cursor_position_row:
return Transformation(
fragments=ti.fragments
+ [
(
"red",
"(Cannot show multiline suggestion; requires prompt_toolkit > 3.0.49)",
)
]
)
else:
return Transformation(fragments=ti.fragments)
elif len(suggestions) == 1:
if ti.lineno == ti.document.cursor_position_row:
return Transformation(
fragments=ti.fragments + [(self.style, suggestions[0])]
)
return Transformation(fragments=ti.fragments)
if delta == 0:
suggestion = suggestions[0]
return Transformation(fragments=ti.fragments + [(self.style, suggestion)])
if is_last_line:
if delta < len(suggestions):
suggestion = f"… rest of suggestion ({len(suggestions) - delta} lines) and code hidden"
return Transformation([(self.style, suggestion)])
n_elided = len(suggestions)
for i in range(len(suggestions)):
ll = ti.get_line(last_line_number - i)
el = "".join(l[1] for l in ll).strip()
if el:
break
else:
n_elided -= 1
if n_elided:
return Transformation([(self.style, f"… {n_elided} line(s) hidden")])
else:
return Transformation(
ti.get_line(last_line_number - len(suggestions) + 1)
+ ([(self.style, "shift-last-line")] if self._debug else [])
)
elif delta < len(suggestions):
suggestion = suggestions[delta]
return Transformation([(self.style, suggestion)])
else:
shift = ti.lineno - len(suggestions) + 1
return Transformation(ti.get_line(shift))
class NavigableAutoSuggestFromHistory(AutoSuggestFromHistory):
"""
A subclass of AutoSuggestFromHistory that allow navigation to next/previous
suggestion from history. To do so it remembers the current position, but it
state need to carefully be cleared on the right events.
"""
skip_lines: int
_connected_apps: list[PromptSession]
# handle to the currently running llm task that appends suggestions to the
# current buffer; we keep a handle to it in order to cancel it when there is a cursor movement, or
# another request.
_llm_task: asyncio.Task | None = None
# This is the instance of the LLM provider from jupyter-ai to which we forward the request
# to generate inline completions.
_llm_provider: Any | None
_llm_prefixer: callable = lambda self, x: "wrong"
def __init__(self):
super().__init__()
self.skip_lines = 0
self._connected_apps = []
self._llm_provider = None
self._request_number = 0
def reset_history_position(self, _: Buffer):
self.skip_lines = 0
def disconnect(self) -> None:
self._cancel_running_llm_task()
for pt_app in self._connected_apps:
text_insert_event = pt_app.default_buffer.on_text_insert
text_insert_event.remove_handler(self.reset_history_position)
def connect(self, pt_app: PromptSession):
self._connected_apps.append(pt_app)
# note: `on_text_changed` could be used for a bit different behaviour
# on character deletion (i.e. resetting history position on backspace)
pt_app.default_buffer.on_text_insert.add_handler(self.reset_history_position)
pt_app.default_buffer.on_cursor_position_changed.add_handler(self._dismiss)
def get_suggestion(
self, buffer: Buffer, document: Document
) -> Optional[Suggestion]:
text = _get_query(document)
if text.strip():
for suggestion, _ in self._find_next_match(
text, self.skip_lines, buffer.history
):
return Suggestion(suggestion)
return None
def _dismiss(self, buffer, *args, **kwargs) -> None:
self._cancel_running_llm_task()
buffer.suggestion = None
def _find_match(
self, text: str, skip_lines: float, history: History, previous: bool
) -> Generator[Tuple[str, float], None, None]:
"""
text : str
Text content to find a match for, the user cursor is most of the
time at the end of this text.
skip_lines : float
number of items to skip in the search, this is used to indicate how
far in the list the user has navigated by pressing up or down.
The float type is used as the base value is +inf
history : History
prompt_toolkit History instance to fetch previous entries from.
previous : bool
Direction of the search, whether we are looking previous match
(True), or next match (False).
Yields
------
Tuple with:
str:
current suggestion.
float:
will actually yield only ints, which is passed back via skip_lines,
which may be a +inf (float)
"""
line_number = -1
for string in reversed(list(history.get_strings())):
for line in reversed(string.splitlines()):
line_number += 1
if not previous and line_number < skip_lines:
continue
# do not return empty suggestions as these
# close the auto-suggestion overlay (and are useless)
if line.startswith(text) and len(line) > len(text):
yield line[len(text) :], line_number
if previous and line_number >= skip_lines:
return
def _find_next_match(
self, text: str, skip_lines: float, history: History
) -> Generator[Tuple[str, float], None, None]:
return self._find_match(text, skip_lines, history, previous=False)
def _find_previous_match(self, text: str, skip_lines: float, history: History):
return reversed(
list(self._find_match(text, skip_lines, history, previous=True))
)
def up(self, query: str, other_than: str, history: History) -> None:
self._cancel_running_llm_task()
for suggestion, line_number in self._find_next_match(
query, self.skip_lines, history
):
# if user has history ['very.a', 'very', 'very.b'] and typed 'very'
# we want to switch from 'very.b' to 'very.a' because a) if the
# suggestion equals current text, prompt-toolkit aborts suggesting
# b) user likely would not be interested in 'very' anyways (they
# already typed it).
if query + suggestion != other_than:
self.skip_lines = line_number
break
else:
# no matches found, cycle back to beginning
self.skip_lines = 0
def down(self, query: str, other_than: str, history: History) -> None:
self._cancel_running_llm_task()
for suggestion, line_number in self._find_previous_match(
query, self.skip_lines, history
):
if query + suggestion != other_than:
self.skip_lines = line_number
break
else:
# no matches found, cycle to end
for suggestion, line_number in self._find_previous_match(
query, float("Inf"), history
):
if query + suggestion != other_than:
self.skip_lines = line_number
break
def _cancel_running_llm_task(self) -> None:
"""
Try to cancel the currently running llm_task if exists, and set it to None.
"""
if self._llm_task is not None:
if self._llm_task.done():
self._llm_task = None
return
cancelled = self._llm_task.cancel()
if cancelled:
self._llm_task = None
if not cancelled:
warnings.warn(
"LLM task not cancelled, does your provider support cancellation?"
)
async def _trigger_llm(self, buffer) -> None:
"""
This will ask the current llm provider a suggestion for the current buffer.
If there is a currently running llm task, it will cancel it.
"""
# we likely want to store the current cursor position, and cancel if the cursor has moved.
try:
import jupyter_ai_magics
import jupyter_ai.completions.models as jai_models
except ModuleNotFoundError:
jai_models = None
if not self._llm_provider:
warnings.warn("No LLM provider found, cannot trigger LLM completions")
return
if jai_models is None:
warnings.warn(
"LLM Completion requires `jupyter_ai_magics` and `jupyter_ai` to be installed"
)
self._cancel_running_llm_task()
async def error_catcher(buffer):
"""
This catches and log any errors, as otherwise this is just
lost in the void of the future running task.
"""
try:
await self._trigger_llm_core(buffer)
except Exception as e:
get_ipython().log.error("error %s", e)
raise
# here we need a cancellable task so we can't just await the error caught
self._llm_task = asyncio.create_task(error_catcher(buffer))
await self._llm_task
async def _trigger_llm_core(self, buffer: Buffer):
"""
This is the core of the current llm request.
Here we build a compatible `InlineCompletionRequest` and ask the llm
provider to stream it's response back to us iteratively setting it as
the suggestion on the current buffer.
Unlike with JupyterAi, as we do not have multiple cell, the cell id
is always set to `None`.
We set the prefix to the current cell content, but could also inset the
rest of the history or even just the non-fail history.
In the same way, we do not have cell id.
LLM provider may return multiple suggestion stream, but for the time
being we only support one.
Here we make the assumption that the provider will have
stream_inline_completions, I'm not sure it is the case for all
providers.
"""
try:
import jupyter_ai_magics
import jupyter_ai.completions.models as jai_models
except ModuleNotFoundError:
jai_models = None
hm = buffer.history.shell.history_manager
prefix = self._llm_prefixer(hm)
get_ipython().log.debug("prefix: %s", prefix)
self._request_number += 1
request_number = self._request_number
request = jai_models.InlineCompletionRequest(
number=request_number,
prefix=prefix + buffer.document.text,
suffix="",
mime="text/x-python",
stream=True,
path=None,
language="python",
cell_id=None,
)
async for reply_and_chunks in self._llm_provider.stream_inline_completions(
request
):
if self._request_number != request_number:
# If a new suggestion was requested, skip processing this one.
return
if isinstance(reply_and_chunks, jai_models.InlineCompletionReply):
if len(reply_and_chunks.list.items) > 1:
raise ValueError(
"Terminal IPython cannot deal with multiple LLM suggestions at once"
)
buffer.suggestion = Suggestion(
reply_and_chunks.list.items[0].insertText
)
buffer.on_suggestion_set.fire()
elif isinstance(reply_and_chunks, jai_models.InlineCompletionStreamChunk):
buffer.suggestion = Suggestion(reply_and_chunks.response.insertText)
buffer.on_suggestion_set.fire()
return
async def llm_autosuggestion(event: KeyPressEvent):
"""
Ask the AutoSuggester from history to delegate to ask an LLM for completion
This will first make sure that the current buffer have _MIN_LINES (7)
available lines to insert the LLM completion
Provisional as of 8.32, may change without warnings
"""
_MIN_LINES = 5
provider = get_ipython().auto_suggest
if not isinstance(provider, NavigableAutoSuggestFromHistory):
return
doc = event.current_buffer.document
lines_to_insert = max(0, _MIN_LINES - doc.line_count + doc.cursor_position_row)
for _ in range(lines_to_insert):
event.current_buffer.insert_text("\n", move_cursor=False)
await provider._trigger_llm(event.current_buffer)
def accept_or_jump_to_end(event: KeyPressEvent):
"""Apply autosuggestion or jump to end of line."""
buffer = event.current_buffer
d = buffer.document
after_cursor = d.text[d.cursor_position :]
lines = after_cursor.split("\n")
end_of_current_line = lines[0].strip()
suggestion = buffer.suggestion
if (suggestion is not None) and (suggestion.text) and (end_of_current_line == ""):
buffer.insert_text(suggestion.text)
else:
nc.end_of_line(event)
def _deprected_accept_in_vi_insert_mode(event: KeyPressEvent):
"""Accept autosuggestion or jump to end of line.
.. deprecated:: 8.12
Use `accept_or_jump_to_end` instead.
"""
return accept_or_jump_to_end(event)
def accept(event: KeyPressEvent):
"""Accept autosuggestion"""
buffer = event.current_buffer
suggestion = buffer.suggestion
if suggestion:
buffer.insert_text(suggestion.text)
else:
nc.forward_char(event)
def discard(event: KeyPressEvent):
"""Discard autosuggestion"""
buffer = event.current_buffer
buffer.suggestion = None
def accept_word(event: KeyPressEvent):
"""Fill partial autosuggestion by word"""
buffer = event.current_buffer
suggestion = buffer.suggestion
if suggestion:
t = re.split(r"(\S+\s+)", suggestion.text)
buffer.insert_text(next((x for x in t if x), ""))
else:
nc.forward_word(event)
def accept_character(event: KeyPressEvent):
"""Fill partial autosuggestion by character"""
b = event.current_buffer
suggestion = b.suggestion
if suggestion and suggestion.text:
b.insert_text(suggestion.text[0])
def accept_and_keep_cursor(event: KeyPressEvent):
"""Accept autosuggestion and keep cursor in place"""
buffer = event.current_buffer
old_position = buffer.cursor_position
suggestion = buffer.suggestion
if suggestion:
buffer.insert_text(suggestion.text)
buffer.cursor_position = old_position
def accept_and_move_cursor_left(event: KeyPressEvent):
"""Accept autosuggestion and move cursor left in place"""
accept_and_keep_cursor(event)
nc.backward_char(event)
def _update_hint(buffer: Buffer):
if buffer.auto_suggest:
suggestion = buffer.auto_suggest.get_suggestion(buffer, buffer.document)
buffer.suggestion = suggestion
def backspace_and_resume_hint(event: KeyPressEvent):
"""Resume autosuggestions after deleting last character"""
nc.backward_delete_char(event)
_update_hint(event.current_buffer)
def resume_hinting(event: KeyPressEvent):
"""Resume autosuggestions"""
pass_through.reply(event)
# Order matters: if update happened first and event reply second, the
# suggestion would be auto-accepted if both actions are bound to same key.
_update_hint(event.current_buffer)
def up_and_update_hint(event: KeyPressEvent):
"""Go up and update hint"""
current_buffer = event.current_buffer
current_buffer.auto_up(count=event.arg)
_update_hint(current_buffer)
def down_and_update_hint(event: KeyPressEvent):
"""Go down and update hint"""
current_buffer = event.current_buffer
current_buffer.auto_down(count=event.arg)
_update_hint(current_buffer)
def accept_token(event: KeyPressEvent):
"""Fill partial autosuggestion by token"""
b = event.current_buffer
suggestion = b.suggestion
if suggestion:
prefix = _get_query(b.document)
text = prefix + suggestion.text
tokens: List[Optional[str]] = [None, None, None]
substrings = [""]
i = 0
for token in generate_tokens(StringIO(text).readline):
if token.type == tokenize.NEWLINE:
index = len(text)
else:
index = text.index(token[1], len(substrings[-1]))
substrings.append(text[:index])
tokenized_so_far = substrings[-1]
if tokenized_so_far.startswith(prefix):
if i == 0 and len(tokenized_so_far) > len(prefix):
tokens[0] = tokenized_so_far[len(prefix) :]
substrings.append(tokenized_so_far)
i += 1
tokens[i] = token[1]
if i == 2:
break
i += 1
if tokens[0]:
to_insert: str
insert_text = substrings[-2]
if tokens[1] and len(tokens[1]) == 1:
insert_text = substrings[-1]
to_insert = insert_text[len(prefix) :]
b.insert_text(to_insert)
return
nc.forward_word(event)
Provider = Union[AutoSuggestFromHistory, NavigableAutoSuggestFromHistory, None]
def _swap_autosuggestion(
buffer: Buffer,
provider: NavigableAutoSuggestFromHistory,
direction_method: Callable,
):
"""
We skip most recent history entry (in either direction) if it equals the
current autosuggestion because if user cycles when auto-suggestion is shown
they most likely want something else than what was suggested (otherwise
they would have accepted the suggestion).
"""
suggestion = buffer.suggestion
if not suggestion:
return
query = _get_query(buffer.document)
current = query + suggestion.text
direction_method(query=query, other_than=current, history=buffer.history)
new_suggestion = provider.get_suggestion(buffer, buffer.document)
buffer.suggestion = new_suggestion
def swap_autosuggestion_up(event: KeyPressEvent):
"""Get next autosuggestion from history."""
shell = get_ipython()
provider = shell.auto_suggest
if not isinstance(provider, NavigableAutoSuggestFromHistory):
return
return _swap_autosuggestion(
buffer=event.current_buffer, provider=provider, direction_method=provider.up
)
def swap_autosuggestion_down(event: KeyPressEvent):
"""Get previous autosuggestion from history."""
shell = get_ipython()
provider = shell.auto_suggest
if not isinstance(provider, NavigableAutoSuggestFromHistory):
return
return _swap_autosuggestion(
buffer=event.current_buffer,
provider=provider,
direction_method=provider.down,
)
def __getattr__(key):
if key == "accept_in_vi_insert_mode":
warnings.warn(
"`accept_in_vi_insert_mode` is deprecated since IPython 8.12 and "
"renamed to `accept_or_jump_to_end`. Please update your configuration "
"accordingly",
DeprecationWarning,
stacklevel=2,
)
return _deprected_accept_in_vi_insert_mode
raise AttributeError
|