File: guidedbootstrap.cpp

package info (click to toggle)
iqtree 1.5.3%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 9,780 kB
  • ctags: 11,529
  • sloc: cpp: 96,162; ansic: 59,874; python: 242; sh: 189; makefile: 45
file content (1301 lines) | stat: -rw-r--r-- 50,347 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
/***************************************************************************
 *   Copyright (C) 2009 by BUI Quang Minh   *
 *   minh.bui@univie.ac.at   *
 *                                                                         *
 *   This program is free software; you can redistribute it and/or modify  *
 *   it under the terms of the GNU General Public License as published by  *
 *   the Free Software Foundation; either version 2 of the License, or     *
 *   (at your option) any later version.                                   *
 *                                                                         *
 *   This program is distributed in the hope that it will be useful,       *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
 *   GNU General Public License for more details.                          *
 *                                                                         *
 *   You should have received a copy of the GNU General Public License     *
 *   along with this program; if not, write to the                         *
 *   Free Software Foundation, Inc.,                                       *
 *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
 ***************************************************************************/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <numeric>
#include "phylotree.h"
#include "phylosupertree.h"
#include "phyloanalysis.h"
#include "alignment.h"
#include "superalignment.h"
#include "iqtree.h"
#include "model/modelgtr.h"
#include "model/modeldna.h"
#include "myreader.h"
#include "model/rateheterogeneity.h"
#include "model/rategamma.h"
#include "model/rateinvar.h"
#include "model/rategammainvar.h"
//#include "modeltest_wrapper.h"
#include "model/modelprotein.h"
#include "stoprule.h"

#include "mtreeset.h"
#include "mexttree.h"
#include "model/ratemeyerhaeseler.h"
#include "whtest_wrapper.h"
#include "model/partitionmodel.h"

//#include "zpipe.h"
#include "gzstream.h"
#include "guidedbootstrap.h"
#include "timeutil.h"

void readPatternLogLL(Alignment* aln, char *fileName, vector<double*> &logLLs, DoubleVector &trees_logl)
{
    //First read the values from inFile to a DoubleVector
    //int siteNum;
    string currentString;
    cout << "\nReading file containing site's loglikelihood: " << fileName << "...." << endl;
    ifstream inFile;
    int i;
    try {
        inFile.exceptions (ios::failbit | ios::badbit);
        inFile.open(fileName);
        /**really start reading*/
        //read number of sites
        getline(inFile,currentString);
        //siteNum = convert_int(currentString.c_str());
        //ignore "Site_Lh"
        inFile.exceptions (ios::badbit);
        while (!inFile.eof())
        {
            DoubleVector _logllVec;
            if ( !(inFile >> currentString) ) break;
            //reading each line of the file
            //remove the badbit
            //set the failbit again
            double logl = 0.0;
            for (i = 0; i < aln->getNSite(); i++) {
                double ll;
                if (!(inFile >> ll)) throw "Wrong logLL entry";
                _logllVec.push_back(ll);
                logl += ll;
            }
            double *logLL = new double[aln->getNPattern()];
            memset(logLL, 0, sizeof(double) * aln->getNPattern());
            //logLL.resize(aln->getNPattern(),0.0);
            for (i = 0; i < _logllVec.size(); i++)
            {
                int patIndex = aln->getPatternID(i);
                if ( logLL[patIndex] == 0 )
                    logLL[patIndex] = _logllVec[i];
                else
                    if ( logLL[patIndex] != _logllVec[i] )
                        outError("Conflicting between the likelihoods reported for pattern", aln->at(i));
            }
            logLLs.push_back(logLL);
            trees_logl.push_back(logl);
        }/**finish reading*/
        inFile.clear();
        inFile.exceptions (ios::failbit | ios::badbit);
        inFile.close();
    } catch (bad_alloc) {
        outError(ERR_NO_MEMORY);
    } catch (const char *str) {
        outError(str);
    } catch (string str) {
        outError(str);
    } catch (ios::failure) {
        outError(ERR_READ_INPUT);
    } catch (...) {
        outError(ERR_READ_ANY);
    }

}

void computeExpectedNorFre(Alignment *aln, double *logLL, IntVector &expectedNorFre)
{
    //IntVector expectedNorFre;
    /*	if ( logLL.empty())
    		outError("Error: log likelihood of patterns are not given!");
    */

    int patNum = aln->getNPattern();
    int alignLen = aln->getNSite();
    //resize the expectedNorFre vector
    expectedNorFre.resize(patNum,-1);

    //Vector containing the likelihood of the pattern p_i
    DoubleVector LL(patNum,-1.0);
    double sumLL = 0; //sum of the likelihood of the patterns in the alignment

    //Compute the likelihood from the logLL
    for ( int i = 0; i < patNum; i++ )
    {
        LL[i] = exp(logLL[i]);
        sumLL += LL[i];
    }

    //Vector containing l_i = p_i*ell/sum_i(p_i)
    DoubleVector ell(patNum, -1.0);
    //Compute l_i
    for ( int i = 0; i < patNum; i++ )
    {
        ell[i] = (double)alignLen * LL[i] / sumLL;
    }


    //Vector containing r_i where r_0 = ell_0; r_{i+1} = ell_{i+1} + r_i - ordinaryRounding(r_i)
    DoubleVector r(patNum, -1.0);
    //Compute r_i and the expected normalized frequencies
    r[0] = ell[0];
    expectedNorFre[0] = (int)floor(ell[0]+0.5); //note that floor(_number+0.5) returns the ordinary rounding of _number
    int sum = expectedNorFre[0];
    for (int j = 1; j < patNum; j++ )
    {
        r[j] = ell[j] + r[j-1] - floor(r[j-1]+0.5);
        expectedNorFre[j] = (int)floor(r[j]+0.5);
        sum += expectedNorFre[j];
    }

    //cout << "Number of patterns: " << patNum << ", sum of expected sites: " << sum << endl;
    //return expectedNorFre;
}

void computeTreeWeights(DoubleVector &reProb, IntVector &reW) {
    int nDiff = reProb.size();
    reW.resize(nDiff,-1);
    DoubleVector ratio(nDiff,-1.0);
    double sumRatio = 0;
    int i;
    double max_prob = reProb[0];
    for ( i = 0; i < nDiff; i++ )
        if (reProb[i] > max_prob) max_prob = reProb[i];

    for ( i = 0; i < nDiff; i++ )
    {
        ratio[i] = exp(reProb[i]-max_prob);
        sumRatio += ratio[i];
    }
    for ( i = 0; i < nDiff; i++ )
    {
        double temp = (ratio[i]/sumRatio)*1000000;
        reW[i] = (int) floor(temp+0.5);
    }
}

double euclideanDist(IntVector &vec1, IntVector &vec2) {
    if (vec1.size() != vec2.size()) outError("Different vector size ", __func__);
    double dist = 0.0;
    for (int i = 0; i < vec1.size(); i++)
        dist += (vec1[i]-vec2[i])*(vec1[i]-vec2[i]);
    return sqrt(dist);
}

inline double computeRELL(double *pattern_lh, IntVector &pattern_freq) {
    double lh = 0.0;
    int npat = pattern_freq.size();
    //if (npat != pattern_freq.size()) outError("Wrong vector size ", __func__);
    for (int i = 0; i < npat; i++) lh += pattern_freq[i] * pattern_lh[i];
    return lh;
}

/**
	computing Expected Likelihood Weights (ELW) of trees by Strimmer & Rambaut (2002)
*/
void computeExpectedLhWeights(Alignment *aln, vector<double*> &pattern_lhs,
                              IntVector &treeids, int num_replicates, DoubleVector &elw,
                              const char* spec, DoubleVector *sh_pval = NULL) {
    cout << "Computing Expected Likelihood Weights (ELW) with " << num_replicates << " replicates ..." << endl;
    int i, j, ntrees = treeids.size();
    elw.resize(treeids.size(), 0.0);
    vector<DoubleVector> all_logl;
    // general RELL logl
    for (i = 0; i < num_replicates; i++) {
        IntVector pattern_freq;
        aln->createBootstrapAlignment(pattern_freq, spec);
        DoubleVector logl;
        logl.resize(treeids.size(), 0.0);
        j = 0;
        for (IntVector::iterator it = treeids.begin(); it != treeids.end(); it++, j++) {
            logl[j] = computeRELL(pattern_lhs[*it], pattern_freq);
        }
        if (sh_pval) all_logl.push_back(logl);
        double max_logl = logl[0];
        for (j = 0; j < logl.size(); j++)
            if (max_logl < logl[j]) max_logl = logl[j];
        double sum = 0.0;
        for (j = 0; j < logl.size(); j++) {
            logl[j] = exp(logl[j] - max_logl);
            sum += logl[j];
        }
        for (j = 0; j < logl.size(); j++)
            elw[j] += (logl[j]/sum);
    }
    // normalize ELW weights to sum of 1
    for (j = 0; j < elw.size(); j++)
        elw[j] /= num_replicates;

    if (!sh_pval) return;


    // centering step in SH test
    DoubleVector mean_logl;
    mean_logl.resize(ntrees, 0);
    for (i = 0; i < num_replicates; i++)
        for (j = 0; j < ntrees; j++) {
            mean_logl[j] += all_logl[i][j];
        }
    for (j = 0; j < ntrees; j++)
        mean_logl[j] /= num_replicates;
    for (i = 0; i < num_replicates; i++)
        for (j = 0; j < ntrees; j++) {
            all_logl[i][j] -= mean_logl[j];
        }

    // computing delta
    for (i = 0; i < num_replicates; i++) {
        double max_logl = *max_element(all_logl[i].begin(), all_logl[i].end());
        for (j = 0; j < ntrees; j++) all_logl[i][j] = max_logl - all_logl[i][j];
    }

    // computing original delta
    DoubleVector orig_logl;
    orig_logl.resize(ntrees, 0);
    for (j = 0; j < ntrees; j++) {
        int tree_id = treeids[j];
        i = 0;
        for (Alignment::iterator it = aln->begin(); it != aln->end(); it++, i++)
            orig_logl[j] += pattern_lhs[tree_id][i] * it->frequency;
    }
    double max_logl = *max_element(orig_logl.begin(), orig_logl.end());
    for (j = 0; j < ntrees; j++) orig_logl[j] = max_logl - orig_logl[j];
    sh_pval->resize(ntrees, 0);
    for (i = 0; i < num_replicates; i++)
        for (j = 0; j < ntrees; j++) {
            if (orig_logl[j] < all_logl[i][j]) (*sh_pval)[j] += 1.0;
        }
    for (j = 0; j < ntrees; j++)
        (*sh_pval)[j] /= num_replicates;
}

void printTrees(const char *ofile, IQTree &tree, IntVector *weights, bool compression)
{
    int count = 0;
    try {
        ostream *out;
        if (compression) out = new ogzstream;
        else out = new ofstream;
        out->exceptions(ios::failbit | ios::badbit);
        if (compression)
            ((ogzstream*)out)->open(ofile);
        else
            ((ofstream*)out)->open(ofile);
        (*out) << "[ scale=" << tree.len_scale << " ]" << endl;
        for (StringIntMap::iterator it = tree.treels.begin(); it != tree.treels.end(); it++)
            if (!weights || weights->at(it->second)) {
                int id = it->second;
                out->precision(10);
                (*out) << "[ lh=" << tree.treels_logl[id];
                if (weights) (*out) << " w=" << weights->at(id);
                (*out) << " ] ";
                (*out) << tree.treels_newick[id] << endl;
                count++;
            }
        cout << count << " tree(s) printed to " << ofile << endl;

        if (compression) {
            z_off_t uncompress = ((ogzstream*)out)->get_raw_bytes();
            ((ogzstream*)out)->close();
            struct stat st;
            stat(ofile, &st);
            cout << "Compression ratio: " << ((double)st.st_size/uncompress)
                 << " (" << uncompress << " -> " << st.st_size << " bytes)" << endl;
        }
        else
            ((ofstream*)out)->close();
        delete out;
    } catch (ios::failure) {
        outError(ERR_WRITE_OUTPUT, ofile);
    }
}

void printPatternLh(const char *ofile, IQTree *tree, bool compression) {
    int count = 0, i;
    int scale = 1000;
    try {
        ostream *out;
        if (compression) out = new ogzstream;
        else out = new ofstream;
        out->exceptions(ios::failbit | ios::badbit);
        if (compression)
            ((ogzstream*)out)->open(ofile/*, ios::out | ios::binary*/);
        else
            ((ofstream*)out)->open(ofile/*, ios::out | ios::binary*/);
        int idfirst = tree->treels.begin()->second;
        (*out) << tree->treels.size() << " " << tree->aln->getNSite() <<
        " " << tree->aln->getNPattern() << " " << scale << endl;
        for (i = 0; i < tree->aln->getNSite(); i++)
            (*out) << " " << tree->aln->getPatternID(i);
        (*out) << endl;
        // DO NOT CHANGE
        for (StringIntMap::iterator it = tree->treels.begin(); it != tree->treels.end(); it++)
        {
            int id = it->second;
            assert(id < tree->treels_ptnlh.size());
            //out->write((char*)tree->treels_ptnlh[id], sizeof(double)*tree->aln->size());
            out->precision(10);
            (*out) << -tree->treels_logl[id];
            if (id == idfirst) {
                out->precision(6);
                for (int i = 0; i < tree->aln->size(); i++)
                    (*out) << " " << -tree->treels_ptnlh[id][i];
            } else {
                for (int i = 0; i < tree->aln->size(); i++) {
                    int diff = round((tree->treels_ptnlh[id][i]-tree->treels_ptnlh[idfirst][i])*scale);
                    (*out) << " " << diff;
                }
            }
            (*out) << endl;
            count++;
        }
        if (compression)
            ((ogzstream*)out)->close();
        else
            ((ofstream*)out)->close();
        delete out;
        cout << count << " pattern log-likelihood vector(s) printed to " << ofile << endl;
    } catch (ios::failure) {
        outError(ERR_WRITE_OUTPUT, ofile);
    }
}

void readPatternLh(const char *infile, IQTree *tree, bool compression) {
    int count = 0, i;
    int ntrees, nsite, nptn, scale;
    double max_tol = 0.0;
    try {
        istream *in;
        if (compression) in = new igzstream;
        else in = new ifstream;
        in->exceptions(ios::failbit | ios::badbit);
        if (compression)
            ((igzstream*)in)->open(infile/*, ios::out | ios::binary*/);
        else
            ((ifstream*)in)->open(infile/*, ios::out | ios::binary*/);
        (*in) >> ntrees >> nsite >> nptn >> scale;
        if (nsite != tree->aln->getNSite()) outError("Number of sites does not match");
        if (nptn !=  tree->aln->getNPattern()) outError("Number of patterns does not match");
        for (i = 0; i < nsite; i++) {
            int id;
            (*in) >> id;
            if (id != tree->aln->getPatternID(i)) outError("Pattern ID does not match");
        }
        tree->treels_logl.resize(ntrees, 0.0);
        tree->treels_ptnlh.resize(ntrees, NULL);
        for (int id = 0; id < ntrees; id++)
        {
            double logl;
            (*in) >> logl;
            logl = -logl;
            tree->treels_logl[id] = logl;
            double *pattern_lh = new double[nptn];
            if (id == 0) {
                for (i = 0; i < nptn; i++) {
                    (*in) >> pattern_lh[i];
                    pattern_lh[i] = -pattern_lh[i];
                }
            } else {
                double sum = 0.0;
                for (i = 0; i < nptn; i++) {
                    int diff;
                    (*in) >> diff;
                    pattern_lh[i] = tree->treels_ptnlh[0][i]+(double)diff/scale;
                    sum += pattern_lh[i] * tree->aln->at(i).frequency;
                }
                max_tol = max(max_tol, fabs(sum-logl));
            }
            tree->treels_ptnlh[id] = pattern_lh;
            count++;
        }
        cout << "max tolerance = " << max_tol << endl;
        if (compression)
            ((igzstream*)in)->close();
        else
            ((ifstream*)in)->close();
        delete in;
        cout << count << " pattern log-likelihood vector(s) read from " << infile << endl;
    } catch (ios::failure) {
        outError(ERR_READ_INPUT, infile);
    }
}

void computeAllPatternLh(Params &params, IQTree &tree) {
    /* this part copied from phyloanalysis.cpp */
    tree.optimize_by_newton = params.optimize_by_newton;
    ModelsBlock *models_block = new ModelsBlock;

    try {
        if (!tree.getModelFactory()) {
            if (tree.isSuperTree())
                tree.setModelFactory(new PartitionModel(params, (PhyloSuperTree*)&tree, models_block));
            else
                tree.setModelFactory(new ModelFactory(params, &tree, models_block));
        }
    } catch (string &str) {
        outError(str);
    }
    delete models_block;
    tree.setModel(tree.getModelFactory()->model);
    tree.setRate(tree.getModelFactory()->site_rate);
    if (tree.isSuperTree()) ((PhyloSuperTree*)&tree)->mapTrees();
    tree.setLikelihoodKernel(params.SSE);

    int model_df = tree.getModel()->getNDim() + tree.getRate()->getNDim();
    cout << endl;
    cout << "Estimating model parameters for: " << tree.getModelName() << " (" << model_df << " free parameters)" << endl;
    cout << "Fixed branch lengths: " << ((params.fixed_branch_length) ? "Yes" : "No") << endl;
    /* optimize model parameters */
    cout << endl;
    cout << "Optimizing model parameters" << endl;
    double bestTreeScore = tree.getModelFactory()->optimizeParameters(params.fixed_branch_length, true, TOL_LIKELIHOOD);
    cout << "Log-likelihood of the current tree: " << bestTreeScore << endl;

    //Update tree score
    tree.setCurScore(bestTreeScore);
    if (tree.isSuperTree()) ((PhyloSuperTree*)&tree)->computeBranchLengths();
    stringstream best_tree_string;
    tree.printTree(best_tree_string, WT_TAXON_ID + WT_BR_LEN);

    cout << "Computing pattern log-likelihoods for trees in " << params.user_file << " ..." << endl;
    /* now compute the treels_ptnlh */
    try {
        istream *in;
        if (params.do_compression) in = new igzstream;
        else in = new ifstream;
        in->exceptions(ios::failbit | ios::badbit);
        if (params.do_compression)
            ((igzstream*)in)->open(params.user_file);
        else
            ((ifstream*)in)->open(params.user_file);
        double max_logl_diff = 0.0;
        char ch;
        (*in) >> ch;
        if (ch == '[') {
            string str;
            (*in) >> str;
            if (str.substr(0,6) == "scale=") {
                tree.len_scale = convert_double(str.substr(6).c_str());
            }
            do {
                (*in) >> ch;
            } while (!in->eof() && ch != ']');
        } else in->unget();
        cout << "Applying branch length scaling: " << tree.len_scale << endl;

        while (!in->eof()) {
            in->exceptions(ios::goodbit);
            (*in) >> ch;
            if (in->eof()) break;
            in->exceptions(ios::failbit | ios::badbit);
            double expected_lh = 0.0;
            if (ch == '[') {
                string str;
                (*in) >> str;
                if (str.substr(0,3) == "lh=") {
                    expected_lh = convert_double(str.substr(3).c_str());
                }
                do  {
                    (*in) >> ch;
                } while (!in->eof() && ch != ']');
            } else in->unget();

            tree.freeNode();
            tree.readTree(*in, tree.rooted);
            tree.scaleLength(1.0/tree.len_scale); // scale the branch length
            tree.assignLeafNames();
            tree.initializeAllPartialLh();
            tree.clearAllPartialLH();
            if (tree.isSuperTree()) ((PhyloSuperTree*)&tree)->mapTrees();
            double *pattern_lh = new double [tree.aln->getNPattern()];
            if (!params.fixed_branch_length) {
                tree.setCurScore(tree.optimizeAllBranches());
                tree.computePatternLikelihood(pattern_lh);
            } else {
                tree.setCurScore(tree.computeLikelihood(pattern_lh));
            }
            if (expected_lh != 0.0)
                max_logl_diff = max(max_logl_diff, fabs(tree.getCurScore()-expected_lh));
            tree.treels_ptnlh.push_back(pattern_lh);
            tree.treels_logl.push_back(tree.getCurScore());
			cout << "Tree " << tree.treels_logl.size() << ": " << tree.getCurScore() << endl;
            if (tree.treels_ptnlh.size() % 500 == 0)
                cout << tree.treels_ptnlh.size() << " trees evaluated" << endl;
        }

        cout << tree.treels_ptnlh.size() << " trees evaluated in total" << endl;
        cout << "Maximal log-likelihood error is " << max_logl_diff << endl << endl;

        if (params.do_compression) ((igzstream*)in)->close();
        else ((ifstream*)in)->close();
        delete in;
    } catch (ios::failure&) {
        outError(ERR_READ_INPUT, params.user_file);
    }

    /* take back the current best tree */
    best_tree_string.seekg(0, ios::beg);
    tree.freeNode();
    tree.readTree(best_tree_string, tree.rooted);
    tree.assignLeafNames();
    tree.initializeAllPartialLh();
    tree.clearAllPartialLH();
}

void readTrees(Params &params, Alignment *alignment, IQTree &tree) {
    if (!params.user_file) {
        outError("You have to specify user tree file");
    }
    if (!params.second_tree) {
        outError("Please provide target tree file via -sup option");
    }

    // read tree file
    cout << "Reading tree file " << params.second_tree << endl;
    tree.readTree(params.second_tree, params.is_rooted);
    // reindex the taxa in the tree to aphabetical names
    NodeVector taxa;
    tree.getTaxa(taxa);
    sort(taxa.begin(), taxa.end(), nodenamecmp);
    int i = 0;
    for (NodeVector::iterator it = taxa.begin(); it != taxa.end(); it++) {
        (*it)->id = i++;
    }
    // read in corresponding site-log-likelihood for all trees
    /*trees_logl = new DoubleVector;
    pattern_lhs = new vector<double*>;
    readPatternLogLL(alignment, params.siteLL_file, *pattern_lhs, *trees_logl);*/

    if (params.siteLL_file) {
        // read pattern loglikelihoods from file
        readPatternLh(params.siteLL_file, &tree, params.do_compression);
    } else {
        // compute all pattern log-likelihoods
        tree.setAlignment(alignment);
        computeAllPatternLh(params, tree);
    }
}

void runGuidedBootstrapReal(Params &params, Alignment *alignment, IQTree &tree) {

    int i, j;

    double begin_time = getCPUTime();

    MTreeSet trees;
    vector<double*> *pattern_lhs = NULL;
    vector<IntVector> expected_freqs;
    DoubleVector *trees_logl = NULL;
    IntVector diff_tree_ids;
    int ntrees = 0;
    IntVector::iterator it;

    if (!tree.save_all_trees) {
        readTrees(params, alignment, tree);
        pattern_lhs = &tree.treels_ptnlh;
        trees_logl = &tree.treels_logl;
        if (!params.distinct_trees) {
            // read in trees file
            trees.init(params.user_file, params.is_rooted, params.tree_burnin, params.tree_max_count);

            if (pattern_lhs->size() != trees.size())
                outError("Different number of sitelh vectors");
            // get distinct trees
            ntrees = trees.size();
            IntVector tree_category;
            trees.categorizeDistinctTrees(tree_category);
            for (i = 0; i < ntrees; i++) {
                int cat = tree_category[i];
                if (diff_tree_ids.empty() || tree_category[diff_tree_ids.back()] < cat)
                    diff_tree_ids.push_back(i);
            }
            cout << diff_tree_ids.size() << " distinct trees detected" << endl;
        }

    } else {
        if (tree.treels_ptnlh.empty()) {
            cout << "New bootstrap is not applicable due to no candiate trees" << endl;
            return;
        }
        pattern_lhs = &tree.treels_ptnlh;
        trees_logl = &tree.treels_logl;
        //cout << "logl_cutoff = " << tree.logl_cutoff << " after " << tree.max_candidate_trees <<" trees" << endl;
    }

    if (diff_tree_ids.empty()) {
        diff_tree_ids.resize(pattern_lhs->size());
        ntrees = pattern_lhs->size();
        for (i = 0; i < ntrees; i++) diff_tree_ids[i] = i;
    }

    IntVector origin_freq;
    for (i = 0; i < alignment->getNPattern(); i++)
        origin_freq.push_back(alignment->at(i).frequency);


    if (verbose_mode >= VB_DEBUG) {
        cout << "Original pattern freq: ";
        for (i = 0; i < alignment->getNPattern(); i++)
            cout << alignment->at(i).frequency << " ";
        cout << endl;
    }

    cout << pattern_lhs->size() << " log-likelihood vectors loaded" << endl;

    int ndiff = diff_tree_ids.size();

    // consider only 10,000 trees with highest likelihoods
    if (params.max_candidate_trees > 0 && ndiff > params.max_candidate_trees) {
        DoubleVector neg_logl;
        neg_logl.resize(ndiff);
        for (i = 0; i < ndiff; i++)
            neg_logl[i] = -trees_logl->at(diff_tree_ids[i]);
        nth_element(neg_logl.begin(), neg_logl.begin() + params.max_candidate_trees, neg_logl.end());
        double logl_cutoff = -neg_logl[params.max_candidate_trees];
        IntVector diff_tree_ids_new;
        diff_tree_ids_new.reserve(params.max_candidate_trees);
        for (i = 0; i < ndiff; i++)
            if (trees_logl->at(diff_tree_ids[i]) > logl_cutoff)
                diff_tree_ids_new.push_back(diff_tree_ids[i]);
        diff_tree_ids = diff_tree_ids_new;
        ndiff = diff_tree_ids.size();
        cout << "Reduce to " << ndiff << " highest likelihood trees with cutoff " << logl_cutoff << endl;
    }

    IntVector orig_diff_tree_ids = diff_tree_ids;

    // compute multinomial probability for every distinct tree
    DoubleVector prob_vec;
    for (it = diff_tree_ids.begin(); it != diff_tree_ids.end(); it++) {
        double prob;
        alignment->multinomialProb((*pattern_lhs)[*it], prob);
        prob_vec.push_back(prob);
        IntVector expected_freq;
        computeExpectedNorFre(alignment, (*pattern_lhs)[*it], expected_freq);
        expected_freqs.push_back(expected_freq);
        if (verbose_mode >= VB_DEBUG) {
            for (i = 0; i < expected_freq.size(); i++)
                cout << expected_freq[i] << " ";
            cout << endl;
        }
    }

    IntVector diff_tree_weights;

    if (params.use_elw_method) { 	// compute ELW weights

        DoubleVector elw, sh_pval;
        computeExpectedLhWeights(alignment, (*pattern_lhs), diff_tree_ids, params.gbo_replicates, elw, params.bootstrap_spec, &sh_pval);
        string elw_file_name = params.out_prefix;
        elw_file_name += ".elw";
        ofstream elw_file(elw_file_name.c_str());
        elw_file << "Treeid\tELW\tSH-pval" << endl;
        for (i = 0; i < elw.size(); i++)
            elw_file << diff_tree_ids[i]+1 << "\t" << elw[i] << "\t" << sh_pval[i] << endl;
        elw_file.close();
        cout << "ELW printed to " << elw_file_name << endl;
        diff_tree_weights.resize(diff_tree_ids.size(), 0);
        for (i = 0; i < diff_tree_ids.size(); i++)
            diff_tree_weights[i] = round(elw[i]*1000000);
    } else {
        double own_prob;
        alignment->multinomialProb(*alignment, own_prob);
        //cout << "Own prob: " << own_prob << endl;

        cout << "Conducting " << params.gbo_replicates << " non-parametric resampling ";
        if (params.use_rell_method)
            cout << "using RELL" << endl;
        else
            cout << "using Euclidean distance" << endl;
        if (params.use_weighted_bootstrap)
            cout << "Multinomial weighting for bootstrap sample ";
        else
            cout << "Equal weighting for bootstrap sample ";

        if (params.use_max_tree_per_bootstrap)
            cout << "and selecting one tree per bootstrap" << endl;
        else
            cout << "and selecting multiple trees per bootstrap" << endl;

        double accepted_diff = 0.5;
        cout << "Accepted logl difference: " << accepted_diff << endl;

        // generate bootstrap samples
        for (i = 0; i < params.gbo_replicates; i++) {
            IntVector pattern_freq;
            alignment->createBootstrapAlignment(pattern_freq, params.bootstrap_spec);
            double prob;
            if (params.use_weighted_bootstrap)
                prob = alignment->multinomialProb(pattern_freq);
            else
                prob = 0;
            if (params.use_rell_method) {
                // select best-fit tree by RELL method
                DoubleVector logl;
                logl.resize(ndiff);
                for (j = 0; j < ndiff; j++) {
                    int tree_id = diff_tree_ids[j];
                    logl[j] = computeRELL((*pattern_lhs)[tree_id], pattern_freq);
                    //if (verbose_mode >= VB_MAX) cout << logl << endl;
                }
                DoubleVector::iterator max_logl = max_element(logl.begin(), logl.end());
                int k = 0;
                if (params.use_max_tree_per_bootstrap) {
                    double logl_cutoff = *max_logl - accepted_diff;
                    int num_max = 0;
                    for (j = 0; j < ndiff; j++)
                        if (logl[j] >= logl_cutoff) num_max++;
                    if (num_max == 1) {
                        diff_tree_ids.push_back(diff_tree_ids[max_logl - logl.begin()]);
                        prob_vec.push_back(prob);
                    } else {
                        int max_rand = random_int(num_max);
                        for (j = 0; j < ndiff && max_rand >= 0; j++)
                            if (logl[j] >= logl_cutoff) {
                                max_rand--;
                                if (max_rand < 0) {
                                    diff_tree_ids.push_back(diff_tree_ids[j]);
                                    prob_vec.push_back(prob);
                                    break;
                                }
                            }
                    }
                    if (verbose_mode >= VB_MAX) {
                        cout << "Bootstrap " << i+1 <<  " lprob=" << prob << " max_logl=" <<
                             *max_logl << " select " << diff_tree_ids[j]+1;
                        if (num_max > 1)
                            cout << "  tie broken " << num_max << endl;
                        else
                            cout << endl;
                    }
                } else {
                    DoubleVector weights;
                    weights.resize(ndiff);
                    for (j = 0; j < ndiff; j++) weights[j] = exp(logl[j] - *max_logl);
                    double sum = accumulate(weights.begin(), weights.end(), 0.0);
                    for (j = 0; j < ndiff; j++) weights[j] /= sum;
                    int max_id = max_element(weights.begin(), weights.end()) - weights.begin();

                    double weight_cutoff = weights[max_id] * 0.001;
                    for (j = 0; j < ndiff; j++) {
                        if (weights[j] >= weight_cutoff) {
                            diff_tree_ids.push_back(diff_tree_ids[j]);
                            prob_vec.push_back(prob + log(weights[j]));
                            k++;
                        }
                    }
                    if (verbose_mode >= VB_MAX)
                        cout << "Bootstrap " << i+1 <<  " lprob=" << prob << " max_id=" << max_id << " max_w=" <<
                             weights[max_id] << " " << k << " trees" << endl;
                }
            }
            else {
                // select best-fit tree by euclidean distance
                double min_dist = -1.0;
                int chosen_id = -1;
                for (j = 0; j < expected_freqs.size(); j++) {
                    double dist = euclideanDist(pattern_freq, expected_freqs[j]);
                    //cout << dist << " ";
                    if (dist < min_dist || min_dist < 0) {
                        min_dist = dist;
                        chosen_id = j;
                    }
                }
                diff_tree_ids.push_back(diff_tree_ids[chosen_id]);
                prob_vec.push_back(prob);
                if (verbose_mode >= VB_MAX) {
                    cout << "Bootstrap " << i+1 << " choose id=" << diff_tree_ids[chosen_id]+1 // <<" dist=" << min_dist
                         << " lprob=" << prob << endl;
                }
            }

            if (verbose_mode >= VB_DEBUG) {
                for (j = 0; j < pattern_freq.size(); j++)
                    cout << pattern_freq[j] << " ";
                cout << endl;
            }
        }

        // compute tree weights from the log-probability
        computeTreeWeights(prob_vec, diff_tree_weights);

    } // end of Arndt's method

    IntVector final_tree_weights;
    final_tree_weights.resize(ntrees, 0);
    //for (i = 0; i < ntrees; i++) trees.tree_weights[i] = 0;
    for (it = diff_tree_ids.begin(), i = 0; it != diff_tree_ids.end(); it++, i++) {
        final_tree_weights[*it] += diff_tree_weights[i];
    }

    // now load in the trees
    if (tree.save_all_trees) {
        trees.init(tree.treels, tree.rooted, final_tree_weights);
        string out_file = params.out_prefix;
        if (params.do_compression) {
            out_file += ".btrees.gz";
            printTrees(out_file.c_str(), tree, &final_tree_weights, params.do_compression);
            out_file = params.out_prefix;
            out_file += ".alltrees.gz";
            printTrees(out_file.c_str(), tree, NULL, params.do_compression);
            if (params.print_site_lh) {
                out_file = params.out_prefix;
                out_file += ".ptnlh.gz";
                printPatternLh(out_file.c_str(), &tree, params.do_compression);
            }
        }
    } else if (params.distinct_trees) {
        trees.init(params.user_file, params.is_rooted, params.tree_burnin, params.tree_max_count, NULL, &final_tree_weights, params.do_compression);
        // assuming user_file contains species ID (instead of full name)
        trees.assignLeafID();
        //trees.init(params.user_file, params.is_rooted, params.tree_burnin, NULL);
        /*		if (pattern_lhs->size() != trees.size())
        			outError("Different number of sitelh vectors");*/
    }

	tree.summarizeBootstrap(params, trees);
/*    int sum_weights = trees.sumTreeWeights();
    if (verbose_mode >= VB_MED) {
        for (i = 0; i < trees.size(); i++)
            if (trees.tree_weights[i] > 0)
                cout << "Tree " << i+1 << " weight= " << trees.tree_weights[i] * 100 / sum_weights << endl;
    }
    int max_tree_id = max_element(trees.tree_weights.begin(), trees.tree_weights.end()) - trees.tree_weights.begin();
    cout << "max_tree_id = " << max_tree_id+1 << "   max_weight = " << trees.tree_weights[max_tree_id];
    cout << " (" << trees.tree_weights[max_tree_id] * 100 / sum_weights << "%)"<< endl;
    // assign bootstrap support
    SplitGraph sg;
    SplitIntMap hash_ss;
    // make the taxa name
    vector<string> taxname;
    taxname.resize(tree.leafNum);
    tree.getTaxaName(taxname);

    trees.convertSplits(taxname, sg, hash_ss, SW_COUNT, -1, false); // do not sort taxa

    cout << sg.size() << " splits found" << endl;
    // compute the percentage of appearance
    sg.scaleWeight(100.0 / trees.sumTreeWeights(), true);
    //	printSplitSet(sg, hash_ss);
    //sg.report(cout);
    cout << "Creating bootstrap support values..." << endl;
    stringstream tree_stream;
    tree.printTree(tree_stream, WT_TAXON_ID |  WT_BR_LEN);
    MExtTree mytree;
    mytree.readTree(tree_stream, tree.rooted);
    mytree.assignLeafID();
    mytree.createBootstrapSupport(taxname, trees, sg, hash_ss);

    // now write resulting tree with supports
    tree_stream.seekp(0, ios::beg);
    mytree.printTree(tree_stream);

    // now read resulting tree
    tree_stream.seekg(0, ios::beg);
    tree.freeNode();
    tree.readTree(tree_stream, tree.rooted);
    tree.assignLeafNames();
    tree.initializeAllPartialLh();
    tree.clearAllPartialLH();

    string out_file;

    if (!tree.save_all_trees) {
        out_file = params.out_prefix;
        out_file += ".suptree";

        tree.printTree(out_file.c_str());
        cout << "Tree with assigned bootstrap support written to " << out_file << endl;
    }

    out_file = params.out_prefix;
    out_file += ".splits";

    sg.saveFile(out_file.c_str(), true);
    cout << "Split supports printed to NEXUS file " << out_file << endl;

    out_file = params.out_prefix;
    out_file += ".supval";
    tree.writeInternalNodeNames(out_file);

    cout << "Support values written to " << out_file << endl;*/
    
    /*
    if (!tree.save_all_trees) {
    	for (vector<double* >::reverse_iterator it = pattern_lhs->rbegin(); it != pattern_lhs->rend(); it++)
    		delete [] (*it);
    	delete pattern_lhs;
    	delete trees_logl;
    }*/

    double end_time = getCPUTime();

    cout << "Time for guided bootstrap: " << (end_time-begin_time) << " seconds" << endl << endl;
    //delete [] rfdist;
}

void runGuidedBootstrap(Params &params, Alignment *alignment, IQTree &tree) {
    if (!params.check_gbo_sample_size) {
        runGuidedBootstrapReal(params, alignment, tree);
        return;
    }
    int max_sample = params.max_candidate_trees;
    if (tree.save_all_trees) max_sample = tree.treels.size();
    for (int sample_size = params.check_gbo_sample_size; sample_size <= max_sample; sample_size *= 2) {
        cout << "CHECKING SAMPLING SIZE " << sample_size << endl;
        int sample_saved = params.max_candidate_trees;
        char *prefix_saved = params.out_prefix;

        // set parameters properly
        string prefix = params.out_prefix;
        stringstream ss;
        ss << ".S" << sample_size;
        prefix += ss.str();
        //params.out_prefix = (char*)prefix.c_str();
        params.max_candidate_trees = sample_size;

        runGuidedBootstrapReal(params, alignment, tree);
        // restore parameters
        params.max_candidate_trees = sample_saved;
        params.out_prefix = prefix_saved;
    }
}

/* compute logarithm of (n choose k) */
double logNchooseK(int n, int k) {
    if (k > n-k) k = n-k;
    double ret = 0.0;
    int i;
    for (i = k+1; i <= n; i++) ret += log(i);
    for (i = 2; i <= n-k; i++) ret -= log(i);
    return ret;
}

void generateFirstMultinorm(IntVector &x, int n, int k) {
    x.resize(k, 0);
    x.back() = n;
}

bool generateNextMultinorm(IntVector &x) {
    if (x.size() < 2) return false;
    int id = x.size()-1;
    while (id >= 0 && x[id] == 0) id--;
    if (id <= 0) return false;
    x[id-1]++;
    x.back() = x[id]-1;
    if (id < x.size()-1) x[id] = 0;
    return true;
}

void generateMultinorm(IntVector &x, int n, int k, int i, int sum) {
    if (x.empty()) x.resize(k, 0);
    if (i == k-1) {
        x[i] = sum;
        for (int j = 0; j < k; j++) cout << x[j] << " ";
        cout << endl;
        return;
    }
    for (int j = 0; j <= sum; j++) {
        x[i] = j;
        generateMultinorm(x, n, k, i+1, sum-j);
    }
}

void runAvHTest(Params &params, Alignment *alignment, IQTree &tree) {
    // collection of distinct bootstrapped site-pattern frequency vectors
    IntVectorCollection boot_freqs;
    // number of times the bootstrap alignments were resampled
    IntVector boot_times;
    // hash_map to quick search through the collection
    IntVectorMap boot_map;
    // multinomial probability of distinct bootstrap alignments
    DoubleVector boot_prob;

    // index from bootstrap number b to disinct bootstrap alignment
    IntVector boot_index;
    // number of distinct bootstrap aligments per B
    IntVector diff_boot_alns;

    // map from distinct alignment to tree
    IntVector aln_tree_map;
    StringIntMap tree_map;
    // vector of all distinct reconstructed trees
    MTreeSet boot_trees;
    int id;

    vector<ModelInfo> model_info;

    cout << "Checking Arndt curiosity for " << params.avh_test << " bootstrap replicates ..." << endl;

    // generate all distinct bootstrap alignments
    cout << "Theoretical number of distinct alignments = " <<
         exp(logNchooseK(alignment->getNSite()+alignment->getNPattern()-1, alignment->getNPattern()-1)) << endl;
    IntVector afreq;
    //generateMultinorm(x, alignment->getNSite(), alignment->getNPattern(), 0, alignment->getNSite());
    generateFirstMultinorm(afreq, alignment->getNSite(), alignment->getNPattern());
    int num_multi = 0;
    do {
        num_multi++;
        cout << num_multi << ": ";
        for (id = 0; id < afreq.size(); id++) cout << afreq[id] << " ";
        cout << endl;
        IntVector *boot_freq = new IntVector;
        *boot_freq = afreq;
        boot_map[boot_freq] = boot_freqs.size();
        boot_freqs.push_back(boot_freq);
        boot_times.push_back(0);
        boot_prob.push_back(alignment->multinomialProb(*boot_freq));
    } while (generateNextMultinorm(afreq));
    cout << num_multi << " distinct bootstrap alignments" << endl;

    // generate usual bootstrap alignments
    int diff_boot_aln = 0;
    for (id = 0; id < params.avh_test; id++) {
        IntVector *boot_freq = new IntVector;
        alignment->createBootstrapAlignment(*boot_freq, params.bootstrap_spec);
        IntVectorMap::iterator it = boot_map.find(boot_freq);
        if (it == boot_map.end()) { // not found
            outError(__func__);
            boot_index.push_back(boot_freqs.size());
            boot_map[boot_freq] = boot_freqs.size();
            boot_freqs.push_back(boot_freq);
            boot_times.push_back(1);
            boot_prob.push_back(alignment->multinomialProb(*boot_freq));
        } else {
            if (boot_times[it->second] == 0) diff_boot_aln++;
            boot_times[it->second]++;
            boot_index.push_back(it->second);
            delete boot_freq;
        }
        diff_boot_alns.push_back(diff_boot_aln);
    }

    cout << boot_freqs.size() << " distinct alignments have been sampled" << endl;

    // reconstruct tree for each distinct alignment
    string orig_model = params.model_name;
    int saved_aLRT_replicates = params.aLRT_replicates;
    params.aLRT_replicates = 0;
    for (id = 0; id < boot_freqs.size(); id++) {
        cout << endl << "===> COMPUTING TREE FOR ALIGNMENT " << id << endl;
        Alignment *boot_aln = new Alignment;
        boot_aln->extractPatternFreqs(alignment, *boot_freqs[id]);

        IQTree boot_tree(boot_aln);
        runTreeReconstruction(params, orig_model, boot_tree, model_info);
        boot_tree.setRootNode(params.root);
        stringstream ss;
        boot_tree.printTree(ss, WT_SORT_TAXA);
        string str = ss.str();
        StringIntMap::iterator it = tree_map.find(str);
        if (it == tree_map.end()) { // not found
            tree_map[str] = boot_trees.size();
            aln_tree_map.push_back(boot_trees.size());
            MTree *tree = new MTree;
            tree->readTree(ss, params.is_rooted);
            boot_trees.push_back(tree);
        } else {
            aln_tree_map.push_back(it->second);
        }
        //delete boot_aln;
    }
    cout << boot_trees.size() << " distinct trees have been reconstructed" << endl;
    string out_file = params.out_prefix;
    out_file += ".bootmap";
    ofstream out;
    out.open(out_file.c_str());
    for (id = 0; id < boot_freqs.size(); id++) {
        for (int i = 0; i < boot_freqs[id]->size(); i++) out << boot_freqs[id]->at(i) << " ";
        out << boot_prob[id] << " " << aln_tree_map[id] << endl;
    }
    out.close();
    cout << "===> EVALUATING TREES ON ORIGINAL ALIGNMENT" << endl;
    out_file = params.out_prefix;
    out_file += ".trees";
    boot_trees.printTrees(out_file.c_str(),WT_SORT_TAXA);
    params.min_iterations = 0;
    runTreeReconstruction(params, orig_model, tree, model_info);
    params.treeset_file = (char*)out_file.c_str();
    evaluateTrees(params, &tree);

    params.aLRT_replicates = saved_aLRT_replicates;

    double logn = log(params.avh_test);
    if (verbose_mode >= VB_MED) {
        for (int j = 0; j < boot_freqs.size(); j++) {
            cout << "p=" << alignment->multinomialProb(*boot_freqs[j])
                 << " p_obs=" << log(boot_times[j]) - logn << " tree=" << aln_tree_map[j] << " ";
            //boot_trees[aln_tree_map[j]]->printTree(cout,WT_SORT_TAXA);
            cout << " ";

            for (int i = 0; i < boot_freqs[j]->size(); i++)
                cout << boot_freqs[j]->at(i) << " ";
            cout << endl;
        }
    }

    // computing weights
    double max_prob = *max_element(boot_prob.begin(), boot_prob.end());
    DoubleVector boot_weight;
    boot_weight.resize(boot_prob.size(), 0.0);
    for (id = 0; id < boot_freqs.size(); id++)
        boot_weight[id] = exp(boot_prob[id] - max_prob);


    // summarize results
    out_file = params.out_prefix;
    out_file += ".avh";
    out.open(out_file.c_str());
    out << boot_trees.size() << endl;
    //boot_trees.printTrees(out, WT_SORT_TAXA);

    /* computing true bootstrap probabilities based on all distinct bootstrap alignments */
    DoubleVector tree_weights;
    tree_weights.resize(boot_trees.size(), 0);
    for (id = 0; id < boot_freqs.size(); id++)
        tree_weights[aln_tree_map[id]] += boot_weight[id];
    double sum_weight = accumulate(tree_weights.begin(), tree_weights.end(), 0.0);
    for (id = 0; id < boot_trees.size(); id++) {
        tree_weights[id] /= sum_weight;
        out << tree_weights[id] << endl;
    }

    out << "B\tTree\tpB_T\tDiff_B\tpwB_T" << endl;
    for (int sample = 1; sample <= params.avh_test; sample++) {
        // weighted bootstrap version
        tree_weights.resize(0);
        tree_weights.resize(boot_trees.size(), 0);
        vector<bool> duplicated;
        duplicated.resize(boot_freqs.size(), false);
        for (id = 0; id < sample; id++)
            if (!duplicated[boot_index[id]]) {
                tree_weights[aln_tree_map[boot_index[id]]] += boot_weight[boot_index[id]];
                duplicated[boot_index[id]] = true;
            }
        double sum_weight = accumulate(tree_weights.begin(), tree_weights.end(), 0.0);
        for (id = 0; id < boot_trees.size(); id++) {
            tree_weights[id] /= sum_weight;
        }

        // by standard bootstrap
        DoubleVector normal_tree_weights;
        normal_tree_weights.resize(boot_trees.size(), 0);
        for (id = 0; id < sample; id++) {
            normal_tree_weights[aln_tree_map[boot_index[id]]] += 1;
        }
        sum_weight = accumulate(normal_tree_weights.begin(), normal_tree_weights.end(), 0.0);
        for (id = 0; id < boot_trees.size(); id++)
            normal_tree_weights[id] /= sum_weight;
        // print results
        for (id = 0; id < boot_trees.size(); id++)
        {
            out << sample << "\t" << id << "\t" << normal_tree_weights[id] << "\t"
            << diff_boot_alns[sample-1] << "\t" << tree_weights[id] << endl;
        }
    }

    out.close();
    cout << "Results printed to " << out_file << endl;
    for (IntVectorCollection::reverse_iterator rit = boot_freqs.rbegin(); rit != boot_freqs.rend(); rit++)
        delete (*rit);
}

void runBootLhTest(Params &params, Alignment *alignment, IQTree &tree) {
    // collection of distinct bootstrapped site-pattern frequency vectors
    cout << "Doing likelihood-bootstrap plot using Kullback-Leibler distance with " << params.bootlh_test << " bootstrap replicates ..." << endl;
    int id, ptn;
    IntVector ptnfreq;
    alignment->getPatternFreq(ptnfreq);
    string orig_model = params.model_name;
    vector<ModelInfo> model_info;
    IntVector partitions;

    if (params.bootlh_partitions) {
    	convert_int_vec(params.bootlh_partitions, partitions);
    	cout << "Using " << partitions.size() << " partitions" << endl;
    }

    string outfile = params.out_prefix;
    outfile += ".bootlhtest";
    ofstream out;
    out.open(outfile.c_str());
    string bootfreqfile = params.out_prefix; // bootstrap pattern frequency vector file
    bootfreqfile += ".bootfreq";
    ofstream outfreq;
    outfreq.open(bootfreqfile.c_str());
    //out << "ID KLdist" << endl;

    out.precision(8);
    params.min_iterations = 0; // do not do tree search
    int start_site = 0;
    for (id = 0; id < params.bootlh_test; id++) {
    	Alignment *boot_aln;
        IntVector boot_freq;
        if (id==0) {
        	// include original alignment
        	boot_aln = alignment;
        	boot_freq = ptnfreq;
        } else if (id <= partitions.size()) {
        	int end_site = start_site + partitions[id-1];
        	boot_freq.resize(ptnfreq.size(), 0);
        	for (int site = start_site; site < end_site; site++)
        		boot_freq[alignment->getPatternID(site)]++;
        	// now multiplying the frequencies
        	for ( ptn = 0; ptn < boot_freq.size(); ptn++)
        		boot_freq[ptn]*=partitions.size();
    		if (alignment->isSuperAlignment())
    			boot_aln = new SuperAlignment;
    		else
    			boot_aln = new Alignment;
    		stringstream sitestr;
    		sitestr << start_site+1 << "-" << end_site;
        	cout << "-->Extracting sites " << sitestr.str() << endl;
    		boot_aln->extractSites(alignment, sitestr.str().c_str());
        	// now multiplying the frequencies
    		for (ptn = 0; ptn < boot_aln->size(); ptn++)
    			boot_aln->at(ptn).frequency *= partitions.size();
    		start_site = end_site;
        } else {
    		if (alignment->isSuperAlignment())
    			boot_aln = new SuperAlignment;
    		else
    			boot_aln = new Alignment;
        	boot_aln->createBootstrapAlignment(alignment, &boot_freq, params.bootstrap_spec);
        }
        for ( ptn = 0; ptn < boot_freq.size(); ptn++)
        	outfreq << "\t" << boot_freq[ptn];
        outfreq << endl;
        // computing Kullback-Leibler distance
        double dist = 0.0;
        for ( ptn = 0; ptn < ptnfreq.size(); ptn++)
        	if (boot_freq[ptn]) {
        		dist += log(((double)boot_freq[ptn])/ptnfreq[ptn]) * boot_freq[ptn];
        	}
        dist /= tree.getAlnNSite();
        out << id+1 << " " << dist;
        // now run analysis and compute tree likelihood for params.treeset_file
        if (params.treeset_file) {
			IQTree boot_tree(boot_aln);
			runTreeReconstruction(params, orig_model, boot_tree, model_info);
        	vector<TreeInfo> info;
        	IntVector distinct_ids;
        	evaluateTrees(params, &boot_tree, info, distinct_ids);
            for (int i = 0; i < info.size(); i++)
            	out << " " << info[i].logl;
        }
        out << endl;
        if (id != 0)
        	delete boot_aln;
    }
    out.close();
    outfreq.close();
}