File: lbfgsb_new.cpp

package info (click to toggle)
iqtree 1.5.3%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 9,780 kB
  • ctags: 11,529
  • sloc: cpp: 96,162; ansic: 59,874; python: 242; sh: 189; makefile: 45
file content (4605 lines) | stat: -rw-r--r-- 128,226 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
/*
 *
 * lbfgsb_new.cpp
 * HAL_HAS
 *
 * CSIRO Open Source Software License Agreement (GPLv3)
 * Copyright (c) 2014, Commonwealth Scientific and Industrial Research Organisation (CSIRO) ABN 41 687 119 230.
 * All rights reserved. CSIRO is willing to grant you a license to HAL-HAS on the terms of the GNU General Public
 * License version 3 as published by the Free Software Foundation (http://www.gnu.org/licenses/gpl.html), except
 * where otherwise indicated for third party material.
 * The following additional terms apply under clause 7 of that license:
 * EXCEPT AS EXPRESSLY STATED IN THIS AGREEMENT AND TO THE FULL EXTENT PERMITTED BY APPLICABLE LAW, THE SOFTWARE
 * IS PROVIDED "AS-IS". CSIRO MAKES NO REPRESENTATIONS, WARRANTIES OR CONDITIONS OF ANY KIND, EXPRESS OR IMPLIED,
 * INCLUDING BUT NOT LIMITED TO ANY REPRESENTATIONS, WARRANTIES OR CONDITIONS REGARDING THE CONTENTS OR ACCURACY
 * OF THE SOFTWARE, OR OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, THE ABSENCE
 * OF LATENT OR OTHER DEFECTS, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE.
 * TO THE FULL EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL CSIRO BE LIABLE ON ANY LEGAL THEORY (INCLUDING,
 * WITHOUT LIMITATION, IN AN ACTION FOR BREACH OF CONTRACT, NEGLIGENCE OR OTHERWISE) FOR ANY CLAIM, LOSS, DAMAGES
 * OR OTHER LIABILITY HOWSOEVER INCURRED.  WITHOUT LIMITING THE SCOPE OF THE PREVIOUS SENTENCE THE EXCLUSION OF
 * LIABILITY SHALL INCLUDE: LOSS OF PRODUCTION OR OPERATION TIME, LOSS, DAMAGE OR CORRUPTION OF DATA OR RECORDS;
 * OR LOSS OF ANTICIPATED SAVINGS, OPPORTUNITY, REVENUE, PROFIT OR GOODWILL, OR OTHER ECONOMIC LOSS; OR ANY SPECIAL,
 * INCIDENTAL, INDIRECT, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES, ARISING OUT OF OR IN CONNECTION WITH THIS
 * AGREEMENT, ACCESS OF THE SOFTWARE OR ANY OTHER DEALINGS WITH THE SOFTWARE, EVEN IF CSIRO HAS BEEN ADVISED OF
 * THE POSSIBILITY OF SUCH CLAIM, LOSS, DAMAGES OR OTHER LIABILITY.
 * APPLICABLE LEGISLATION SUCH AS THE AUSTRALIAN CONSUMER LAW MAY APPLY REPRESENTATIONS, WARRANTIES, OR CONDITIONS,
 * OR IMPOSES OBLIGATIONS OR LIABILITY ON CSIRO THAT CANNOT BE EXCLUDED, RESTRICTED OR MODIFIED TO THE FULL EXTENT
 * SET OUT IN THE EXPRESS TERMS OF THIS CLAUSE ABOVE "CONSUMER GUARANTEES".  TO THE EXTENT THAT SUCH CONSUMER
 * GUARANTEES CONTINUE TO APPLY, THEN TO THE FULL EXTENT PERMITTED BY THE APPLICABLE LEGISLATION, THE LIABILITY
 * OF CSIRO UNDER THE RELEVANT CONSUMER GUARANTEE IS LIMITED (WHERE PERMITTED AT CSIRO’S OPTION) TO ONE OF FOLLOWING
 * REMEDIES OR SUBSTANTIALLY EQUIVALENT REMEDIES:
 * (a)               THE REPLACEMENT OF THE SOFTWARE, THE SUPPLY OF EQUIVALENT SOFTWARE, OR SUPPLYING RELEVANT
 *                   SERVICES AGAIN;
 * (b)               THE REPAIR OF THE SOFTWARE;
 * (c)               THE PAYMENT OF THE COST OF REPLACING THE SOFTWARE, OF ACQUIRING EQUIVALENT SOFTWARE, HAVING THE
 *                   RELEVANT SERVICES SUPPLIED AGAIN, OR HAVING THE SOFTWARE REPAIRED.
 * IN THIS CLAUSE, CSIRO INCLUDES ANY THIRD PARTY AUTHOR OR OWNER OF ANY PART OF THE SOFTWARE OR MATERIAL DISTRIBUTED
 * WITH IT.  CSIRO MAY ENFORCE ANY RIGHTS ON BEHALF OF THE RELEVANT THIRD PARTY.
 * Third Party Components
 * The following third party components are distributed with the Software.  You agree to comply with the license
 * terms for these components as part of accessing the Software.  Other third party software may also be identified
 * in separate files distributed with the Software.
 * ___________________________________________________________________
 * 
 * R : A Computer Language for Statistical Data Analysis version 3.0.1 (http://cran.r-project.org/src/base/R-3/R-3.0.1.tar.gz)
 * Copyright (C) 2000-2004 The R Core Team
 * This software is licensed under GNU GPL
 * 
 * JACOBI_EIGENVALUE.C (http://people.sc.fsu.edu/~jburkardt/c_src/jacobi_eigenvalue/jacobi_eigenvalue.c)
 * Copyright (C) 2003-2013 John Burkardt
 * This software is licensed under GNU LGPL (http://www.gnu.org/licenses/lgpl.html)
 * ___________________________________________________________________
 */


#include "lbfgsb_new.h"
#include <algorithm>
//using namespace std;

static int c__1 = 1;
static int c__11 = 11;

#if 0

// Function to access the L-BFGS-B function
// 1. int n : The number of the variables
// 2. double* x : initial values of the variables
// 3. double* l : lower bounds of the variables
// 4. int maxit : max # of iterations
// 5. void* ex  : the wrapped variables for objective function
// After the function is invoked, the values of x will be updated
void lbfgsb_R(int n, double* x, double* l, int maxit, void* ex) {
	int i;
	double Fmin;
	int fail;
	int fncount;
	int grcount;
	char msg[100];

	int m = 5;          // number of BFGS updates retained in the "L-BFGS-B" method. It defaults to 5.

	double *u = NULL;   // upper bounds of the variables;

	int *nbd;           // 0: unbounded; 1: lower bounded; 2: both lower & upper; 3: upper bounded
	nbd = new int[n];
	for (i=0; i<n; i++)
		nbd[i] = 1;

	double factr = 1e7; // control the convergence of the "L-BFGS-B" method.
	// Convergence occurs when the reduction in the object is within this factor
	// of the machine tolerance.
	// Default is 1e7, that is a tolerance of about 1e-8

	double pgtol = 0;   // helps control the convergence of the "L-BFGS-B" method.
	// It is a tolerance on the projected gradient in the current search direction.
	// Default is zero, when the check is suppressed

	int trace = 0;      // non-negative integer.
	// If positive, tracing information on the progress of the optimization is produced.
	// Higher values may produce more tracing information.

	int nREPORT = 10;   // The frequency of reports for the "L-BFGS-B" methods if "trace" is positive.
	// Defaults to every 10 iterations.

/*#ifdef USE_OLD_PARAM
	lbfgsb(n, m, x, l, u, nbd, &Fmin, fn, gr1, &fail, ex,
			factr, pgtol, &fncount, &grcount, maxit, msg, trace, nREPORT);
#else*/
	lbfgsb(n, m, x, l, u, nbd, &Fmin, fn, gr2, &fail, ex,
			factr, pgtol, &fncount, &grcount, maxit, msg, trace, nREPORT);
//#endif

	delete[] nbd;
}

// Function to access the L-BFGS-B function
// 1. int n : The number of the variables
// 2. double* x : initial values of the variables
// 3. double* l : lower bounds of the variables
// 4. double* u : upper bounds of the variables
// 5. int maxit : max # of iterations
// 6. void* ex  : the wrapped variables for objective function
// After the function is invoked, the values of x will be updated
void lbfgsb_R2(int n, double* x, double* l, double* u, int maxit, void* ex) {
	int i;
	double Fmin;
	int fail;
	int fncount;
	int grcount;
	char msg[100];

	int m = 5;          // number of BFGS updates retained in the "L-BFGS-B" method. It defaults to 5.

	int *nbd;           // 0: unbounded; 1: lower bounded; 2: both lower & upper; 3: upper bounded
	nbd = new int[n];
	for (i=0; i<n; i++)
		nbd[i] = 2;

	double factr = 1e7; // control the convergence of the "L-BFGS-B" method.
	// Convergence occurs when the reduction in the object is within this factor
	// of the machine tolerance.
	// Default is 1e7, that is a tolerance of about 1e-8

	double pgtol = 0;   // helps control the convergence of the "L-BFGS-B" method.
	// It is a tolerance on the projected gradient in the current search direction.
	// Default is zero, when the check is suppressed

	int trace = 0;      // non-negative integer.
	// If positive, tracing information on the progress of the optimization is produced.
	// Higher values may produce more tracing information.

	int nREPORT = 10;   // The frequency of reports for the "L-BFGS-B" methods if "trace" is positive.
	// Defaults to every 10 iterations.

/*#ifdef USE_OLD_PARAM
	lbfgsb(n, m, x, l, u, nbd, &Fmin, fn, gr1, &fail, ex,
			factr, pgtol, &fncount, &grcount, maxit, msg, trace, nREPORT);
#else*/
	lbfgsb(n, m, x, l, u, nbd, &Fmin, fn, gr2, &fail, ex,
			factr, pgtol, &fncount, &grcount, maxit, msg, trace, nREPORT);
//#endif

	delete[] nbd;
}

#endif

// ========================================================= //
// FUNCTIONS converted from R v.3.0.1
// ========================================================= //

void lbfgsb(int n, int m, double *x, double *l, double *u, int *nbd,
		double *Fmin, optimfn fminfn, optimgr fmingr, int *fail,
		void *ex, double factr, double pgtol,
		int *fncount, int *grcount, int maxit, char *msg,
		int trace, int nREPORT)
{
	char task[60];
	double f, *g, dsave[29], *wa;
	int tr = -1, iter = 0, *iwa, isave[44], lsave[4];

	/* shut up gcc -Wall in 4.6.x */

	for(int i = 0; i < 4; i++) lsave[i] = 0;

	if(n == 0) { /* not handled in setulb */
		*fncount = 1;
		*grcount = 0;
		*Fmin = fminfn(n, u, ex);
		strcpy(msg, "NOTHING TO DO");
		*fail = 0;
		return;
	}
	if (nREPORT <= 0) {
		cerr << "REPORT must be > 0 (method = \"L-BFGS-B\")" << endl;
		exit(1);
	}
	switch(trace) {
	case 2: tr = 0; break;
	case 3: tr = nREPORT; break;
	case 4: tr = 99; break;
	case 5: tr = 100; break;
	case 6: tr = 101; break;
	default: tr = -1; break;
	}

	*fail = 0;
	g = (double*) malloc (n * sizeof(double));
	/* this needs to be zeroed for snd in mainlb to be zeroed */
	wa = (double *) malloc((2*m*n+4*n+11*m*m+8*m) * sizeof(double));
	iwa = (int *) malloc(3*n * sizeof(int));
	strcpy(task, "START");
	while(1) {
		/* Main workhorse setulb() from ../appl/lbfgsb.c : */
		setulb(n, m, x, l, u, nbd, &f, g, factr, &pgtol, wa, iwa, task,
				tr, lsave, isave, dsave);
		/*    Rprintf("in lbfgsb - %s\n", task);*/
		if (strncmp(task, "FG", 2) == 0) {
			f = fminfn(n, x, ex);
			if (!isfinite(f)) {
				cerr << "L-BFGS-B needs finite values of 'fn'" << endl;
				exit(1);
			}
			fmingr(n, x, g, ex);
		} else if (strncmp(task, "NEW_X", 5) == 0) {
			iter++;
			if(trace == 1 && (iter % nREPORT == 0)) {
				cout << "iter " << iter << " value " << f << endl;
			}
			if (iter > maxit) {
				*fail = 1;
				break;
			}
		} else if (strncmp(task, "WARN", 4) == 0) {
			*fail = 51;
			break;
		} else if (strncmp(task, "CONV", 4) == 0) {
			break;
		} else if (strncmp(task, "ERROR", 5) == 0) {
			*fail = 52;
			break;
		} else { /* some other condition that is not supposed to happen */
			*fail = 52;
			break;
		}
	}
	*Fmin = f;
	*fncount = *grcount = isave[33];
	if (trace) {
		cout << "final value " << *Fmin << endl;
		if (iter < maxit && *fail == 0)
			cout << "converged" << endl;
		else
			cout << "stopped after " << iter << " iterations\n";
	}
	strcpy(msg, task);
	free(g);
	free(wa);
	free(iwa);
}

void setulb(int n, int m, double *x, double *l, double *u, int *nbd,
		double *f, double *g, double factr, double *pgtol,
		double *wa, int * iwa, char *task, int iprint,
		int *lsave, int *isave, double *dsave)
{
	/*     ************

	 Subroutine setulb

	 This subroutine partitions the working arrays wa and iwa, and
	 then uses the limited memory BFGS method to solve the bound
	 constrained optimization problem by calling mainlb.
	 (The direct method will be used in the subspace minimization.)

	 n is an integer variable.
	 On entry n is the dimension of the problem.
	 On exit n is unchanged.

	 m is an integer variable.
	 On entry m is the maximum number of variable metric corrections
	 used to define the limited memory matrix.
	 On exit m is unchanged.

	 x is a double precision array of dimension n.
	 On entry x is an approximation to the solution.
	 On exit x is the current approximation.

	 l is a double precision array of dimension n.
	 On entry l is the lower bound on x.
	 On exit l is unchanged.

	 u is a double precision array of dimension n.
	 On entry u is the upper bound on x.
	 On exit u is unchanged.

	 nbd is an integer array of dimension n.
	 On entry nbd represents the type of bounds imposed on the
	 variables, and must be specified as follows:
	 nbd(i)=0 if x(i) is unbounded,
	 1 if x(i) has only a lower bound,
	 2 if x(i) has both lower and upper bounds, and
	 3 if x(i) has only an upper bound.
	 On exit nbd is unchanged.

	 f is a double precision variable.
	 On first entry f is unspecified.
	 On final exit f is the value of the function at x.

	 g is a double precision array of dimension n.
	 On first entry g is unspecified.
	 On final exit g is the value of the gradient at x.

	 factr is a double precision variable.
	 On entry factr >= 0 is specified by the user.    The iteration
	 will stop when

	 (f^k - f^{k+1})/max{|f^k|,|f^{k+1}|,1} <= factr*epsmch

	 where epsmch is the machine precision, which is automatically
	 generated by the code. Typical values for factr: 1.d+12 for
	 low accuracy; 1.d+7 for moderate accuracy; 1.d+1 for extremely
	 high accuracy.
	 On exit factr is unchanged.

	 pgtol is a double precision variable.
	 On entry pgtol >= 0 is specified by the user.    The iteration
	 will stop when

	 max{|proj g_i | i = 1, ..., n} <= pgtol

	 where pg_i is the ith component of the projected gradient.
	 On exit pgtol is unchanged.

	 wa is a double precision working array of length
	 (2mmax + 4)nmax + 11mmax^2 + 8mmax.

	 iwa is an integer working array of length 3nmax.

	 task is a working string of characters of length 60 indicating
	 the current job when entering and quitting this subroutine.

	 iprint is an integer variable that must be set by the user.
	 It controls the frequency and type of output generated:
	 iprint<0    no output is generated;
	 iprint=0    print only one line at the last iteration;
	 0<iprint<99 print also f and |proj g| every iprint iterations;
	 iprint=99   print details of every iteration except n-vectors;
	 iprint=100  print also the changes of active set and final x;
	 iprint>100  print details of every iteration including x and g;
	 When iprint > 0, the file iterate.dat will be created to
	 summarize the iteration.

	 csave is a working string of characters of length 60.

	 lsave is a logical working array of dimension 4.
	 On exit with 'task' = NEW_X, the following information is
	 available:
	 If lsave(1) = .true. then  the initial X has been replaced by
	 its projection in the feasible set;
	 If lsave(2) = .true. then  the problem is constrained;
	 If lsave(3) = .true. then  each variable has upper and lower
	 bounds;

	 isave is an integer working array of dimension 44.
	 On exit with 'task' = NEW_X, the following information is
	 available:
	 isave(22) = the total number of intervals explored in the
	 search of Cauchy points;
	 isave(26) = the total number of skipped BFGS updates before
	 the current iteration;
	 isave(30) = the number of current iteration;
	 isave(31) = the total number of BFGS updates prior the current
	 iteration;
	 isave(33) = the number of intervals explored in the search of
	 Cauchy point in the current iteration;
	 isave(34) = the total number of function and gradient
	 evaluations;
	 isave(36) = the number of function value or gradient
	 evaluations in the current iteration;
	 if isave(37) = 0  then the subspace argmin is within the box;
	 if isave(37) = 1  then the subspace argmin is beyond the box;
	 isave(38) = the number of free variables in the current
	 iteration;
	 isave(39) = the number of active constraints in the current
	 iteration;
	 n + 1 - isave(40) = the number of variables leaving the set of
	 active constraints in the current iteration;
	 isave(41) = the number of variables entering the set of active
	 constraints in the current iteration.

	 dsave is a double precision working array of dimension 29.
	 On exit with 'task' = NEW_X, the following information is
	 available:
	 dsave(1) = current 'theta' in the BFGS matrix;
	 dsave(2) = f(x) in the previous iteration;
	 dsave(3) = factr*epsmch;
	 dsave(4) = 2-norm of the line search direction vector;
	 dsave(5) = the machine precision epsmch generated by the code;
	 dsave(7) = the accumulated time spent on searching for
	 Cauchy points;
	 dsave(8) = the accumulated time spent on
	 subspace minimization;
	 dsave(9) = the accumulated time spent on line search;
	 dsave(11) = the slope of the line search function at
	 the current point of line search;
	 dsave(12) = the maximum relative step length imposed in
	 line search;
	 dsave(13) = the infinity norm of the projected gradient;
	 dsave(14) = the relative step length in the line search;
	 dsave(15) = the slope of the line search function at
	 the starting point of the line search;
	 dsave(16) = the square of the 2-norm of the line search
	 direction vector.

	 Subprograms called:

	 L-BFGS-B Library ... mainlb.


	 References:

	 [1] R. H. Byrd, P. Lu, J. Nocedal and C. Zhu, ``A limited
	 memory algorithm for bound constrained optimization'',
	 SIAM J. Scientific Computing 16 (1995), no. 5, pp. 1190--1208.

	 [2] C. Zhu, R.H. Byrd, P. Lu, J. Nocedal, ``L-BFGS-B: a
	 limited memory FORTRAN code for solving bound constrained
	 optimization problems'', Tech. Report, NAM-11, EECS Department,
	 Northwestern University, 1994.

	 (Postscript files of these papers are available via anonymous
	 ftp to ece.nwu.edu in the directory pub/lbfgs/lbfgs_bcm.)

	 [Aug 2000: via http://www.ece.nwu.edu/~nocedal/lbfgsb.html]

	 *    *  *

	 NEOS, November 1994. (Latest revision April 1997.)
	 Optimization Technology Center.
	 Argonne National Laboratory and Northwestern University.
	 Written by
	 Ciyou Zhu
	 in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.

	 ************
	 */

	char csave[60];

	/* Local variables */
	int lsnd, ld, lr, lt;
	int lz, lwa, lwn, lss, lws, lwt, lsy, lwy;

	/* make sure csave is initialized */
	csave[0] = '\0';

	/* Parameter adjustments */
	--wa;
	--isave;

	/* Function Body */
	if (strncmp(task, "START", 5) == 0) {
		isave[1] = m * n;
		isave[2] = m * m;
		isave[3] = m * m << 2;
		isave[4] = 1;
		isave[5] = isave[4] + isave[1];
		isave[6] = isave[5] + isave[1];
		isave[7] = isave[6] + isave[2];
		isave[8] = isave[7] + isave[2];
		isave[9] = isave[8];
		isave[10] = isave[9] + isave[2];
		isave[11] = isave[10] + isave[3];
		isave[12] = isave[11] + isave[3];
		isave[13] = isave[12] + n;
		isave[14] = isave[13] + n;
		isave[15] = isave[14] + n;
		isave[16] = isave[15] + n;
	}
	lws = isave[4];
	lwy = isave[5];
	lsy = isave[6];
	lss = isave[7];
	lwt = isave[9];
	lwn = isave[10];
	lsnd = isave[11];
	lz = isave[12];
	lr = isave[13];
	ld = isave[14];
	lt = isave[15];
	lwa = isave[16];
	mainlb(n, m, x, l, u, nbd, f, g, factr, pgtol,
			&wa[lws], &wa[lwy], &wa[lsy],&wa[lss], &wa[lwt],&wa[lwn],
			&wa[lsnd], &wa[lz], &wa[lr], &wa[ld], &wa[lt], &wa[lwa],
			iwa, &iwa[n], &iwa[n << 1], task, iprint,
			csave, lsave, &isave[22], dsave);
	return;
} /* setulb */


void mainlb(int n, int m, double *x,
		double *l, double *u, int *nbd, double *f, double *g,
		double factr, double *pgtol, double *ws, double * wy,
		double *sy, double *ss, double *wt, double *wn,
		double *snd, double *z, double *r, double *d,
		double *t, double *wa, int *indx, int *iwhere,
		int *indx2, char *task, int iprint,
		char *csave, int *lsave, int *isave, double *dsave)
{
	/*     ************
	 Subroutine mainlb

	 This subroutine solves bound constrained optimization problems by
	 using the compact formula of the limited memory BFGS updates.

	 n is an integer variable.
	 On entry n is the number of variables.
	 On exit n is unchanged.

	 m is an integer variable.
	 On entry m is the maximum number of variable metric
	 corrections allowed in the limited memory matrix.
	 On exit m is unchanged.

	 x is a double precision array of dimension n.
	 On entry x is an approximation to the solution.
	 On exit x is the current approximation.

	 l is a double precision array of dimension n.
	 On entry l is the lower bound of x.
	 On exit l is unchanged.

	 u is a double precision array of dimension n.
	 On entry u is the upper bound of x.
	 On exit u is unchanged.

	 nbd is an integer array of dimension n.
	 On entry nbd represents the type of bounds imposed on the
	 variables, and must be specified as follows:
	 nbd(i)=0 if x(i) is unbounded,
	 1 if x(i) has only a lower bound,
	 2 if x(i) has both lower and upper bounds,
	 3 if x(i) has only an upper bound.
	 On exit nbd is unchanged.

	 f is a double precision variable.
	 On first entry f is unspecified.
	 On final exit f is the value of the function at x.

	 g is a double precision array of dimension n.
	 On first entry g is unspecified.
	 On final exit g is the value of the gradient at x.

	 factr is a double precision variable.
	 On entry factr >= 0 is specified by the user.    The iteration
	 will stop when

	 (f^k - f^{k+1})/max{|f^k|,|f^{k+1}|,1} <= factr*epsmch

	 where epsmch is the machine precision, which is automatically
	 generated by the code.
	 On exit factr is unchanged.

	 pgtol is a double precision variable.
	 On entry pgtol >= 0 is specified by the user.    The iteration
	 will stop when

	 max{|proj g_i | i = 1, ..., n} <= pgtol

	 where pg_i is the ith component of the projected gradient.
	 On exit pgtol is unchanged.

	 ws, wy, sy, and wt are double precision working arrays used to
	 store the following information defining the limited memory
	 BFGS matrix:
	 ws, of dimension n x m, stores S, the matrix of s-vectors;
	 wy, of dimension n x m, stores Y, the matrix of y-vectors;
	 sy, of dimension m x m, stores S'Y;
	 ss, of dimension m x m, stores S'S;
	 wt, of dimension m x m, stores the Cholesky factorization
	 of (theta*S'S+LD^(-1)L'); see eq.
	 (2.26) in [3].

	 wn is a double precision working array of dimension 2m x 2m
	 used to store the LEL^T factorization of the indefinite matrix
	 K = [-D -Y'ZZ'Y/theta     L_a'-R_z'    ]
	 [L_a -R_z       theta*S'AA'S ]

	 where       E = [-I  0]
	 [ 0  I]

	 snd is a double precision working array of dimension 2m x 2m
	 used to store the lower triangular part of
	 N = [Y' ZZ'Y      L_a'+R_z']
	 [L_a +R_z  S'AA'S   ]

	 z(n),r(n),d(n),t(n),wa(8*m) are double precision working arrays.
	 z is used at different times to store the Cauchy point and
	 the Newton point.


	 indx is an integer working array of dimension n.
	 In subroutine freev, indx is used to store the free and fixed
	 variables at the Generalized Cauchy Point (GCP).

	 iwhere is an integer working array of dimension n used to record
	 the status of the vector x for GCP computation.
	 iwhere(i)=0 or -3 if x(i) is free and has bounds,
	 1       if x(i) is fixed at l(i), and l(i) .ne. u(i)
	 2       if x(i) is fixed at u(i), and u(i) .ne. l(i)
	 3       if x(i) is always fixed, i.e.,  u(i)=x(i)=l(i)
	 -1       if x(i) is always free, i.e., no bounds on it.

	 indx2 is an integer working array of dimension n.
	 Within subroutine cauchy, indx2 corresponds to the array iorder.
	 In subroutine freev, a list of variables entering and leaving
	 the free set is stored in indx2, and it is passed on to
	 subroutine formk with this information.

	 task is a working string of characters of length 60 indicating
	 the current job when entering and leaving this subroutine.

	 iprint is an INTEGER variable that must be set by the user.
	 It controls the frequency and type of output generated:
	 iprint<0    no output is generated;
	 iprint=0    print only one line at the last iteration;
	 0<iprint<99 print also f and |proj g| every iprint iterations;
	 iprint=99   print details of every iteration except n-vectors;
	 iprint=100  print also the changes of active set and final x;
	 iprint>100  print details of every iteration including x and g;
	 When iprint > 0, the file iterate.dat will be created to
	 summarize the iteration.

	 csave is a working string of characters of length 60.

	 lsave is a logical working array of dimension 4.

	 isave is an integer working array of dimension 23.

	 dsave is a double precision working array of dimension 29.


	 Subprograms called

	 L-BFGS-B Library ... cauchy, subsm, lnsrlb, formk,

	 errclb, prn1lb, prn2lb, prn3lb, active, projgr,

	 freev, cmprlb, matupd, formt.

	 Minpack2 Library ... timer, dpmeps.

	 Linpack Library ... dcopy, ddot.


	 References:

	 [1] R. H. Byrd, P. Lu, J. Nocedal and C. Zhu, ``A limited
	 memory algorithm for bound constrained optimization'',
	 SIAM J. Scientific Computing 16 (1995), no. 5, pp. 1190--1208.

	 [2] C. Zhu, R.H. Byrd, P. Lu, J. Nocedal, ``L-BFGS-B: FORTRAN
	 Subroutines for Large Scale Bound Constrained Optimization''
	 Tech. Report, NAM-11, EECS Department, Northwestern University,
	 1994.

	 [3] R. Byrd, J. Nocedal and R. Schnabel "Representations of
	 Quasi-Newton Matrices and their use in Limited Memory Methods'',
	 Mathematical Programming 63 (1994), no. 4, pp. 129-156.

	 (Postscript files of these papers are available via anonymous
	 ftp to ece.nwu.edu in the directory pub/lbfgs/lbfgs_bcm.)

	 *  *     *
	 */

	/*
	 NEOS, November 1994. (Latest revision April 1997.)
	 Optimization Technology Center.
	 Argonne National Laboratory and Northwestern University.
	 Written by
	 Ciyou Zhu
	 in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.

	 ************
	 */


	/* System generated locals */
	int ws_offset=0, wy_offset=0, sy_offset=0, ss_offset=0, wt_offset=0,
			wn_offset=0, snd_offset=0, i__1;
	double d__1, d__2;

	/* Local variables */
	int head;
	double fold;
	int nact;
	double ddum;
	int info;
	int nfgv, ifun, iter, nint;
	char word[4]; /* allow for terminator */
	int i, iback, k = 0; /* -Wall */
	double gdold;
	int nfree;
	int boxed;
	int itail;
	double theta;
	double dnorm;
	int nskip, iword;
	double xstep = 0.0, stpmx; /* xstep is printed before being used */
	double gd, dr, rr;
	int ileave;
	int itfile;
	double cachyt, epsmch;
	int updatd;
	double sbtime;
	int prjctd;
	int iupdat;
	int cnstnd;
	double sbgnrm;
	int nenter;
	double lnscht;
	int nintol;
	double dtd;
	int col;
	double tol;
	int wrk;
	double stp, cpu1, cpu2;

	/* Parameter adjustments */
	--indx2;
	--iwhere;
	--indx;
	--t;
	--d;
	--r;
	--z;
	--g;
	--nbd;
	--u;
	--l;
	--x;
	--wa;
	--lsave;
	--isave;
	--dsave;

	/* Function Body */
	if (strncmp(task, "START", 5) == 0) {
		/*      Generate the current machine precision. */
		epsmch = DBL_EPSILON;
		fold = 0.;
		dnorm = 0.;
		cpu1 = 0.;
		gd = 0.;
		sbgnrm = 0.;
		stp = 0.;
		xstep = 0.;
		stpmx = 0.;
		gdold = 0.;
		dtd = 0.;
		/*      Initialize counters and scalars when task='START'. */
		/*         for the limited memory BFGS matrices: */
		col = 0;
		head = 1;
		theta = 1.;
		iupdat = 0;
		updatd = 0;
		iback = 0;
		itail = 0;
		ifun = 0;
		iword = 0;
		nact = 0;
		ileave = 0;
		nenter = 0;
		/*         for operation counts: */
		iter = 0;
		nfgv = 0;
		nint = 0;
		nintol = 0;
		nskip = 0;
		nfree = n;
		/*         for stopping tolerance: */
		tol = factr * epsmch;
		/*         for measuring running time: */
		cachyt = 0.;
		sbtime = 0.;
		lnscht = 0.;
		/*         'word' records the status of subspace solutions. */
		strcpy(word, "---");
		/*         'info' records the termination information. */
		info = 0;
		itfile = 0;
		/*      Check the input arguments for errors. */
		errclb(n, m, factr, &l[1], &u[1], &nbd[1], task, &info, &k);
		if (strncmp(task, "ERROR", 5) == 0) {
			prn3lb(n, x+1, f, task, iprint, info,
					iter, nfgv, nintol, nskip, nact, sbgnrm,
					nint, word, iback, stp, xstep, k);
			return;
		}

		prn1lb(n, m, l+1, u+1, x+1, iprint, epsmch);

		/*      Initialize iwhere & project x onto the feasible set. */
		active(n, &l[1], &u[1], &nbd[1], &x[1], &iwhere[1], iprint, &prjctd,
				&cnstnd, &boxed);
		/*      The end of the initialization. */
	} else {
		/*        restore local variables. */
		prjctd = lsave[1];
		cnstnd = lsave[2];
		boxed = lsave[3];
		updatd = lsave[4];

		nintol = isave[1];
		itfile = isave[3];
		iback = isave[4];
		nskip = isave[5];
		head = isave[6];
		col = isave[7];
		itail = isave[8];
		iter = isave[9];
		iupdat = isave[10];
		nint = isave[12];
		nfgv = isave[13];
		info = isave[14];
		ifun = isave[15];
		iword = isave[16];
		nfree = isave[17];
		nact = isave[18];
		ileave = isave[19];
		nenter = isave[20];

		theta = dsave[1];
		fold = dsave[2];
		tol = dsave[3];
		dnorm = dsave[4];
		epsmch = dsave[5];
		cpu1 = dsave[6];
		cachyt = dsave[7];
		sbtime = dsave[8];
		lnscht = dsave[9];
		gd = dsave[11];
		stpmx = dsave[12];
		sbgnrm = dsave[13];
		stp = dsave[14];
		gdold = dsave[15];
		dtd = dsave[16];
		/*    After returning from the driver go to the point where execution */
		/*    is to resume. */
		if (strncmp(task, "FG_LN", 5) == 0)    goto L666;
		if (strncmp(task, "NEW_X", 5) == 0)     goto L777;
		if (strncmp(task, "FG_ST", 5) == 0)     goto L111;

		if (strncmp(task, "STOP", 4) == 0) {
			if (strncmp(task + 6, "CPU", 3) == 0) {
				// restore the previous iterate.
				dcopy(&n, &t[1], &c__1, &x[1], &c__1);
				dcopy(&n, &r[1], &c__1, &g[1], &c__1);
				*f = fold;
			}
			goto L999;
		}
	}
	/*     Compute f0 and g0. */
	strcpy(task, "FG_START");
	/*        return to the driver to calculate f and g; reenter at 111. */
	goto L1000;
	L111:
	nfgv = 1;
	/*     Compute the infinity norm of the (-) projected gradient. */
	projgr(n, &l[1], &u[1], &nbd[1], &x[1], &g[1], &sbgnrm);

	if (iprint >= 1)
		cout << "At iterate " << iter << " f= " << *f << " |proj g|= " << sbgnrm << endl;

	if (sbgnrm <= *pgtol) {
		/*                  terminate the algorithm. */
		strcpy(task, "CONVERGENCE: NORM OF PROJECTED GRADIENT <= PGTOL");
		goto L999;
	}
	/* ----------------- the beginning of the loop -------------------------- */
	L222:
	if (iprint >= 99)
		cout << "Iteration " << iter << endl;
	iword = -1;

	if (! cnstnd && col > 0) {
		/*                          skip the search for GCP. */
		dcopy(&n, &x[1], &c__1, &z[1], &c__1);
		wrk = updatd;
		nint = 0;
		goto L333;
	}
	/* ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc */

	/*     Compute the Generalized Cauchy Point (GCP). */

	/* ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc */
	timer(&cpu1);
	cauchy(n, &x[1], &l[1], &u[1], &nbd[1], &g[1], &indx2[1], &iwhere[1], &t[
																			 1], &d[1], &z[1], m, &wy[wy_offset], &ws[ws_offset], &sy[
																																	  sy_offset], &wt[wt_offset], &theta, &col, &head, &wa[1], &wa[(m
																																			  << 1) + 1], &wa[(m << 2) + 1], &wa[m * 6 + 1], &nint, iprint, &
																																			  sbgnrm, &info, &epsmch);
	if (info != 0) {
		/*       singular triangular system detected; refresh the lbfgs memory. */
		if (iprint >= 1) {
			cout << "Singular triangular system detected;" << endl;
			cout << "   refresh the lbfgs memory and restart the iteration." << endl;
		}
		info = 0;
		col = 0;
		head = 1;
		theta = 1.;
		iupdat = 0;
		updatd = 0;
		timer(&cpu2);
		cachyt = cachyt + cpu2 - cpu1;
		goto L222;
	}
	timer(&cpu2);
	cachyt = cachyt + cpu2 - cpu1;
	nintol += nint;
	/*     Count the entering and leaving variables for iter > 0; */
	/*     find the index set of free and active variables at the GCP. */
	freev(n, &nfree, &indx[1], &nenter, &ileave, &indx2[1], &iwhere[1], &
			wrk, &updatd, &cnstnd, iprint, &iter);
	nact = n - nfree;
	L333:
	/*     If there are no free variables or B=theta*I, then */
	/*                      skip the subspace minimization. */
	if (nfree == 0 || col == 0) {
		goto L555;
	}
	/* ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc */

	/*     Subspace minimization. */

	/* ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc */
	timer(&cpu1);
	/*     Form  the LEL^T factorization of the indefinite */
	/*     matrix       K = [-D -Y'ZZ'Y/theta     L_a'-R_z'    ] */
	/*               [L_a -R_z       theta*S'AA'S ] */
	/*     where       E = [-I  0] */
	/*               [ 0  I] */
	if (wrk) {
		formk(n, &nfree, &indx[1], &nenter, &ileave, &indx2[1], &iupdat, &
				updatd, &wn[wn_offset], &snd[snd_offset], m, &ws[ws_offset], &
				wy[wy_offset], &sy[sy_offset], &theta, &col, &head, &info);
	}
	if (info != 0) {
		/*        nonpositive definiteness in Cholesky factorization; */
		/*        refresh the lbfgs memory and restart the iteration. */
		if (iprint >= 0) {
			cout << "Nonpositive definiteness in Cholesky factorization in formk;" << endl;
			cout << "   refresh the lbfgs memory and restart the iteration." << endl;
		}
		info = 0;
		col = 0;
		head = 1;
		theta = 1.;
		iupdat = 0;
		updatd = 0;
		timer(&cpu2);
		sbtime = sbtime + cpu2 - cpu1;
		goto L222;
	}
	/*      compute r=-Z'B(xcp-xk)-Z'g (using wa(2m+1)=W'(xcp-x) */
	/*                             from 'cauchy'). */
	cmprlb(n, m, &x[1], &g[1], &ws[ws_offset], &wy[wy_offset], &sy[sy_offset]
																   , &wt[wt_offset], &z[1], &r[1], &wa[1], &indx[1], &theta, &
																   col, &head, &nfree, &cnstnd, &info);
	if (info != 0) {
		goto L444;
	}
	/*     call the direct method. */
	subsm(n, m, &nfree, &indx[1], &l[1], &u[1], &nbd[1], &z[1], &r[1], &
			ws[ws_offset], &wy[wy_offset], &theta, &col, &head, &iword, &wa[1]
																			, &wn[wn_offset], iprint, &info);
	L444:
	if (info != 0) {
		/*        singular triangular system detected; */
		/*        refresh the lbfgs memory and restart the iteration. */
		if (iprint >= 1) {
			cout << "Singular triangular system detected;" << endl;
			cout << "   refresh the lbfgs memory and restart the iteration." << endl;
		}
		info = 0;
		col = 0;
		head = 1;
		theta = 1.;
		iupdat = 0;
		updatd = 0;
		timer(&cpu2);
		sbtime = sbtime + cpu2 - cpu1;
		goto L222;
	}
	timer(&cpu2);
	sbtime = sbtime + cpu2 - cpu1;
	L555:
	/* ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc */

	/*     Line search and optimality tests. */

	/* ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc */
	/*     Generate the search direction d:=z-x. */
	i__1 = n;
	for (i = 1; i <= i__1; ++i) {
		d[i] = z[i] - x[i];
		/* L40: */
	}
	timer(&cpu1);
	L666:
	lnsrlb(n, &l[1], &u[1], &nbd[1], &x[1], f, &fold, &gd, &gdold, &g[1], &
			d[1], &r[1], &t[1], &z[1], &stp, &dnorm, &dtd, &xstep, &
			stpmx, &iter, &ifun, &iback, &nfgv, &info, task, &boxed, &cnstnd,
			csave, &isave[22], &dsave[17]);
	if (info != 0 || iback >= 20) {
		/*        restore the previous iterate. */
		dcopy(&n, &t[1], &c__1, &x[1], &c__1);
		dcopy(&n, &r[1], &c__1, &g[1], &c__1);
		*f = fold;
		if (col == 0) {
			/*           abnormal termination. */
			if (info == 0) {
				info = -9;
				/*          restore the actual number of f and g evaluations etc. */
				--nfgv;
				--ifun;
				--iback;
			}
			strcpy(task, "ERROR: ABNORMAL_TERMINATION_IN_LNSRCH");
			++iter;
			goto L999;
		} else {
			/*           refresh the lbfgs memory and restart the iteration. */
			if (iprint >= 1) {
				cout << "Bad direction in the line search;" << endl;
				cout << "   refresh the lbfgs memory and restart the iteration." << endl;
			}
			if (info == 0) {
				--nfgv;
			}
			info = 0;
			col = 0;
			head = 1;
			theta = 1.;
			iupdat = 0;
			updatd = 0;
			strcpy(task, "RESTART_FROM_LNSRCH");
			timer(&cpu2);
			lnscht = lnscht + cpu2 - cpu1;
			goto L222;
		}
	} else if (strncmp(task, "FG_LN", 5) == 0) {
		/*        return to the driver for calculating f and g; reenter at 666. */
		goto L1000;
	} else {
		/*        calculate and print out the quantities related to the new X. */
		timer(&cpu2);
		lnscht = lnscht + cpu2 - cpu1;
		++iter;
		/*      Compute the infinity norm of the projected (-)gradient. */
		projgr(n, &l[1], &u[1], &nbd[1], &x[1], &g[1], &sbgnrm);
		/*      Print iteration information. */
		prn2lb(n, x+1, f, g+1, iprint, iter, nfgv, nact,
				sbgnrm, nint, word, iword, iback, stp, xstep);
		goto L1000;
	}
	L777:
	/*     Test for termination. */
	if (sbgnrm <= *pgtol) {
		/*                  terminate the algorithm. */
		strcpy(task, "CONVERGENCE: NORM OF PROJECTED GRADIENT <= PGTOL");
		goto L999;
	}
	/* Computing MAX */
	d__1 = fabs(fold), d__2 = fabs(*f), d__1 = max(d__1,d__2);
	ddum = max((double)d__1,(double)1.);
	if (fold - *f <= tol * ddum) {
		/*                      terminate the algorithm. */
		strcpy(task, "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH");
		if (iback >= 10) info = -5;
		/*         i.e., to issue a warning if iback>10 in the line search. */
		goto L999;
	}
	/*     Compute d=newx-oldx, r=newg-oldg, rr=y'y and dr=y's. */
	i__1 = n;
	for (i = 1; i <= i__1; ++i) {
		r[i] = g[i] - r[i];
		/* L42: */
	}
	rr = ddot(&n, &r[1], &c__1, &r[1], &c__1);
	if (stp == 1.) {
		dr = gd - gdold;
		ddum = -gdold;
	} else {
		dr = (gd - gdold) * stp;
		dscal(&n, &stp, &d[1], &c__1);
		ddum = -gdold * stp;
	}
	if (dr <= epsmch * ddum) {
		/*                  skip the L-BFGS update. */
		++nskip;
		updatd = 0;
		if (iprint >= 1) {
			cout << "ys=" << dr << "   -gs=" << ddum << ", BFGS update SKIPPED" << endl;
		}
		goto L888;
	}
	/* ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc */

	/*     Update the L-BFGS matrix. */

	/* ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc */
	updatd = 1;
	++iupdat;
	/*     Update matrices WS and WY and form the middle matrix in B. */
	matupd(n, m, &ws[ws_offset], &wy[wy_offset], &sy[sy_offset], &ss[
																	 ss_offset], &d[1], &r[1], &itail, &iupdat, &col, &head, &
																	 theta, &rr, &dr, &stp, &dtd);
	/*     Form the upper half of the pds T = theta*SS + L*D^(-1)*L'; */
	/*      Store T in the upper triangular of the array wt; */
	/*      Cholesky factorize T to J*J' with */
	/*         J' stored in the upper triangular of wt. */
	formt(m, &wt[wt_offset], &sy[sy_offset], &ss[ss_offset], &col, &theta, &
			info);
	if (info != 0) {
		/*        nonpositive definiteness in Cholesky factorization; */
		/*        refresh the lbfgs memory and restart the iteration. */
		if (iprint >= 0) {
			cout << "Nonpositive definiteness in Cholesky factorization in formk;" << endl;
			cout << "   refresh the lbfgs memory and restart the iteration." << endl;
		}
		info = 0;
		col = 0;
		head = 1;
		theta = 1.;
		iupdat = 0;
		updatd = 0;
		goto L222;
	}
	/*     Now the inverse of the middle matrix in B is */
	/*     [  D^(1/2)     O ] [ -D^(1/2)     D^(-1/2)*L' ] */
	/*     [ -L*D^(-1/2)     J ] [    0     J'         ] */
	L888:
	/* -------------------- the end of the loop ----------------------------- */
	goto L222;
	L999:
	L1000:
	/*     Save local variables. */
	lsave[1] = prjctd;
	lsave[2] = cnstnd;
	lsave[3] = boxed;
	lsave[4] = updatd;
	isave[1] = nintol;
	isave[3] = itfile;
	isave[4] = iback;
	isave[5] = nskip;
	isave[6] = head;
	isave[7] = col;
	isave[8] = itail;
	isave[9] = iter;
	isave[10] = iupdat;
	isave[12] = nint;
	isave[13] = nfgv;
	isave[14] = info;
	isave[15] = ifun;
	isave[16] = iword;
	isave[17] = nfree;
	isave[18] = nact;
	isave[19] = ileave;
	isave[20] = nenter;
	dsave[1] = theta;
	dsave[2] = fold;
	dsave[3] = tol;
	dsave[4] = dnorm;
	dsave[5] = epsmch;
	dsave[6] = cpu1;
	dsave[7] = cachyt;
	dsave[8] = sbtime;
	dsave[9] = lnscht;
	dsave[11] = gd;
	dsave[12] = stpmx;
	dsave[13] = sbgnrm;
	dsave[14] = stp;
	dsave[15] = gdold;
	dsave[16] = dtd;
	prn3lb(n, x+1, f, task, iprint, info,
			iter, nfgv, nintol, nskip, nact, sbgnrm,
			nint, word, iback, stp, xstep, k);
	return;
} /* mainlb */
/* ======================= The end of mainlb ============================= */

void errclb(int n, int m, double factr, double *l, double *u,
		int *nbd, char *task, int *info, int *k)
{
	/*    ************
	 Subroutine errclb

	 This subroutine checks the validity of the input data.

	 *     *  *

	 NEOS, November 1994. (Latest revision April 1997.)
	 Optimization Technology Center.
	 Argonne National Laboratory and Northwestern University.
	 Written by
	 Ciyou Zhu
	 in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.

	 ************
	 */

	/* Local variables */
	int i;

	/* Parameter adjustments */
	--nbd;
	--u;
	--l;

	/* Function Body */
	/*     Check the input arguments for errors. */
	if (n <= 0)
		strcpy(task, "ERROR: N .LE. 0");
	if (m <= 0)
		strcpy(task, "ERROR: M .LE. 0");
	if (factr < 0.)
		strcpy(task, "ERROR: FACTR .LT. 0");

	/*     Check the validity of the arrays nbd(i), u(i), and l(i). */
	for (i = 1; i <= n; ++i) {
		if (nbd[i] < 0 || nbd[i] > 3) {
			/*                             return */
			strcpy(task, "ERROR: INVALID NBD");
			*info = -6;
			*k = i;
		}
		if (nbd[i] == 2) {
			if (l[i] > u[i]) {
				/*                      return */
				strcpy(task, "ERROR: NO FEASIBLE SOLUTION");
				*info = -7;
				*k = i;
			}
		}
	}
	return;
} /* errclb */
/* ======================= The end of errclb ============================= */

void active(int n, double *l, double *u,
		int *nbd, double *x, int *iwhere, int iprint,
		int *prjctd, int *cnstnd, int *boxed)
{
	/*    ************

	 Subroutine active

	 This subroutine initializes iwhere and projects the initial x to
	 the feasible set if necessary.

	 iwhere is an integer array of dimension n.
	 On entry iwhere is unspecified.
	 On exit iwhere(i)=-1    if x(i) has no bounds
	 3    if l(i)=u(i)
	 0    otherwise.
	 In cauchy, iwhere is given finer gradations.


	 *     *  *

	 NEOS, November 1994. (Latest revision June 1996.)
	 Optimization Technology Center.
	 Argonne National Laboratory and Northwestern University.
	 Written by
	 Ciyou Zhu
	 in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.

	 ************
	 */

	/* Local variables */
	int nbdd, i;

	/* Parameter adjustments */
	--iwhere;
	--x;
	--nbd;
	--u;
	--l;

	/* Function Body */

	/*Initialize nbdd, prjctd, cnstnd and boxed. */
	nbdd = 0;
	*prjctd = 0;
	*cnstnd = 0;
	*boxed = 1;
	/*     Project the initial x to the easible set if necessary. */
	for (i = 1; i <= n; ++i) {
		if (nbd[i] > 0) {
			if (nbd[i] <= 2 && x[i] <= l[i]) {
				if (x[i] < l[i]) {
					*prjctd = 1;
					x[i] = l[i];
				}
				++nbdd;
			} else if (nbd[i] >= 2 && x[i] >= u[i]) {
				if (x[i] > u[i]) {
					*prjctd = 1;
					x[i] = u[i];
				}
				++nbdd;
			}
		}
	}

	/*     Initialize iwhere and assign values to cnstnd and boxed. */
	for (i = 1; i <= n; ++i) {
		if (nbd[i] != 2) {
			*boxed = 0;
		}
		if (nbd[i] == 0) {
			/*                  this variable is always free */
			iwhere[i] = -1;
			/*         otherwise set x(i)=mid(x(i), u(i), l(i)). */
		} else {
			*cnstnd = 1;
			if (nbd[i] == 2 && u[i] - l[i] <= 0.) {
				/*             this variable is always fixed */
				iwhere[i] = 3;
			} else {
				iwhere[i] = 0;
			}
		}
	}
	if (iprint >= 0) {
		if (*prjctd)
			cout << "The initial X is infeasible.  Restart with its projection." << endl;
		if (!*cnstnd)
			cout << "This problem is unconstrained." << endl;
	}
	if (iprint > 0)
		cout << "At X0, " << nbdd << " variables are exactly at the bounds" << endl;

	return;
} /* active */
/* ======================= The end of active ============================= */

void cauchy(int n, double *x, double *l, double *u, int *nbd,
		double *g, int *iorder, int * iwhere, double *t,
		double *d, double *xcp, int m,
		double *wy, double *ws, double *sy, double *wt,
		double *theta, int *col, int *head, double *p,
		double *c, double *wbp, double *v, int *nint,
		int iprint, double *sbgnrm, int *info, double * epsmch)
{
	/*     ************
	 Subroutine cauchy

	 For given x, l, u, g (with sbgnrm > 0), and a limited memory
	 BFGS matrix B defined in terms of matrices WY, WS, WT, and
	 scalars head, col, and theta, this subroutine computes the
	 generalized Cauchy point (GCP), defined as the first local
	 minimizer of the quadratic

	 Q(x + s) = g's + 1/2 s'Bs

	 along the projected gradient direction P(x-tg,l,u).
	 The routine returns the GCP in xcp.

	 n is an integer variable.
	 On entry n is the dimension of the problem.
	 On exit n is unchanged.

	 x is a double precision array of dimension n.
	 On entry x is the starting point for the GCP computation.
	 On exit x is unchanged.

	 l is a double precision array of dimension n.
	 On entry l is the lower bound of x.
	 On exit l is unchanged.

	 u is a double precision array of dimension n.
	 On entry u is the upper bound of x.
	 On exit u is unchanged.

	 nbd is an integer array of dimension n.
	 On entry nbd represents the type of bounds imposed on the
	 variables, and must be specified as follows:
	 nbd(i)=0 if x(i) is unbounded,
	 1 if x(i) has only a lower bound,
	 2 if x(i) has both lower and upper bounds, and
	 3 if x(i) has only an upper bound.
	 On exit nbd is unchanged.

	 g is a double precision array of dimension n.
	 On entry g is the gradient of f(x).  g must be a nonzero vector.
	 On exit g is unchanged.

	 iorder is an integer working array of dimension n.
	 iorder will be used to store the breakpoints in the piecewise
	 linear path and free variables encountered. On exit,
	 iorder(1),...,iorder(nleft) are indices of breakpoints
	 which have not been encountered;
	 iorder(nleft+1),...,iorder(nbreak) are indices of
	 encountered breakpoints; and
	 iorder(nfree),...,iorder(n) are indices of variables which
	 have no bound constraits along the search direction.

	 iwhere is an integer array of dimension n.
	 On entry iwhere indicates only the permanently fixed (iwhere=3)
	 or free (iwhere= -1) components of x.
	 On exit iwhere records the status of the current x variables.
	 iwhere(i)=-3  if x(i) is free and has bounds, but is not moved
	 0   if x(i) is free and has bounds, and is moved
	 1   if x(i) is fixed at l(i), and l(i) .ne. u(i)
	 2   if x(i) is fixed at u(i), and u(i) .ne. l(i)
	 3   if x(i) is always fixed, i.e.,  u(i)=x(i)=l(i)
	 -1  if x(i) is always free, i.e., it has no bounds.

	 t is a double precision working array of dimension n.
	 t will be used to store the break points.

	 d is a double precision array of dimension n used to store
	 the Cauchy direction P(x-tg)-x.

	 xcp is a double precision array of dimension n used to return the
	 GCP on exit.

	 m is an integer variable.
	 On entry m is the maximum number of variable metric corrections
	 used to define the limited memory matrix.
	 On exit m is unchanged.

	 ws, wy, sy, and wt are double precision arrays.
	 On entry they store information that defines the
	 limited memory BFGS matrix:
	 ws(n,m) stores S, a set of s-vectors;
	 wy(n,m) stores Y, a set of y-vectors;
	 sy(m,m) stores S'Y;
	 wt(m,m) stores the
	 Cholesky factorization of (theta*S'S+LD^(-1)L').
	 On exit these arrays are unchanged.

	 theta is a double precision variable.
	 On entry theta is the scaling factor specifying B_0 = theta I.
	 On exit theta is unchanged.

	 col is an integer variable.
	 On entry col is the actual number of variable metric
	 corrections stored so far.
	 On exit col is unchanged.

	 head is an integer variable.
	 On entry head is the location of the first s-vector
	 (or y-vector) in S (or Y).
	 On exit col is unchanged.

	 p is a double precision working array of dimension 2m.
	 p will be used to store the vector p = W^(T)d.

	 c is a double precision working array of dimension 2m.
	 c will be used to store the vector c = W^(T)(xcp-x).

	 wbp is a double precision working array of dimension 2m.
	 wbp will be used to store the row of W corresponding
	 to a breakpoint.

	 v is a double precision working array of dimension 2m.

	 nint is an integer variable.
	 On exit nint records the number of quadratic segments explored
	 in searching for the GCP.

	 iprint is an INTEGER variable that must be set by the user.
	 It controls the frequency and type of output generated:
	 iprint<0    no output is generated;
	 iprint=0    print only one line at the last iteration;
	 0<iprint<99 print also f and |proj g| every iprint iterations;
	 iprint=99   print details of every iteration except n-vectors;
	 iprint=100  print also the changes of active set and final x;
	 iprint>100  print details of every iteration including x and g;
	 When iprint > 0, the file iterate.dat will be created to
	 summarize the iteration.

	 sbgnrm is a double precision variable.
	 On entry sbgnrm is the norm of the projected gradient at x.
	 On exit sbgnrm is unchanged.

	 info is an integer variable.
	 On entry info is 0.
	 On exit info = 0    for normal return,
	 = nonzero for abnormal return when the the system
	 used in routine bmv is singular.

	 Subprograms called:

	 L-BFGS-B Library ... hpsolb, bmv.

	 Linpack ... dscal dcopy, daxpy.


	 References:

	 [1] R. H. Byrd, P. Lu, J. Nocedal and C. Zhu, ``A limited
	 memory algorithm for bound constrained optimization'',
	 SIAM J. Scientific Computing 16 (1995), no. 5, pp. 1190--1208.

	 [2] C. Zhu, R.H. Byrd, P. Lu, J. Nocedal, ``L-BFGS-B: FORTRAN
	 Subroutines for Large Scale Bound Constrained Optimization''
	 Tech. Report, NAM-11, EECS Department, Northwestern University, 1994.

	 (Postscript files of these papers are available via anonymous
	 ftp to ece.nwu.edu in the directory pub/lbfgs/lbfgs_bcm.)

	 *    *  *

	 NEOS, November 1994. (Latest revision April 1997.)
	 Optimization Technology Center.
	 Argonne National Laboratory and Northwestern University.
	 Written by
	 Ciyou Zhu
	 in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.

	 ************
	 */

	/* System generated locals */
	int wy_dim1, wy_offset, ws_dim1, ws_offset, sy_dim1, sy_offset,
	wt_dim1, wt_offset, i__2;
	double d__1;

	/* Local variables */
	double bkmin, dibp, dibp2, zibp, neggi, tsum;
	double f1, f2, f2_org__, dt, tj, tj0, tl= 0.0, tu=0.0, dtm, wmc, wmp, wmw;

	int i, j, ibp, iter, bnded, nfree, nleft, nbreak, ibkmin, pointr;
	int xlower, xupper, col2;

	/* Parameter adjustments */
	--xcp;
	--d;
	--t;
	--iwhere;
	--iorder;
	--g;
	--nbd;
	--u;
	--l;
	--x;
	--v;
	--wbp;
	--c;
	--p;
	wt_dim1 = m;    wt_offset = 1 + wt_dim1 * 1;    wt -= wt_offset;
	sy_dim1 = m;    sy_offset = 1 + sy_dim1 * 1;    sy -= sy_offset;
	ws_dim1 = n;    ws_offset = 1 + ws_dim1 * 1;    ws -= ws_offset;
	wy_dim1 = n;    wy_offset = 1 + wy_dim1 * 1;    wy -= wy_offset;

	/* Function Body */

	/*     Check the status of the variables, reset iwhere(i) if necessary;
	 *     compute the Cauchy direction d and the breakpoints t; initialize
	 *     the derivative f1 and the vector p = W'd (for theta = 1).
	 */

	if (*sbgnrm <= 0.) {
		if (iprint >= 0) cout << "Subgnorm = 0.  GCP = X.\n";
		dcopy(&n, &x[1], &c__1, &xcp[1], &c__1);
		return;
	}
	bnded = 1;
	nfree = n + 1;
	nbreak = 0;
	ibkmin = 0;
	bkmin = 0.;
	col2 = *col << 1;
	f1 = 0.;
	if (iprint >= 99)
		cout << "\n---------------- CAUCHY entered-------------------\n\n";

	/*     We set p to zero and build it up as we determine d. */
	for (i = 1; i <= col2; ++i)
		p[i] = 0.;

	/*     In the following loop we determine for each variable its bound */
	/*      status and its breakpoint, and update p accordingly. */
	/*      Smallest breakpoint is identified. */

	for (i = 1; i <= n; ++i) {
		neggi = -g[i];
		if (iwhere[i] != 3 && iwhere[i] != -1) {
			/*           if x(i) is not a constant and has bounds, */
			/*           compute the difference between x(i) and its bounds. */
			if (nbd[i] <= 2) {
				tl = x[i] - l[i];
			}
			if (nbd[i] >= 2) {
				tu = u[i] - x[i];
			}
			/*         If a variable is close enough to a bound */
			/*           we treat it as at bound. */
			xlower = nbd[i] <= 2 && tl <= 0.;
			xupper = nbd[i] >= 2 && tu <= 0.;
			/*        reset iwhere(i). */
			iwhere[i] = 0;
			if (xlower) {
				if (neggi <= 0.) {
					iwhere[i] = 1;
				}
			} else if (xupper) {
				if (neggi >= 0.) {
					iwhere[i] = 2;
				}
			} else {
				if (fabs(neggi) <= 0.) {
					iwhere[i] = -3;
				}
			}
		}
		pointr = *head;
		if (iwhere[i] != 0 && iwhere[i] != -1) {
			d[i] = 0.;
		} else {
			d[i] = neggi;
			f1 -= neggi * neggi;
			/*           calculate p := p - W'e_i* (g_i). */
			i__2 = *col;
			for (j = 1; j <= i__2; ++j) {
				p[j] += wy[i + pointr * wy_dim1] * neggi;
				p[*col + j] += ws[i + pointr * ws_dim1] * neggi;
				pointr = pointr % m + 1;
			}
			if (nbd[i] <= 2 && nbd[i] != 0 && neggi < 0.) {
				/*                   x(i) + d(i) is bounded; compute t(i). */
				++nbreak;
				iorder[nbreak] = i;
				t[nbreak] = tl / (-neggi);
				if (nbreak == 1 || t[nbreak] < bkmin) {
					bkmin = t[nbreak];
					ibkmin = nbreak;
				}
			} else if (nbd[i] >= 2 && neggi > 0.) {
				/*                   x(i) + d(i) is bounded; compute t(i). */
				++nbreak;
				iorder[nbreak] = i;
				t[nbreak] = tu / neggi;
				if (nbreak == 1 || t[nbreak] < bkmin) {
					bkmin = t[nbreak];
					ibkmin = nbreak;
				}
			} else {/*          x(i) + d(i) is not bounded. */
				--nfree;
				iorder[nfree] = i;
				if (fabs(neggi) > 0.)
					bnded = 0;
			}
		}
		/* L50: */
	} /* for(i = 1:n) */

	/*     The indices of the nonzero components of d are now stored */
	/*     in iorder(1),...,iorder(nbreak) and iorder(nfree),...,iorder(n). */
	/*     The smallest of the nbreak breakpoints is in t(ibkmin)=bkmin. */
	if (*theta != 1.) {
		/*             complete the initialization of p for theta not= one. */
		dscal(col, theta, &p[*col + 1], &c__1);
	}
	/*     Initialize GCP xcp = x. */
	dcopy(&n, &x[1], &c__1, &xcp[1], &c__1);
	if (nbreak == 0 && nfree == n + 1) {
		/*            is a zero vector, return with the initial xcp as GCP. */
		if (iprint > 100) {
			cout << "Cauchy X =  ";
			for(i = 1; i <= n; i++) cout << xcp[i] << " ";
			cout << "\n";
		}
		return;
	}
	/*     Initialize c = W'(xcp - x) = 0. */
	for (j = 1; j <= col2; ++j)
		c[j] = 0.;

	/*     Initialize derivative f2. */
	f2 = -(*theta) * f1;
	f2_org__ = f2;
	if (*col > 0) {
		bmv(m, &sy[sy_offset], &wt[wt_offset], col, &p[1], &v[1], info);
		if (*info != 0) {
			return;
		}
		f2 -= ddot(&col2, &v[1], &c__1, &p[1], &c__1);
	}
	dtm = -f1 / f2;
	tsum = 0.;
	*nint = 1;
	if (iprint >= 99) cout << "There are " << nbreak << " breakpoints\n";

	/*     If there are no breakpoints, locate the GCP and return. */
	if (nbreak == 0) {
		goto L888;
	}
	nleft = nbreak;
	iter = 1;
	tj = 0.;
	/* ------------------- the beginning of the loop ------------------------- */
	L777:
	/*     Find the next smallest breakpoint; */
	/*     compute dt = t(nleft) - t(nleft + 1). */
	tj0 = tj;
	if (iter == 1) {
		/*       Since we already have the smallest breakpoint we need not do */
		/*       heapsort yet. Often only one breakpoint is used and the */
		/*       cost of heapsort is avoided. */
		tj = bkmin;
		ibp = iorder[ibkmin];
	} else {
		if (iter == 2) {
			/* Replace the already used smallest breakpoint with the */
			/* breakpoint numbered nbreak > nlast, before heapsort call. */
			if (ibkmin != nbreak) {
				t[ibkmin] = t[nbreak];
				iorder[ibkmin] = iorder[nbreak];
			}
		}
		/* Update heap structure of breakpoints */
		/* (if iter=2, initialize heap). */
		hpsolb(nleft, &t[1], &iorder[1], iter - 2);
		tj = t[nleft];
		ibp = iorder[nleft];
	}
	dt = tj - tj0;

	if (dt != 0 && iprint >=  100) {
		cout << "\nPiece    " << *nint << " f1, f2 at start point " << f1 << " " << f2 << "\n",
				cout << "Distance to the next break point =  " << dt << "\n";
		cout << "Distance to the stationary point =  " << dtm << "\n";
	}

	/*     If a minimizer is within this interval, */
	/*     locate the GCP and return. */
	if (dtm < dt) {
		goto L888;
	}
	/*     Otherwise fix one variable and */
	/*     reset the corresponding component of d to zero. */
	tsum += dt;
	--nleft;
	++iter;
	dibp = d[ibp];
	d[ibp] = 0.;
	if (dibp > 0.) {
		zibp = u[ibp] - x[ibp];
		xcp[ibp] = u[ibp];
		iwhere[ibp] = 2;
	} else {
		zibp = l[ibp] - x[ibp];
		xcp[ibp] = l[ibp];
		iwhere[ibp] = 1;
	}
	if (iprint >= 100) cout << "Variable  " << ibp << "  is fixed.\n";
	if (nleft == 0 && nbreak == n) {
		/*                           all n variables are fixed, */
		/*                          return with xcp as GCP. */
		dtm = dt;
		goto L999;
	}
	/*     Update the derivative information. */
	++(*nint);
	dibp2 = dibp * dibp;
	/*     Update f1 and f2. */
	/*      temporarily set f1 and f2 for col=0. */
	f1 += dt * f2 + dibp2 - *theta * dibp * zibp;
	f2 -= *theta * dibp2;
	if (*col > 0) {
		/*                update c = c + dt*p. */
		daxpy(&col2, &dt, &p[1], &c__1, &c[1], &c__1);
		/*         choose wbp, */
		/*         the row of W corresponding to the breakpoint encountered. */
		pointr = *head;
		for (j = 1; j <= *col; ++j) {
			wbp[j] = wy[ibp + pointr * wy_dim1];
			wbp[*col + j] = *theta * ws[ibp + pointr * ws_dim1];
			pointr = pointr % m + 1;
		}
		/*         compute (wbp)Mc, (wbp)Mp, and (wbp)M(wbp)'. */
		bmv(m, &sy[sy_offset], &wt[wt_offset], col, &wbp[1], &v[1], info);
		if (*info != 0) {
			return;
		}
		wmc = ddot(&col2,  &c[1], &c__1, &v[1], &c__1);
		wmp = ddot(&col2,  &p[1], &c__1, &v[1], &c__1);
		wmw = ddot(&col2,&wbp[1], &c__1, &v[1], &c__1);
		/*         update p = p - dibp*wbp. */
		d__1 = -dibp;
		daxpy(&col2, &d__1, &wbp[1], &c__1, &p[1], &c__1);
		/*         complete updating f1 and f2 while col > 0. */
		f1 += dibp * wmc;
		f2 += (2. * dibp * wmp - dibp2 * wmw);
	}
	if(f2 < (d__1 = *epsmch * f2_org__)) f2 = d__1;
	if (nleft > 0) {
		dtm = -f1 / f2;
		goto L777;
		/*           to repeat the loop for unsearched intervals. */
	} else if (bnded) {
		f1 = 0.;
		f2 = 0.;
		dtm = 0.;
	} else {
		dtm = -f1 / f2;
	}
	/* ------------------- the end of the loop ------------------------------- */
	L888:
	if (iprint >= 99) {
		cout << "\nGCP found in this segment\n";
		cout << "Piece    " << *nint << " f1, f2 at start point " << f1 << " " << f2 << "\n";
		cout << "Distance to the stationary point =  " << dtm << "\n";
	}

	if (dtm <= 0.) {
		dtm = 0.;
	}
	tsum += dtm;
	/*     Move free variables (i.e., the ones w/o breakpoints) and */
	/*     the variables whose breakpoints haven't been reached. */
	daxpy(&n, &tsum, &d[1], &c__1, &xcp[1], &c__1);
	L999:
	/*     Update c = c + dtm*p = W'(x^c - x) */
	/*     which will be used in computing r = Z'(B(x^c - x) + g). */
	if (*col > 0) {
		daxpy(&col2, &dtm, &p[1], &c__1, &c[1], &c__1);
	}
	if (iprint >= 100) {
		cout << "Cauchy X =  ";
		for(i = 1; i <= n; i++) cout << xcp[i] << " ";
		cout << "\n";
	}

	if (iprint >= 99)
		cout << "\n---------------- exit CAUCHY----------------------\n\n";
	return;
} /* cauchy */
/* ====================== The end of cauchy ============================== */

void freev(int n, int *nfree, int *indx,
		int *nenter, int *ileave, int *indx2, int *iwhere,
		int *wrk, int *updatd, int *cnstnd, int iprint,
		int *iter)
{
	/*    ************

	 Subroutine freev

	 This subroutine counts the entering and leaving variables when
	 iter > 0, and finds the index set of free and active variables
	 at the GCP.

	 cnstnd is a int variable indicating whether bounds are present

	 indx is an int array of dimension n
	 for i=1,...,nfree, indx(i) are the indices of free variables
	 for i=nfree+1,...,n, indx(i) are the indices of bound variables
	 On entry after the first iteration, indx gives
	 the free variables at the previous iteration.
	 On exit it gives the free variables based on the determination
	 in cauchy using the array iwhere.

	 indx2 is an int array of dimension n
	 On entry indx2 is unspecified.
	 On exit with iter>0, indx2 indicates which variables
	 have changed status since the previous iteration.
	 For i= 1,...,nenter, indx2(i) have changed from bound to free.
	 For i= ileave+1,...,n, indx2(i) have changed from free to bound.


	 *     *  *

	 NEOS, November 1994. (Latest revision June 1996.)
	 Optimization Technology Center.
	 Argonne National Laboratory and Northwestern University.
	 Written by
	 Ciyou Zhu
	 in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.

	 ************
	 */

	/* System generated locals */
	int i__1;

	/* Local variables */
	int iact, i, k;

	/* Parameter adjustments */
	--iwhere;
	--indx2;
	--indx;

	/* Function Body */
	*nenter = 0;
	*ileave = n + 1;
	if (*iter > 0 && *cnstnd) {/* count the entering and leaving variables. */
		i__1 = *nfree;
		for (i = 1; i <= i__1; ++i) {
			k = indx[i];
			if (iwhere[k] > 0) {
				--(*ileave);
				indx2[*ileave] = k;
				if (iprint >= 100)
					cout << "Variable " << k << " leaves the set of free variables\n";
			}
			/* L20: */
		}
		for (i = *nfree + 1; i <= n; ++i) {
			k = indx[i];
			if (iwhere[k] <= 0) {
				++(*nenter);
				indx2[*nenter] = k;
				if (iprint >= 100)
					cout << "Variable " << k << " enters the set of free variables\n";
			}
			/* L22: */
			if (iprint >= 100)
				cout << n + 1 - *ileave << " variables leave; " << *nenter << " variables enter\n";
		}
	}
	*wrk = *ileave < n + 1 || *nenter > 0 || *updatd;
	/*     Find the index set of free and active variables at the GCP. */
	*nfree = 0;
	iact = n + 1;
	for (i = 1; i <= n; ++i) {
		if (iwhere[i] <= 0) {
			++(*nfree);
			indx[*nfree] = i;
		} else {
			--iact;
			indx[iact] = i;
		}
	}
	if (iprint >= 99)
		cout << *nfree << "  variables are free at GCP on iteration " << *iter + 1 << endl;
	return;
} /* freev */
/* ======================= The end of freev ============================== */

void formk(int n, int *nsub, int *ind, int * nenter, int *ileave,
		int *indx2, int *iupdat, int * updatd, double *wn,
		double *wn1, int m, double *ws, double *wy, double *sy,
		double *theta, int *col, int *head, int *info)
{
	/*     ************

	 Subroutine formk

	 This subroutine forms  the LEL^T factorization of the indefinite

	 matrix     K = [-D -Y'ZZ'Y/theta       L_a'-R_z'  ]
	 [L_a -R_z         theta*S'AA'S ]
	 where E = [-I  0]
	 [ 0  I]
	 The matrix K can be shown to be equal to the matrix M^[-1]N
	 occurring in section 5.1 of [1], as well as to the matrix
	 Mbar^[-1] Nbar in section 5.3.

	 n is an integer variable.
	 On entry n is the dimension of the problem.
	 On exit n is unchanged.

	 nsub is an integer variable
	 On entry nsub is the number of subspace variables in free set.
	 On exit nsub is not changed.

	 ind is an integer array of dimension nsub.
	 On entry ind specifies the indices of subspace variables.
	 On exit ind is unchanged.

	 nenter is an integer variable.
	 On entry nenter is the number of variables entering the
	 free set.
	 On exit nenter is unchanged.

	 ileave is an integer variable.
	 On entry indx2(ileave),...,indx2(n) are the variables leaving
	 the free set.
	 On exit ileave is unchanged.

	 indx2 is an integer array of dimension n.
	 On entry indx2(1),...,indx2(nenter) are the variables entering
	 the free set, while indx2(ileave),...,indx2(n) are the
	 variables leaving the free set.
	 On exit indx2 is unchanged.
	 p
	 iupdat is an integer variable.
	 On entry iupdat is the total number of BFGS updates made so far.
	 On exit iupdat is unchanged.

	 updatd is a logical variable.
	 On entry 'updatd' is true if the L-BFGS matrix is updatd.
	 On exit 'updatd' is unchanged.

	 wn is a double precision array of dimension 2m x 2m.
	 On entry wn is unspecified.
	 On exit the upper triangle of wn stores the LEL^T factorization
	 of the 2*col x 2*col indefinite matrix
	 [-D -Y'ZZ'Y/theta       L_a'-R_z'  ]
	 [L_a -R_z         theta*S'AA'S ]

	 wn1 is a double precision array of dimension 2m x 2m.
	 On entry wn1 stores the lower triangular part of
	 [Y' ZZ'Y    L_a'+R_z']
	 [L_a+R_z    S'AA'S     ]
	 in the previous iteration.
	 On exit wn1 stores the corresponding updated matrices.
	 The purpose of wn1 is just to store these inner products
	 so they can be easily updated and inserted into wn.

	 m is an integer variable.
	 On entry m is the maximum number of variable metric corrections
	 used to define the limited memory matrix.
	 On exit m is unchanged.

	 ws, wy, sy, and wtyy are double precision arrays;
	 theta is a double precision variable;
	 col is an integer variable;
	 head is an integer variable.
	 On entry they store the information defining the
	 limited memory BFGS matrix:
	 ws(n,m) stores S, a set of s-vectors;
	 wy(n,m) stores Y, a set of y-vectors;
	 sy(m,m) stores S'Y;
	 wtyy(m,m) stores the Cholesky factorization
	 of (theta*S'S+LD^(-1)L')
	 theta is the scaling factor specifying B_0 = theta I;
	 col is the number of variable metric corrections stored;
	 head is the location of the 1st s- (or y-) vector in S (or Y).
	 On exit they are unchanged.

	 info is an integer variable.
	 On entry info is unspecified.
	 On exit info =  0 for normal return;
	 = -1 when the 1st Cholesky factorization failed;
	 = -2 when the 2st Cholesky factorization failed.

	 Subprograms called:

	 Linpack ... dcopy, dpofa, dtrsl.


	 References:
	 [1] R. H. Byrd, P. Lu, J. Nocedal and C. Zhu, ``A limited
	 memory algorithm for bound constrained optimization'',
	 SIAM J. Scientific Computing 16 (1995), no. 5, pp. 1190--1208.

	 [2] C. Zhu, R.H. Byrd, P. Lu, J. Nocedal, ``L-BFGS-B: a
	 limited memory FORTRAN code for solving bound constrained
	 optimization problems'', Tech. Report, NAM-11, EECS Department,
	 Northwestern University, 1994.

	 (Postscript files of these papers are available via anonymous
	 ftp to ece.nwu.edu in the directory pub/lbfgs/lbfgs_bcm.)

	 *  *     *

	 NEOS, November 1994. (Latest revision April 1997.)
	 Optimization Technology Center.
	 Argonne National Laboratory and Northwestern University.
	 Written by
	 Ciyou Zhu
	 in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.

	 ************
	 */

	/* System generated locals */
	int wn_dim1, wn_offset, wn1_dim1, wn1_offset, ws_dim1, ws_offset,
	wy_dim1, wy_offset, sy_dim1, sy_offset, i__1, i__2;

	/* Local variables */
	int dend, pend;
	int upcl;
	double temp1, temp2, temp3, temp4;
	int i, k;
	int ipntr, jpntr, k1, m2, dbegin, is, js, iy, jy, pbegin, is1, js1,
	col2;

	/* Parameter adjustments */
	--indx2;
	--ind;
	sy_dim1 = m;
	sy_offset = 1 + sy_dim1 * 1;
	sy -= sy_offset;
	wy_dim1 = n;
	wy_offset = 1 + wy_dim1 * 1;
	wy -= wy_offset;
	ws_dim1 = n;
	ws_offset = 1 + ws_dim1 * 1;
	ws -= ws_offset;
	wn1_dim1 = 2 * m;
	wn1_offset = 1 + wn1_dim1 * 1;
	wn1 -= wn1_offset;
	wn_dim1 = 2 * m;
	wn_offset = 1 + wn_dim1 * 1;
	wn -= wn_offset;

	/* Function Body */

	/*     Form the lower triangular part of */
	/*         WN1 = [Y' ZZ'Y      L_a'+R_z'] */
	/*               [L_a+R_z      S'AA'S   ] */
	/*      where L_a is the strictly lower triangular part of S'AA'Y */
	/*        R_z is the upper triangular part of S'ZZ'Y. */

	if (*updatd) {
		if (*iupdat > m) {/*        shift old part of WN1. */
			i__1 = m - 1;
			for (jy = 1; jy <= i__1; ++jy) {
				js = m + jy;
				i__2 = m - jy;
				dcopy(&i__2, &wn1[jy + 1 + (jy + 1)* wn1_dim1], &c__1,
						&wn1[jy + jy * wn1_dim1], &c__1);
				dcopy(&i__2, &wn1[js + 1 + (js + 1)* wn1_dim1], &c__1,
						&wn1[js + js * wn1_dim1], &c__1);
				i__2 = m - 1;
				dcopy(&i__2, &wn1[m + 2 + (jy + 1) * wn1_dim1], &c__1,
						&wn1[m + 1 + jy * wn1_dim1], &c__1);
				/* L10: */
			}
		}
		/*        put new rows in blocks (1,1), (2,1) and (2,2). */
		pbegin = 1;
		pend = *nsub;
		dbegin = *nsub + 1;
		dend = n;
		iy = *col;
		is = m + *col;
		ipntr = *head + *col - 1;
		if (ipntr > m) {
			ipntr -= m;
		}
		jpntr = *head;
		i__1 = *col;
		for (jy = 1; jy <= i__1; ++jy) {
			js = m + jy;
			temp1 = 0.;
			temp2 = 0.;
			temp3 = 0.;
			/*           compute element jy of row 'col' of Y'ZZ'Y */
			for (k = pbegin; k <= pend; ++k) {
				k1 = ind[k];
				temp1 += wy[k1 + ipntr * wy_dim1] * wy[k1 + jpntr * wy_dim1];
			}
			/*           compute elements jy of row 'col' of L_a and S'AA'S */
			for (k = dbegin; k <= dend; ++k) {
				k1 = ind[k];
				temp2 += ws[k1 + ipntr * ws_dim1] * ws[k1 + jpntr * ws_dim1];
				temp3 += ws[k1 + ipntr * ws_dim1] * wy[k1 + jpntr * wy_dim1];
			}
			wn1[iy + jy * wn1_dim1] = temp1;
			wn1[is + js * wn1_dim1] = temp2;
			wn1[is + jy * wn1_dim1] = temp3;
			jpntr = jpntr % m + 1;
			/* L20: */
		}
		/*        put new column in block (2,1). */
		jy = *col;
		jpntr = *head + *col - 1;
		if (jpntr > m) {
			jpntr -= m;
		}
		ipntr = *head;
		i__1 = *col;
		for (i = 1; i <= i__1; ++i) {
			is = m + i;
			temp3 = 0.;
			/*           compute element i of column 'col' of R_z */
			for (k = pbegin; k <= pend; ++k) {
				k1 = ind[k];
				temp3 += ws[k1 + ipntr * ws_dim1] * wy[k1 + jpntr * wy_dim1];
			}
			ipntr = ipntr % m + 1;
			wn1[is + jy * wn1_dim1] = temp3;
			/* L30: */
		}
		upcl = *col - 1;
	} else {
		upcl = *col;
	}
	/*     modify the old parts in blocks (1,1) and (2,2) due to changes */
	/*     in the set of free variables. */
	ipntr = *head;
	for (iy = 1; iy <= upcl; ++iy) {
		is = m + iy;
		jpntr = *head;
		for (jy = 1; jy <= iy; ++jy) {
			js = m + jy;
			temp1 = 0.;
			temp2 = 0.;
			temp3 = 0.;
			temp4 = 0.;
			for (k = 1; k <= *nenter; ++k) {
				k1 = indx2[k];
				temp1 += wy[k1 + ipntr * wy_dim1] * wy[k1 + jpntr * wy_dim1];
				temp2 += ws[k1 + ipntr * ws_dim1] * ws[k1 + jpntr * ws_dim1];
			}
			for (k = *ileave; k <= n; ++k) {
				k1 = indx2[k];
				temp3 += wy[k1 + ipntr * wy_dim1] * wy[k1 + jpntr * wy_dim1];
				temp4 += ws[k1 + ipntr * ws_dim1] * ws[k1 + jpntr * ws_dim1];
			}
			wn1[iy + jy * wn1_dim1] = wn1[iy + jy * wn1_dim1] + temp1 - temp3;
			wn1[is + js * wn1_dim1] = wn1[is + js * wn1_dim1] - temp2 + temp4;
			jpntr = jpntr % m + 1;
			/* L40: */
		}
		ipntr = ipntr % m + 1;
		/* L45: */
	}
	/*     modify the old parts in block (2,1). */
	ipntr = *head;
	for (is = m + 1; is <= m + upcl; ++is) {
		jpntr = *head;
		for (jy = 1; jy <= upcl; ++jy) {
			temp1 = 0.;
			temp3 = 0.;
			for (k = 1; k <= *nenter; ++k) {
				k1 = indx2[k];
				temp1 += ws[k1 + ipntr * ws_dim1] * wy[k1 + jpntr * wy_dim1];
			}
			for (k = *ileave; k <= n; ++k) {
				k1 = indx2[k];
				temp3 += ws[k1 + ipntr * ws_dim1] * wy[k1 + jpntr * wy_dim1];
			}
			if (is <= jy + m) {
				wn1[is + jy * wn1_dim1] +=  temp1 - temp3;
			} else {
				wn1[is + jy * wn1_dim1] += -temp1 + temp3;
			}
			jpntr = jpntr % m + 1;
			/* L55: */
		}
		ipntr = ipntr % m + 1;
		/* L60: */
	}
	/*     Form the upper triangle of WN = [D+Y' ZZ'Y/theta      -L_a'+R_z' ] */
	/*                       [-L_a +R_z     S'AA'S*theta] */
	m2 = m << 1;
	i__1 = *col;
	for (iy = 1; iy <= i__1; ++iy) {
		is = *col + iy;
		is1 = m + iy;
		i__2 = iy;
		for (jy = 1; jy <= i__2; ++jy) {
			js = *col + jy;
			js1 = m + jy;
			wn[jy + iy * wn_dim1] = wn1[iy + jy * wn1_dim1] / *theta;
			wn[js + is * wn_dim1] = wn1[is1 + js1 * wn1_dim1] * *theta;
			/* L65: */
		}
		i__2 = iy - 1;
		for (jy = 1; jy <= i__2; ++jy) {
			wn[jy + is * wn_dim1] = -wn1[is1 + jy * wn1_dim1];
		}
		i__2 = *col;
		for (jy = iy; jy <= i__2; ++jy) {
			wn[jy + is * wn_dim1] = wn1[is1 + jy * wn1_dim1];
		}
		wn[iy + iy * wn_dim1] += sy[iy + iy * sy_dim1];
		/* L70: */
	}
	/*     Form the upper triangle of */
	/*        WN= [  LL'          L^-1(-L_a'+R_z')] */
	/*        [(-L_a +R_z)L'^-1   S'AA'S*theta  ] */
	/*      first Cholesky factor (1,1) block of wn to get LL' */
	/*                with L' stored in the upper triangle of wn. */
	dpofa(&wn[wn_offset], &m2, col, info);
	if (*info != 0) {
		*info = -1;
		return;
	}
	/*      then form L^-1(-L_a'+R_z') in the (1,2) block. */
	col2 = *col << 1;
	for (js = *col + 1; js <= col2; ++js) {
		dtrsl(&wn[wn_offset], &m2, col,
				&wn[js * wn_dim1 + 1], &c__11, info);
	}
	/*     Form S'AA'S*theta + (L^-1(-L_a'+R_z'))'L^-1(-L_a'+R_z') in the */
	/*      upper triangle of (2,2) block of wn. */
	for (is = *col + 1; is <= col2; ++is) {
		for (js = is; js <= col2; ++js) {
			wn[is + js * wn_dim1] +=
					ddot(col, &wn[is * wn_dim1 + 1], &c__1,
							&wn[js * wn_dim1 + 1], &c__1);
		}
		/* L72: */
	}
	/*     Cholesky factorization of (2,2) block of wn. */
	dpofa(&wn[*col + 1 + (*col + 1) * wn_dim1], &m2, col, info);
	if (*info != 0) {
		*info = -2;
		return;
	}
	return;
} /* formk */
/* ======================= The end of formk ============================== */

void cmprlb(int n, int m, double *x,
		double *g, double *ws, double *wy, double *sy,
		double *wt, double *z, double *r, double *wa,
		int *indx, double *theta, int *col, int *head,
		int *nfree, int *cnstnd, int *info)
{
	/*    ************

	 Subroutine cmprlb

	 This subroutine computes r=-Z'B(xcp-xk)-Z'g by using
	 wa(2m+1)=W'(xcp-x) from subroutine cauchy.

	 Subprograms called:

	 L-BFGS-B Library ... bmv.


	 *     *  *

	 NEOS, November 1994. (Latest revision June 1996.)
	 Optimization Technology Center.
	 Argonne National Laboratory and Northwestern University.
	 Written by
	 Ciyou Zhu
	 in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.

	 ************
	 */

	/* System generated locals */
	int ws_dim1, ws_offset, wy_dim1, wy_offset, sy_dim1, sy_offset,
	wt_dim1, wt_offset, Col, n_f;

	/* Local variables */
	int i, j, k;
	double a1, a2;
	int pointr;

	/* Parameter adjustments */
	--indx;
	--r;
	--z;
	--g;
	--x;
	--wa;
	wt_dim1 = m;
	wt_offset = 1 + wt_dim1 * 1;
	wt -= wt_offset;
	sy_dim1 = m;
	sy_offset = 1 + sy_dim1 * 1;
	sy -= sy_offset;
	wy_dim1 = n;
	wy_offset = 1 + wy_dim1 * 1;
	wy -= wy_offset;
	ws_dim1 = n;
	ws_offset = 1 + ws_dim1 * 1;
	ws -= ws_offset;

	/* Function Body */
	Col = *col;
	if (! (*cnstnd) && Col > 0) {
		for (i = 1; i <= n; ++i)
			r[i] = -g[i];
	}
	else {
		n_f = *nfree;
		for (i = 1; i <= n_f; ++i) {
			k = indx[i];
			r[i] = -(*theta) * (z[k] - x[k]) - g[k];
		}
		bmv(m, &sy[sy_offset], &wt[wt_offset], col,
				&wa[(m << 1) + 1], &wa[1], info);
		if (*info != 0) {
			*info = -8;
			return;
		}
		pointr = *head;
		for (j = 1; j <= Col; ++j) {
			a1 = wa[j];
			a2 = *theta * wa[Col + j];
			for (i = 1; i <= n_f; ++i) {
				k = indx[i];
				r[i] += wy[k + pointr * wy_dim1] * a1 +
						ws[k + pointr * ws_dim1] * a2;
			}
			pointr = pointr % m + 1;
		}
	}
	return;
} /* cmprlb */
/* ======================= The end of cmprlb ============================= */


void subsm(int n, int m, int *nsub, int *ind,
		double *l, double *u, int *nbd, double *x,
		double *d, double *ws, double *wy, double *theta,
		int *col, int *head, int *iword, double *wv,
		double *wn, int iprint, int *info)
{
	/*    ************

	 Subroutine subsm

	 Given xcp, l, u, r, an index set that specifies
	 the active set at xcp, and an l-BFGS matrix B
	 (in terms of WY, WS, SY, WT, head, col, and theta),
	 this subroutine computes an approximate solution
	 of the subspace problem

	 (P)   min Q(x) = r'(x-xcp) + 1/2 (x-xcp)' B (x-xcp)

	 subject to l <= x <= u
	 x_i = xcp_i   for all i in A(xcp)

	 along the subspace unconstrained Newton direction

	 d = -(Z'BZ)^(-1) r.

	 The formula for the Newton direction, given the L-BFGS matrix
	 and the Sherman-Morrison formula, is

	 d = (1/theta)r + (1/theta*2) Z'WK^(-1)W'Z r.

	 where
	 K = [-D -Y'ZZ'Y/theta        L_a'-R_z'  ]
	 [L_a -R_z          theta*S'AA'S ]

	 Note that this procedure for computing d differs
	 from that described in [1]. One can show that the matrix K is
	 equal to the matrix M^[-1]N in that paper.

	 n is an integer variable.
	 On entry n is the dimension of the problem.
	 On exit n is unchanged.

	 m is an integer variable.
	 On entry m is the maximum number of variable metric corrections
	 used to define the limited memory matrix.
	 On exit m is unchanged.

	 nsub is an integer variable.
	 On entry nsub is the number of free variables.
	 On exit nsub is unchanged.

	 ind is an integer array of dimension nsub.
	 On entry ind specifies the coordinate indices of free variables.
	 On exit ind is unchanged.

	 l is a double precision array of dimension n.
	 On entry l is the lower bound of x.
	 On exit l is unchanged.

	 u is a double precision array of dimension n.
	 On entry u is the upper bound of x.
	 On exit u is unchanged.

	 nbd is a integer array of dimension n.
	 On entry nbd represents the type of bounds imposed on the
	 variables, and must be specified as follows:
	 nbd(i)=0 if x(i) is unbounded,
	 1 if x(i) has only a lower bound,
	 2 if x(i) has both lower and upper bounds, and
	 3 if x(i) has only an upper bound.
	 On exit nbd is unchanged.

	 x is a double precision array of dimension n.
	 On entry x specifies the Cauchy point xcp.
	 On exit x(i) is the minimizer of Q over the subspace of
	 free variables.

	 d is a double precision array of dimension n.
	 On entry d is the reduced gradient of Q at xcp.
	 On exit d is the Newton direction of Q.

	 ws and wy are double precision arrays;
	 theta is a double precision variable;
	 col is an integer variable;
	 head is an integer variable.
	 On entry they store the information defining the
	 limited memory BFGS matrix:
	 ws(n,m) stores S, a set of s-vectors;
	 wy(n,m) stores Y, a set of y-vectors;
	 theta is the scaling factor specifying B_0 = theta I;
	 col is the number of variable metric corrections stored;
	 head is the location of the 1st s- (or y-) vector in S (or Y).
	 On exit they are unchanged.

	 iword is an integer variable.
	 On entry iword is unspecified.
	 On exit iword specifies the status of the subspace solution.
	 iword = 0 if the solution is in the box,
	 1 if some bound is encountered.

	 wv is a double precision working array of dimension 2m.

	 wn is a double precision array of dimension 2m x 2m.
	 On entry the upper triangle of wn stores the LEL^T factorization
	 of the indefinite matrix

	 K = [-D -Y'ZZ'Y/theta     L_a'-R_z'  ]
	 [L_a -R_z           theta*S'AA'S ]
	 where E = [-I  0]
	 [ 0  I]
	 On exit wn is unchanged.

	 iprint is an INTEGER variable that must be set by the user.
	 It controls the frequency and type of output generated:
	 iprint<0    no output is generated;
	 iprint=0    print only one line at the last iteration;
	 0<iprint<99 print also f and |proj g| every iprint iterations;
	 iprint=99   print details of every iteration except n-vectors;
	 iprint=100  print also the changes of active set and final x;
	 iprint>100  print details of every iteration including x and g;
	 When iprint > 0, the file iterate.dat will be created to
	 summarize the iteration.

	 info is an integer variable.
	 On entry info is unspecified.
	 On exit info = 0       for normal return,
	 = nonzero for abnormal return
	 when the matrix K is ill-conditioned.

	 Subprograms called:

	 Linpack dtrsl.


	 References:

	 [1] R. H. Byrd, P. Lu, J. Nocedal and C. Zhu, ``A limited
	 memory algorithm for bound constrained optimization'',
	 SIAM J. Scientific Computing 16 (1995), no. 5, pp. 1190--1208.



	 *  *  *

	 NEOS, November 1994. (Latest revision June 1996.)
	 Optimization Technology Center.
	 Argonne National Laboratory and Northwestern University.
	 Written by
	 Ciyou Zhu
	 in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.

	 ************
	 */

	/* System generated locals */
	int ws_offset, wn_dim1, wn_offset;

	/* Local variables */
	double alpha, dk, temp1, temp2;
	int i, j, k, m2, js, jy, pointr, ibd = 0, col2, ns;

	/* Parameter adjustments */
	--d;
	--u;
	--l;
	--x;
	--ind;
	--nbd;
	--wv;
	wn_dim1 = 2 * m;
	wn_offset = 1 + wn_dim1 * 1;
	wn -= wn_offset;
	/* ws[] and wy[] are both  [n x m ] :*/
	ws_offset = 1 + n * 1;
	ws -= ws_offset;
	wy -= ws_offset;

	ns = *nsub;
	if (ns <= 0)
		return;

	/*     Compute wv = W'Zd. */
	pointr = *head;
	for (i = 1; i <= *col; ++i) {
		temp1 = 0.;
		temp2 = 0.;
		for (j = 1; j <= ns; ++j) {
			k = ind[j];
			temp1 += wy[k + pointr * n] * d[j];
			temp2 += ws[k + pointr * n] * d[j];
		}
		wv[i] = temp1;
		wv[*col + i] = *theta * temp2;
		pointr = pointr % m + 1;
		/* L20: */
	}
	/*     Compute wv:=K^(-1)wv. */
	m2 = m << 1;
	col2 = *col << 1;
	dtrsl(&wn[wn_offset], &m2, &col2, &wv[1], &c__11, info);
	if (*info != 0) {
		return;
	}
	for (i = 1; i <= *col; ++i)
		wv[i] = -wv[i];

	dtrsl(&wn[wn_offset], &m2, &col2, &wv[1], &c__1, info);
	if (*info != 0) {
		return;
	}
	/*     Compute d = (1/theta)d + (1/theta**2)Z'W wv. */
	pointr = *head;
	for (jy = 1; jy <= *col; ++jy) {
		js = *col + jy;
		for (i = 1; i <= ns; ++i) {
			k = ind[i];
			d[i] += (wy[k + pointr * n] * wv[jy] / *theta +
					ws[k + pointr * n] * wv[js]);
		}
		pointr = pointr % m + 1;
		/* L40: */
	}

	for (i = 1; i <= ns; ++i)
		d[i] /= *theta;

	/*     Backtrack to the feasible region. */
	alpha = 1.;
	temp1 = alpha;
	for (i = 1; i <= ns; ++i) {
		k = ind[i];
		dk = d[i];
		if (nbd[k] != 0) {
			if (dk < 0. && nbd[k] <= 2) {
				temp2 = l[k] - x[k];
				if (temp2 >= 0.) {
					temp1 = 0.;
				} else if (dk * alpha < temp2) {
					temp1 = temp2 / dk;
				}
			} else if (dk > 0. && nbd[k] >= 2) {
				temp2 = u[k] - x[k];
				if (temp2 <= 0.) {
					temp1 = 0.;
				} else if (dk * alpha > temp2) {
					temp1 = temp2 / dk;
				}
			}
			if (temp1 < alpha) {
				alpha = temp1;
				ibd = i;
			}
		}
		/* L60: */
	}
	if (alpha < 1.) {
		dk = d[ibd];
		k = ind[ibd];
		if (dk > 0.) {
			x[k] = u[k];
			d[ibd] = 0.;
		} else if (dk < 0.) {
			x[k] = l[k];
			d[ibd] = 0.;
		}
	}
	for (i = 1; i <= ns; ++i)
		x[ind[i]] += alpha * d[i];

	*iword = (alpha < 1.) ? 1 : 0;

	return;
} /* subsm */
/* ====================== The end of subsm =============================== */

void lnsrlb(int n, double *l, double *u,
		int *nbd, double *x, double *f, double *fold,
		double *gd, double *gdold, double *g, double *d,
		double *r, double *t, double *z, double *stp,
		double *dnorm, double *dtd, double *xstep,
		double *stpmx, int *iter, int *ifun, int *iback, int *nfgv,
		int *info, char *task, int *boxed, int *cnstnd,
		char *csave, int *isave, double *dsave)
{
	/*     **********

	 Subroutine lnsrlb

	 This subroutine calls subroutine dcsrch from the Minpack2 library
	 to perform the line search.  Subroutine dscrch is safeguarded so
	 that all trial points lie within the feasible region.

	 Subprograms called:

	 Minpack2 Library ... dcsrch.

	 Linpack ... dtrsl, ddot.


	 *     *  *

	 NEOS, November 1994. (Latest revision June 1996.)
	 Optimization Technology Center.
	 Argonne National Laboratory and Northwestern University.
	 Written by
	 Ciyou Zhu
	 in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.

	 **********
	 */

	/* For dcsrch(): */
	const double stpmin = 0.;
	const double ftol = .001;
	const double gtol = .9;
	const double xtol = .1;

	/* System generated locals */
	double d1;

	/* Local variables */
	int i;
	double a1, a2;

	/* Parameter adjustments */
	--z;
	--t;
	--r;
	--d;
	--g;
	--x;
	--nbd;
	--u;
	--l;

	/* Function Body */
	if (strncmp(task, "FG_LN", 5) == 0) {
		goto L556;
	}
	*dtd = ddot(&n, &d[1], &c__1, &d[1], &c__1);
	*dnorm = sqrt(*dtd);
	/*     Determine the maximum step length. */
	*stpmx = 1e10;
	if (*cnstnd) {
		if (*iter == 0) {
			*stpmx = 1.;
		} else {
			for (i = 1; i <= n; ++i) {
				a1 = d[i];
				if (nbd[i] != 0) {
					if (a1 < 0. && nbd[i] <= 2) {
						a2 = l[i] - x[i];
						if (a2 >= 0.) {
							*stpmx = 0.;
						} else if (a1 * *stpmx < a2) {
							*stpmx = a2 / a1;
						}
					} else if (a1 > 0. && nbd[i] >= 2) {
						a2 = u[i] - x[i];
						if (a2 <= 0.) {
							*stpmx = 0.;
						} else if (a1 * *stpmx > a2) {
							*stpmx = a2 / a1;
						}
					}
				}
				/* L43: */
			}
		}
	}
	if (*iter == 0 && ! (*boxed)) {
		d1 = 1. / *dnorm;
		*stp = min(d1,*stpmx);
	} else {
		*stp = 1.;
	}
	dcopy(&n, &x[1], &c__1, &t[1], &c__1);
	dcopy(&n, &g[1], &c__1, &r[1], &c__1);
	*fold = *f;
	*ifun = 0;
	*iback = 0;
	strcpy(csave, "START");
	L556:
	*gd = ddot(&n, &g[1], &c__1, &d[1], &c__1);
	if (*ifun == 0) {
		*gdold = *gd;
		if (*gd >= 0.) {
			/*                 the directional derivative >=0. */
			/*                 Line search is impossible. */
			*info = -4;
			return;
		}
	}
	dcsrch(f, gd, stp,
			ftol, gtol, xtol,
			stpmin, *stpmx,
			csave, isave, dsave);
	*xstep = *stp * *dnorm;
	if (strncmp(csave, "CONV", 4) != 0 && strncmp(csave, "WARN", 4) != 0) {
		strcpy(task, "FG_LNSRCH");
		++(*ifun);
		++(*nfgv);
		*iback = *ifun - 1;
		if (*stp == 1.) {
			dcopy(&n, &z[1], &c__1, &x[1], &c__1);
		} else {
			for (i = 1; i <= n; ++i) {
				x[i] = *stp * d[i] + t[i];
			}
		}
	} else {
		strcpy(task, "NEW_X");
	}
	return;
} /* lnsrlb */
/* ======================= The end of lnsrlb ============================= */

void matupd(int n, int m, double *ws,
		double *wy, double *sy, double *ss, double *d,
		double *r, int *itail, int *iupdat, int *col,
		int *head, double *theta, double *rr, double *dr,
		double *stp, double *dtd)
{
	/*    ************

	 Subroutine matupd

	 This subroutine updates matrices WS and WY, and forms the
	 middle matrix in B.

	 Subprograms called:

	 Linpack ... dcopy, ddot.


	 *     *  *

	 NEOS, November 1994. (Latest revision June 1996.)
	 Optimization Technology Center.
	 Argonne National Laboratory and Northwestern University.
	 Written by
	 Ciyou Zhu
	 in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.

	 ************
	 */

	/* System generated locals */
	int ws_dim1, ws_offset, wy_dim1, wy_offset, sy_dim1, sy_offset,
	ss_dim1, ss_offset, i__1, i__2;

	/* Local variables */
	int j;
	int pointr;

	/* Parameter adjustments */
	--r;
	--d;
	ss_dim1 = m;
	ss_offset = 1 + ss_dim1 * 1;
	ss -= ss_offset;
	sy_dim1 = m;
	sy_offset = 1 + sy_dim1 * 1;
	sy -= sy_offset;
	wy_dim1 = n;
	wy_offset = 1 + wy_dim1 * 1;
	wy -= wy_offset;
	ws_dim1 = n;
	ws_offset = 1 + ws_dim1 * 1;
	ws -= ws_offset;

	/* Function Body */

	/*     Set pointers for matrices WS and WY. */
	if (*iupdat <= m) {
		*col = *iupdat;
		*itail = (*head + *iupdat - 2) % m + 1;
	} else {
		*itail = *itail % m + 1;
		*head = *head % m + 1;
	}
	/*     Update matrices WS and WY. */
	dcopy(&n, &d[1], &c__1, &ws[*itail * ws_dim1 + 1], &c__1);
	dcopy(&n, &r[1], &c__1, &wy[*itail * wy_dim1 + 1], &c__1);
	/*     Set theta=yy/ys. */
	*theta = *rr / *dr;
	/*     Form the middle matrix in B. */
	/*      update the upper triangle of SS, */
	/*                       and the lower triangle of SY: */
	if (*iupdat > m) {
		/*                move old information */
		i__1 = *col - 1;
		for (j = 1; j <= i__1; ++j) {
			dcopy(&j, &ss[(j + 1) * ss_dim1 + 2], &c__1,
					&ss[j * ss_dim1 + 1], &c__1);
			i__2 = *col - j;
			dcopy(&i__2, &sy[j + 1 + (j + 1) * sy_dim1], &c__1,
					&sy[j + j * sy_dim1], &c__1);
			/* L50: */
		}
	}
	/*      add new information: the last row of SY */
	/*                           and the last column of SS: */
	pointr = *head;
	i__1 = *col - 1;
	for (j = 1; j <= i__1; ++j) {
		sy[*col + j * sy_dim1] =
				ddot(&n, &d[1], &c__1, &wy[pointr * wy_dim1 + 1], &c__1);
		ss[j + *col * ss_dim1] =
				ddot(&n, &ws[pointr * ws_dim1 + 1], &c__1, &d[1], &c__1);
		pointr = pointr % m + 1;
		/* L51: */
	}
	if (*stp == 1.) {
		ss[*col + *col * ss_dim1] = *dtd;
	} else {
		ss[*col + *col * ss_dim1] = *stp * *stp * *dtd;
	}
	sy[*col + *col * sy_dim1] = *dr;
	return;
} /* matupd */
/* ======================= The end of matupd ============================= */

void formt(int m, double *wt, double *sy, double *ss,
		int *col, double *theta, int *info)
{
	/*     ************

	 Subroutine formt

	 This subroutine forms the upper half of the pos. def. and symm.
	 T = theta*SS + L*D^(-1)*L', stores T in the upper triangle
	 of the array wt, and performs the Cholesky factorization of T
	 to produce J*J', with J' stored in the upper triangle of wt.

	 Subprograms called:

	 Linpack ... dpofa.


	 *  *     *

	 NEOS, November 1994. (Latest revision June 1996.)
	 Optimization Technology Center.
	 Argonne National Laboratory and Northwestern University.
	 Written by
	 Ciyou Zhu
	 in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.

	 ************
	 */

	/* System generated locals */
	int wt_dim1, wt_offset, sy_dim1, sy_offset, ss_dim1, ss_offset, i__1;

	/* Local variables */
	double ddum;
	int i, j, k;
	int k1;

	/* Parameter adjustments */
	ss_dim1 = m;
	ss_offset = 1 + ss_dim1 * 1;
	ss -= ss_offset;
	sy_dim1 = m;
	sy_offset = 1 + sy_dim1 * 1;
	sy -= sy_offset;
	wt_dim1 = m;
	wt_offset = 1 + wt_dim1 * 1;
	wt -= wt_offset;

	/* Function Body */

	/*     Form the upper half of  T = theta*SS + L*D^(-1)*L', */
	/*      store T in the upper triangle of the array wt. */
	i__1 = *col;
	for (j = 1; j <= i__1; ++j) {
		wt[j * wt_dim1 + 1] = *theta * ss[j * ss_dim1 + 1];
	}
	for (i = 2; i <= i__1; ++i) {
		for (j = i; j <= i__1; ++j) {
			k1 = min(i,j) - 1;
			ddum = 0.;
			for (k = 1; k <= k1; ++k) {
				ddum += sy[i + k * sy_dim1] * sy[j + k * sy_dim1] / sy[k +
																	   k * sy_dim1];
			}
			wt[i + j * wt_dim1] = ddum + *theta * ss[i + j * ss_dim1];
		}
		/* L55: */
	}
	/*     Cholesky factorize T to J*J' with */
	/*      J' stored in the upper triangle of wt. */
	dpofa(&wt[wt_offset], &m, col, info);
	if (*info != 0) {
		*info = -3;
	}
	return;
} /* formt */

/* ======================= The end of formt ============================== */

void bmv(int m, double *sy, double *wt,
		int *col, double *v, double *p, int *info)
{
	/*     ************

	 *     Subroutine bmv

	 *     This subroutine computes the product of the 2m x 2m middle matrix
	 *     in the compact L-BFGS formula of B and a 2m vector v;
	 *     it returns the product in p.

	 *     m is an integer variable.
	 *     On entry m is the maximum number of variable metric corrections
	 *       used to define the limited memory matrix.
	 *     On exit m is unchanged.

	 *     sy is a double precision array of dimension m x m.
	 *     On entry sy specifies the matrix S'Y.
	 *     On exit sy is unchanged.

	 *     wt is a double precision array of dimension m x m.
	 *     On entry wt specifies the upper triangular matrix J' which is
	 *       the Cholesky factor of (thetaS'S+LD^(-1)L').
	 *     On exit wt is unchanged.

	 *     col is an integer variable.
	 *     On entry col specifies the number of s-vectors (or y-vectors)
	 *       stored in the compact L-BFGS formula.
	 *     On exit col is unchanged.

	 *     v is a double precision array of dimension 2col.
	 *     On entry v specifies vector v.
	 *     On exit v is unchanged.

	 *     p is a double precision array of dimension 2col.
	 *     On entry p is unspecified.
	 *     On exit p is the product Mv.

	 *     info is an integer variable.
	 *     On entry info is unspecified.
	 *     On exit info = 0    for normal return,
	 *              = nonzero for abnormal return when the system
	 *                  to be solved by dtrsl is singular.

	 *     Subprograms called:

	 *     Linpack ... dtrsl.


	 *                 *    *  *

	 *     NEOS, November 1994. (Latest revision June 1996.)
	 *     Optimization Technology Center.
	 *     Argonne National Laboratory and Northwestern University.
	 *     Written by
	 *              Ciyou Zhu
	 *     in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.

	 *     ************
	 */

	/* System generated locals */
	int sy_dim1, sy_offset, wt_dim1, wt_offset, Col;


	/* Local variables */
	int i, k;
	int i2;
	double sum;

	/* Parameter adjustments */
	wt_dim1 = m;
	wt_offset = 1 + wt_dim1 * 1;
	wt -= wt_offset;
	sy_dim1 = m;
	sy_offset = 1 + sy_dim1 * 1;
	sy -= sy_offset;
	--p;
	--v;

	/* Function Body */
	if (*col == 0) {
		return;
	}
	/*    PART I: solve [     D^(1/2)      O ] [ p1 ] = [ v1 ]
	 *              [ -L*D^(-1/2)   J ] [ p2 ]   [ v2 ].
	 *    solve Jp2=v2+LD^(-1)v1.
	 */
	Col = *col;
	p[*col + 1] = v[*col + 1];
	for (i = 2; i <= Col; ++i) {
		i2 = *col + i;
		sum = 0.;
		for (k = 1; k <= i - 1; ++k) {
			sum += sy[i + k * sy_dim1] * v[k] / sy[k + k * sy_dim1];
		}
		p[i2] = v[i2] + sum;
		/* L20: */
	}
	/*     Solve the triangular system */
	dtrsl(&wt[wt_offset], &m, col, &p[*col + 1], &c__11, info);
	if (*info != 0) {
		return;
	}
	/*     solve D^(1/2)p1=v1. */
	for (i = 1; i <= Col; ++i) {
		p[i] = v[i] / sqrt(sy[i + i * sy_dim1]);
	}

	/*    PART II: solve [ -D^(1/2)   D^(-1/2)*L'     ] [ p1 ] = [ p1 ]
	 *               [  0        J'         ] [ p2 ]   [ p2 ].
	 *    solve J^Tp2=p2.
	 */
	dtrsl(&wt[wt_offset], &m, col, &p[*col + 1], &c__1, info);
	if (*info != 0) {
		return;
	}
	/*     compute p1=-D^(-1/2)(p1-D^(-1/2)L'p2) */
	/*           =-D^(-1/2)p1 + D^(-1)L'p2. */
	for (i = 1; i <= Col; ++i) {
		p[i] = -p[i] / sqrt(sy[i + i * sy_dim1]);
	}
	for (i = 1; i <= Col; ++i) {
		sum = 0.;
		for (k = i + 1; k <= Col; ++k) {
			sum += sy[k + i * sy_dim1] * p[*col + k] / sy[i + i * sy_dim1];
		}
		p[i] += sum;
		/* L60: */
	}
	return;
} /* bmv */
/* ======================== The end of bmv =============================== */

void hpsolb(int n, double *t, int *iorder, int iheap)
{
	/*    ************

	 Subroutine hpsolb

	 This subroutine sorts out the least element of t, and puts the
	 remaining elements of t in a heap.

	 n is an int variable.
	 On entry n is the dimension of the arrays t and iorder.
	 On exit n is unchanged.

	 t is a double precision array of dimension n.
	 On entry t stores the elements to be sorted,
	 On exit t(n) stores the least elements of t, and t(1) to t(n-1)
	 stores the remaining elements in the form of a heap.

	 iorder is an int array of dimension n.
	 On entry iorder(i) is the index of t(i).
	 On exit iorder(i) is still the index of t(i), but iorder may be
	 permuted in accordance with t.

	 iheap is an int variable specifying the task.
	 On entry iheap should be set as follows:
	 iheap .eq. 0 if t(1) to t(n) is not in the form of a heap,
	 iheap .ne. 0 if otherwise.
	 On exit iheap is unchanged.


	 References:
	 Algorithm 232 of CACM (J. W. J. Williams): HEAPSORT.

	 *     *  *

	 NEOS, November 1994. (Latest revision June 1996.)
	 Optimization Technology Center.
	 Argonne National Laboratory and Northwestern University.
	 Written by
	 Ciyou Zhu
	 in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.

	 ************
	 */

	/* Local variables */
	double ddum;
	int i, j, k, indxin, indxou;
	double out;

	/* Parameter adjustments */
	--iorder;
	--t;

	/* Function Body */
	if (iheap == 0) {
		/*      Rearrange the elements t(1) to t(n) to form a heap. */
		for (k = 2; k <= n; ++k) {
			ddum = t[k];
			indxin = iorder[k];
			/*         Add ddum to the heap. */
			i = k;
			h_loop:
			if (i > 1) {
				j = i / 2;
				if (ddum < t[j]) {
					t[i] = t[j];
					iorder[i] = iorder[j];
					i = j;
					goto h_loop;
				}
			}
			t[i] = ddum;
			iorder[i] = indxin;
			/* L20: */
		}
	}
	/*     Assign to 'out' the value of t(1), the least member of the heap, */
	/*      and rearrange the remaining members to form a heap as */
	/*      elements 1 to n-1 of t. */
	if (n > 1) {
		i = 1;
		out = t[1];
		indxou = iorder[1];
		ddum = t[n];
		indxin = iorder[n];
		/*      Restore the heap */
		Loop:
		j = i + i;
		if (j <= n - 1) {
			if (t[j + 1] < t[j]) {
				++j;
			}
			if (t[j] < ddum) {
				t[i] = t[j];
				iorder[i] = iorder[j];
				i = j;
				goto Loop;
			}
		}
		t[i] = ddum;
		iorder[i] = indxin;
		/*     Put the least member in t(n). */
		t[n] = out;
		iorder[n] = indxou;
	}
	return;
} /* hpsolb */
/* ====================== The end of hpsolb ============================== */

void dcsrch(double *f, double *g, double *stp,
		/*Chgd: the next five are no longer pointers:*/
		double ftol, double gtol, double xtol,
		double stpmin, double stpmax,
		char *task, int *isave, double *dsave)
{
	/*    **********

	 Subroutine dcsrch

	 This subroutine finds a step that satisfies a sufficient
	 decrease condition and a curvature condition.

	 Each call of the subroutine updates an interval with
	 endpoints stx and sty. The interval is initially chosen
	 so that it contains a minimizer of the modified function

	 psi(stp) = f(stp) - f(0) - ftol*stp*f'(0).

	 If psi(stp) <= 0 and f'(stp) >= 0 for some step, then the
	 interval is chosen so that it contains a minimizer of f.

	 The algorithm is designed to find a step that satisfies
	 the sufficient decrease condition

	 f(stp) <= f(0) + ftol*stp*f'(0),

	 and the curvature condition

	 abs(f'(stp)) <= gtol*abs(f'(0)).

	 If ftol is less than gtol and if, for example, the function
	 is bounded below, then there is always a step which satisfies
	 both conditions.

	 If no step can be found that satisfies both conditions, then
	 the algorithm stops with a warning. In this case stp only
	 satisfies the sufficient decrease condition.

	 A typical invocation of dcsrch has the following outline:

	 task = 'START'
	 10 continue
	 call dcsrch( ... )
	 if (task .eq. 'FG') then
	 Evaluate the function and the gradient at stp
	 goto 10
	 end if

	 NOTE: The user must no alter work arrays between calls.

	 The subroutine statement is

	 subroutine dcsrch(f,g,stp,ftol,gtol,xtol,stpmin,stpmax,
	 task,isave,dsave)
	 where

	 f is a double precision variable.
	 On initial entry f is the value of the function at 0.
	 On subsequent entries f is the value of the
	 function at stp.
	 On exit f is the value of the function at stp.

	 g is a double precision variable.
	 On initial entry g is the derivative of the function at 0.
	 On subsequent entries g is the derivative of the
	 function at stp.
	 On exit g is the derivative of the function at stp.

	 stp is a double precision variable.
	 On entry stp is the current estimate of a satisfactory
	 step. On initial entry, a positive initial estimate
	 must be provided.
	 On exit stp is the current estimate of a satisfactory step
	 if task = 'FG'. If task = 'CONV' then stp satisfies
	 the sufficient decrease and curvature condition.

	 ftol is a double precision variable.
	 On entry ftol specifies a nonnegative tolerance for the
	 sufficient decrease condition.
	 On exit ftol is unchanged.

	 gtol is a double precision variable.
	 On entry gtol specifies a nonnegative tolerance for the
	 curvature condition.
	 On exit gtol is unchanged.

	 xtol is a double precision variable.
	 On entry xtol specifies a nonnegative relative tolerance
	 for an acceptable step. The subroutine exits with a
	 warning if the relative difference between sty and stx
	 is less than xtol.
	 On exit xtol is unchanged.

	 stpmin is a double precision variable.
	 On entry stpmin is a nonnegative lower bound for the step.
	 On exit stpmin is unchanged.

	 stpmax is a double precision variable.
	 On entry stpmax is a nonnegative upper bound for the step.
	 On exit stpmax is unchanged.

	 task is a character variable of length at least 60.
	 On initial entry task must be set to 'START'.
	 On exit task indicates the required action:

	 If task(1:2) = 'FG' then evaluate the function and
	 derivative at stp and call dcsrch again.

	 If task(1:4) = 'CONV' then the search is successful.

	 If task(1:4) = 'WARN' then the subroutine is not able
	 to satisfy the convergence conditions. The exit value of
	 stp contains the best point found during the search.

	 If task(1:5) = 'ERROR' then there is an error in the
	 input arguments.

	 On exit with convergence, a warning or an error, the
	 variable task contains additional information.

	 isave is an integer work array of dimension 2.

	 dsave is a double precision work array of dimension 13.

	 Subprograms called

	 MINPACK-2 ... dcstep


	 MINPACK-1 Project. June 1983.
	 Argonne National Laboratory.
	 Jorge J. More' and David J. Thuente.

	 MINPACK-2 Project. October 1993.
	 Argonne National Laboratory and University of Minnesota.
	 Brett M. Averick, Richard G. Carter, and Jorge J. More'.

	 **********
	 */

	/* Local variables */
	int stage;
	double finit, ginit, width, ftest, gtest, stmin, stmax, width1, fm,
	gm, fx, fy, gx, gy;
	int brackt;
	double fxm, fym, gxm, gym, stx, sty;

	/* Parameter adjustments */
	--dsave;
	--isave;

	/* Function Body */

	/*     Initialization block. */
	if (strncmp(task, "START", 5) == 0) {
		/*      Check the input arguments for errors. */
		if (*stp < stpmin)    strcpy(task, "ERROR: STP .LT. STPMIN");
		if (*stp > stpmax)    strcpy(task, "ERROR: STP .GT. STPMAX");
		if (*g >= 0.)        strcpy(task, "ERROR: INITIAL G .GE. ZERO");
		if (ftol < 0.)        strcpy(task, "ERROR: FTOL .LT. ZERO");
		if (gtol < 0.)        strcpy(task, "ERROR: GTOL .LT. ZERO");
		if (xtol < 0.)        strcpy(task, "ERROR: XTOL .LT. ZERO");
		if (stpmin < 0.)    strcpy(task, "ERROR: STPMIN .LT. ZERO");
		if (stpmax < stpmin)    strcpy(task, "ERROR: STPMAX .LT. STPMIN");

		/*      Exit if there are errors on input. */
		if (strncmp(task, "ERROR", 5) == 0) {
			return;
		}
		/*      Initialize local variables. */
		brackt = 0;
		stage = 1;
		finit = *f;
		ginit = *g;
		gtest = ftol * ginit;
		width = stpmax - stpmin;
		width1 = width / .5;
		/*      The variables stx, fx, gx contain the values of the step, */
		/*      function, and derivative at the best step. */
		/*      The variables sty, fy, gy contain the value of the step, */
		/*      function, and derivative at sty. */
		/*      The variables stp, f, g contain the values of the step, */
		/*      function, and derivative at stp. */
		stx = 0.;    fx = finit;    gx = ginit;
		sty = 0.;    fy = finit;    gy = ginit;
		stmin = 0.;
		stmax = *stp + *stp * 4.;
		strcpy(task, "FG");
		goto L1000;
	} else {
		/*      Restore local variables. */
		if (isave[1] == 1) {
			brackt = 1;
		} else {
			brackt = 0;
		}
		stage = isave[2];
		ginit = dsave[1];
		gtest = dsave[2];
		gx = dsave[3];
		gy = dsave[4];
		finit = dsave[5];
		fx = dsave[6];
		fy = dsave[7];
		stx = dsave[8];
		sty = dsave[9];
		stmin = dsave[10];
		stmax = dsave[11];
		width = dsave[12];
		width1 = dsave[13];
	}
	/*      If psi(stp) <= 0 and f'(stp) >= 0 for some step, then the */
	/*      algorithm enters the second stage. */
	ftest = finit + *stp * gtest;
	if (stage == 1 && *f <= ftest && *g >= 0.) {
		stage = 2;
	}
	/*    Test for warnings. */
	if (brackt && (*stp <= stmin || *stp >= stmax))
		strcpy(task, "WARNING: ROUNDING ERRORS PREVENT PROGRESS");
	if (brackt && stmax - stmin <= xtol * stmax)
		strcpy(task, "WARNING: XTOL TEST SATISFIED");
	if (*stp == stpmax && *f <= ftest && *g <= gtest)
		strcpy(task, "WARNING: STP = STPMAX");
	if (*stp == stpmin && (*f > ftest || *g >= gtest))
		strcpy(task, "WARNING: STP = STPMIN");
	/*    Test for convergence. */
	if (*f <= ftest && fabs(*g) <= gtol * (-ginit))
		strcpy(task, "CONVERGENCE");
	/*    Test for termination. */
	if (strncmp(task, "WARN", 4) == 0 || strncmp(task, "CONV", 4) == 0)
		goto L1000;

	/*     A modified function is used to predict the step during the */
	/*     first stage if a lower function value has been obtained but */
	/*     the decrease is not sufficient. */
	if (stage == 1 && *f <= fx && *f > ftest) {
		/*      Define the modified function and derivative values. */
		fm = *f - *stp * gtest;
		fxm = fx - stx * gtest;
		fym = fy - sty * gtest;
		gm = *g - gtest;
		gxm = gx - gtest;
		gym = gy - gtest;
		/*      Call dcstep to update stx, sty, and to compute the new step. */
		dcstep(&stx, &fxm, &gxm, &sty, &fym, &gym, stp, &fm, &gm, &brackt, &
				stmin, &stmax);
		/*      Reset the function and derivative values for f. */
		fx = fxm + stx * gtest;
		fy = fym + sty * gtest;
		gx = gxm + gtest;
		gy = gym + gtest;
	} else {
		/*     Call dcstep to update stx, sty, and to compute the new step. */
		dcstep(&stx, &fx, &gx, &sty, &fy, &gy, stp, f, g, &brackt, &stmin, &
				stmax);
	}
	/*     Decide if a bisection step is needed. */
	if (brackt) {
		if (fabs(sty - stx) >= width1 * .66) {
			*stp = stx + (sty - stx) * .5;
		}
		width1 = width;
		width = fabs(sty - stx);
	}
	/*     Set the minimum and maximum steps allowed for stp. */
	if (brackt) {
		stmin = min(stx,sty);
		stmax = max(stx,sty);
	} else {
		stmin = *stp + (*stp - stx) * 1.1;
		stmax = *stp + (*stp - stx) * 4.;
	}
	/*     Force the step to be within the bounds stpmax and stpmin. */
	if(*stp < stpmin) *stp = stpmin;
	if(*stp > stpmax) *stp = stpmax;

	/*     If further progress is not possible, let stp be the best */
	/*     point obtained during the search. */
	if ((brackt && (*stp <= stmin || *stp >= stmax)) ||
			(brackt && (stmax - stmin <= xtol * stmax))) {
		*stp = stx;
	}
	/*     Obtain another function and derivative. */
	strcpy(task, "FG");
	L1000:
	/*     Save local variables. */
	if (brackt) {
		isave[1] = 1;
	} else {
		isave[1] = 0;
	}
	isave[2] = stage;
	dsave[1] = ginit;
	dsave[2] = gtest;
	dsave[3] = gx;
	dsave[4] = gy;
	dsave[5] = finit;
	dsave[6] = fx;
	dsave[7] = fy;
	dsave[8] = stx;
	dsave[9] = sty;
	dsave[10] = stmin;
	dsave[11] = stmax;
	dsave[12] = width;
	dsave[13] = width1;
	return;
} /* dcsrch */
/* ====================== The end of dcsrch ============================== */


void dcstep(double *stx, double *fx, double *dx,
		double *sty, double *fy, double *dy, double *stp,
		double *fp, double *dp, int *brackt, double *stpmin,
		double *stpmax)
{
	/*    **********

	 Subroutine dcstep

	 This subroutine computes a safeguarded step for a search
	 procedure and updates an interval that contains a step that
	 satisfies a sufficient decrease and a curvature condition.

	 The parameter stx contains the step with the least function
	 value. If brackt is set to .true. then a minimizer has
	 been bracketed in an interval with endpoints stx and sty.
	 The parameter stp contains the current step.
	 The subroutine assumes that if brackt is set to .true. then

	 min(stx,sty) < stp < max(stx,sty),

	 and that the derivative at stx is negative in the direction
	 of the step.

	 The subroutine statement is

	 subroutine dcstep(stx,fx,dx,sty,fy,dy,stp,fp,dp,brackt,
	 stpmin,stpmax)

	 where

	 stx is a double precision variable.
	 On entry stx is the best step obtained so far and is an
	 endpoint of the interval that contains the minimizer.
	 On exit stx is the updated best step.

	 fx is a double precision variable.
	 On entry fx is the function at stx.
	 On exit fx is the function at stx.

	 dx is a double precision variable.
	 On entry dx is the derivative of the function at
	 stx. The derivative must be negative in the direction of
	 the step, that is, dx and stp - stx must have opposite
	 signs.
	 On exit dx is the derivative of the function at stx.

	 sty is a double precision variable.
	 On entry sty is the second endpoint of the interval that
	 contains the minimizer.
	 On exit sty is the updated endpoint of the interval that
	 contains the minimizer.

	 fy is a double precision variable.
	 On entry fy is the function at sty.
	 On exit fy is the function at sty.

	 dy is a double precision variable.
	 On entry dy is the derivative of the function at sty.
	 On exit dy is the derivative of the function at the exit sty.

	 stp is a double precision variable.
	 On entry stp is the current step. If brackt is set to .true.
	 then on input stp must be between stx and sty.
	 On exit stp is a new trial step.

	 fp is a double precision variable.
	 On entry fp is the function at stp
	 On exit fp is unchanged.

	 dp is a double precision variable.
	 On entry dp is the the derivative of the function at stp.
	 On exit dp is unchanged.

	 brackt is an logical variable.
	 On entry brackt specifies if a minimizer has been bracketed.
	 Initially brackt must be set to .false.
	 On exit brackt specifies if a minimizer has been bracketed.
	 When a minimizer is bracketed brackt is set to .true.

	 stpmin is a double precision variable.
	 On entry stpmin is a lower bound for the step.
	 On exit stpmin is unchanged.

	 stpmax is a double precision variable.
	 On entry stpmax is an upper bound for the step.
	 On exit stpmax is unchanged.

	 MINPACK-1 Project. June 1983
	 Argonne National Laboratory.
	 Jorge J. More' and David J. Thuente.

	 MINPACK-2 Project. October 1993.
	 Argonne National Laboratory and University of Minnesota.
	 Brett M. Averick and Jorge J. More'.

	 **********
	 */

	/* System generated locals */
	double d__1, d__2;

	/* Local variables */
	double sgnd, stpc, stpf, stpq, p, q, gamm, r__, s, theta;

	sgnd = *dp * (*dx / fabs(*dx));
	/*     First case: A higher function value. The minimum is bracketed. */
	/*     If the cubic step is closer to stx than the quadratic step, the */
	/*     cubic step is taken, otherwise the average of the cubic and */
	/*     quadratic steps is taken. */
	if (*fp > *fx) {
		theta = (*fx - *fp) * 3. / (*stp - *stx) + *dx + *dp;
		/* Computing MAX */
		d__1 = fabs(theta), d__2 = fabs(*dx),
				d__1 = max(d__1,d__2), d__2 = fabs(*dp);
		s = max(d__1,d__2);
		/* Computing 2nd power */
		d__1 = theta / s;
		gamm = s * sqrt(d__1 * d__1 - *dx / s * (*dp / s));
		if (*stp < *stx) {
			gamm = -gamm;
		}
		p = gamm - *dx + theta;
		q = gamm - *dx + gamm + *dp;
		r__ = p / q;
		stpc = *stx + r__ * (*stp - *stx);
		stpq = *stx + *dx / ((*fx - *fp) / (*stp - *stx) + *dx) / 2. * (*stp
				- *stx);
		if (fabs(stpc - *stx) < fabs(stpq - *stx)) {
			stpf = stpc;
		} else {
			stpf = stpc + (stpq - stpc) / 2.;
		}
		*brackt = 1;
		/*     Second case: A lower function value and derivatives of opposite */
		/*     sign. The minimum is bracketed. If the cubic step is farther from */
		/*     stp than the secant step, the cubic step is taken, otherwise the */
		/*     secant step is taken. */
	} else if (sgnd < 0.) {
		theta = (*fx - *fp) * 3. / (*stp - *stx) + *dx + *dp;
		/* Computing MAX */
		d__1 = fabs(theta), d__2 = fabs(*dx),
				d__1 = max(d__1,d__2), d__2 = fabs(*dp);
		s = max(d__1,d__2);
		/* Computing 2nd power */
		d__1 = theta / s;
		gamm = s * sqrt(d__1 * d__1 - *dx / s * (*dp / s));
		if (*stp > *stx) {
			gamm = -gamm;
		}
		p = gamm - *dp + theta;
		q = gamm - *dp + gamm + *dx;
		r__ = p / q;
		stpc = *stp + r__ * (*stx - *stp);
		stpq = *stp + *dp / (*dp - *dx) * (*stx - *stp);
		if (fabs(stpc - *stp) > fabs(stpq - *stp)) {
			stpf = stpc;
		} else {
			stpf = stpq;
		}
		*brackt = 1;
		/*     Third case: A lower function value, derivatives of the same sign, */
		/*     and the magnitude of the derivative decreases. */
	} else if (fabs(*dp) < fabs(*dx)) {
		/*      The cubic step is computed only if the cubic tends to infinity */
		/*      in the direction of the step or if the minimum of the cubic */
		/*      is beyond stp. Otherwise the cubic step is defined to be the */
		/*      secant step. */
		theta = (*fx - *fp) * 3. / (*stp - *stx) + *dx + *dp;
		/* Computing MAX */
		d__1 = fabs(theta), d__2 = fabs(*dx),
				d__1 = max(d__1,d__2), d__2 = fabs(*dp);
		s = max(d__1,d__2);
		/*      The case gamm = 0 only arises if the cubic does not tend */
		/*      to infinity in the direction of the step. */
		/* Computing MAX */
		/* Computing 2nd power */
		d__1 = theta / s;
		d__1 = d__1 * d__1 - *dx / s * (*dp / s);
		gamm = d__1 < 0 ? 0. : s * sqrt(d__1);
		if (*stp > *stx) {
			gamm = -gamm;
		}
		p = gamm - *dp + theta;
		q = gamm + (*dx - *dp) + gamm;
		r__ = p / q;
		if (r__ < 0. && gamm != 0.) {
			stpc = *stp + r__ * (*stx - *stp);
		} else if (*stp > *stx) {
			stpc = *stpmax;
		} else {
			stpc = *stpmin;
		}
		stpq = *stp + *dp / (*dp - *dx) * (*stx - *stp);
		if (*brackt) {
			/*         A minimizer has been bracketed. If the cubic step is */
			/*         closer to stp than the secant step, the cubic step is */
			/*         taken, otherwise the secant step is taken. */
			if (fabs(stpc - *stp) < fabs(stpq - *stp)) {
				stpf = stpc;
			} else {
				stpf = stpq;
			}
			d__1 = *stp + (*sty - *stp) * .66;
			if (*stp > *stx) {
				stpf = min(d__1,stpf);
			} else {
				stpf = max(d__1,stpf);
			}
		} else {
			/*         A minimizer has not been bracketed. If the cubic step is */
			/*         farther from stp than the secant step, the cubic step is */
			/*         taken, otherwise the secant step is taken. */
			if (fabs(stpc - *stp) > fabs(stpq - *stp)) {
				stpf = stpc;
			} else {
				stpf = stpq;
			}
			stpf = min(*stpmax,stpf);
			stpf = max(*stpmin,stpf);
		}
		/*     Fourth case: A lower function value, derivatives of the */
		/*     same sign, and the magnitude of the derivative does not */
		/*     decrease. If the minimum is not bracketed, the step is either */
		/*     stpmin or stpmax, otherwise the cubic step is taken. */
	} else {
		if (*brackt) {
			theta = (*fp - *fy) * 3. / (*sty - *stp) + *dy + *dp;
			/* Computing MAX */
			d__1 = fabs(theta), d__2 = fabs(*dy), d__1 = max(d__1,d__2), d__2 =
					fabs(*dp);
			s = max(d__1,d__2);
			/* Computing 2nd power */
			d__1 = theta / s;
			gamm = s * sqrt(d__1 * d__1 - *dy / s * (*dp / s));
			if (*stp > *sty) {
				gamm = -gamm;
			}
			p = gamm - *dp + theta;
			q = gamm - *dp + gamm + *dy;
			r__ = p / q;
			stpc = *stp + r__ * (*sty - *stp);
			stpf = stpc;
		} else if (*stp > *stx) {
			stpf = *stpmax;
		} else {
			stpf = *stpmin;
		}
	}
	/*     Update the interval which contains a minimizer. */
	if (*fp > *fx) {
		*sty = *stp;
		*fy = *fp;
		*dy = *dp;
	} else {
		if (sgnd < 0.) {
			*sty = *stx;
			*fy = *fx;
			*dy = *dx;
		}
		*stx = *stp;
		*fx = *fp;
		*dx = *dp;
	}
	/*     Compute the new step. */
	*stp = stpf;
	return;
} /* dcstep */
/* ====================== The end of dcstep ============================== */


void prn3lb(int n, double *x, double *f, char *task, int iprint,
		int info, int iter, int nfgv, int nintol, int nskip,
		int nact, double sbgnrm, int nint,
		char *word, int iback, double stp, double xstep,
		int k)
{
	if(strncmp(task, "CONV", 4) == 0) {
		if (iprint >= 0) {
			cout << endl;
			cout << "iterations " << iter << endl;
			cout << "function evaluations " << nfgv << endl;
			cout << "segments explored during Cauchy searches " << nintol << endl;
			cout << "BFGS updates skipped " << nskip << endl;
			cout << "active bounds at final generalized Cauchy point " << nact << endl;
			cout << "norm of the final projected gradient " << sbgnrm << endl;
			cout << "inal function value " << *f << endl;
			cout << endl;
		}
		if (iprint >= 100) pvector((char*)"X =", x, n);
		if (iprint >= 1)
			cout << "F = " << *f << endl;
	}
	if (iprint >= 0) {
		switch(info) {
		case -1:
			cout << "Matrix in 1st Cholesky factorization in formk is not Pos. Def.";
			break;
		case -2:
			cout << "Matrix in 2st Cholesky factorization in formk is not Pos. Def.";
			break;
		case -3:
			cout << "Matrix in the Cholesky factorization in formt is not Pos. Def.";
			break;
		case -4:
			cout << "Derivative >= 0, backtracking line search impossible.";
			break;
		case -5:
			cout << "l(" << k << ") > u(" << k << ").  No feasible solution";
			break;
		case -6:
			cout << "Input nbd(" << k << ") is invalid";
			break;
		case -7:
			cout << "Warning:  more than 10 function and gradient evaluations" << endl;
			cout << "   in the last line search" << endl;
			break;
		case -8:
			cout << "The triangular system is singular." << endl;
			break;
		case -9:
			cout << "Line search cannot locate an adequate point after 20 function" << endl;
			cout << "and gradient evaluations" << endl;
			break;
		default:
			break;
		}
	}
}

void prn1lb(int n, int m, double *l, double *u, double *x,
		int iprint, double epsmch)
{
	if (iprint >=  0) {
		cout << "N = " << n << ", M = " << m << " machine precision = " << epsmch << endl;
		if (iprint >= 100){
			pvector((char*)"L =", l, n);
			pvector((char*)"X0 =",x, n);
			pvector((char*)"U =", u, n);
		}
	}
}

void projgr(int n, double *l, double *u,
		int *nbd, double *x, double *g, double *sbgnrm)
{
	/*    ************

	 Subroutine projgr

	 This subroutine computes the infinity norm of the projected gradient.


	 *     *  *

	 NEOS, November 1994. (Latest revision April 1997.)
	 Optimization Technology Center.
	 Argonne National Laboratory and Northwestern University.
	 Written by
	 Ciyou Zhu
	 in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.

	 ************
	 */
	int i;
	double gi, d__1;

	*sbgnrm = 0.;
	for (i = 0; i < n; ++i) {
		gi = g[i];
		if (nbd[i] != 0) {
			if (gi < 0.) {
				if (nbd[i] >= 2) {
					if(gi < (d__1 = x[i] - u[i]))
						gi = d__1;
				}
			} else {
				if (nbd[i] <= 2) {
					if(gi > (d__1 = x[i] - l[i]))
						gi = d__1;
				}
			}
		}
		if(*sbgnrm < (d__1 = fabs(gi))) *sbgnrm = d__1;
	}
	return;
} /* projgr */

void prn2lb(int n, double *x, double *f, double *g, int iprint,
		int iter, int nfgv, int nact, double sbgnrm,
		int nint, char *word, int iword, int iback,
		double stp, double xstep)
{
	if (iprint >=  99) {
		cout << "LINE SEARCH " << iback << " times; norm of step = " << xstep << "\n";
		if (iprint > 100) {
			pvector((char*)"X =", x, n);
			pvector((char*)"G =", g, n);
		}
	} else if (iprint > 0 && iter%iprint == 0) {
		cout << "At iterate " << iter << "  f = " << *f << "  |proj g|=  " << sbgnrm << "\n";
	}
}

void pvector(char *title, double *x, int n)
{
	int i;
	cout << title;
	for (i = 0; i < n; i++) cout << x[i] << " ";
	cout << endl;
}


int dcopy(int *n, double *dx, int *incx,
		double *dy, int *incy)
{


	/* System generated locals */
	// int i__1;

	/* Local variables */
	int i, m, ix, iy, mp1;


	/*     copies a vector, x, to a vector, y.
	 uses unrolled loops for increments equal to one.
	 jack dongarra, linpack, 3/11/78.
	 modified 12/3/93, array(1) declarations changed to array(*)



	 Parameter adjustments
	 Function Body */


	if (*n <= 0) {
		return 0;
	}
	if (*incx == 1 && *incy == 1) {
		goto L20;
	}

	/*        code for unequal increments or equal increments
	 not equal to 1 */

	ix = 1;
	iy = 1;
	if (*incx < 0) {
		ix = (-(*n) + 1) * *incx + 1;
	}
	if (*incy < 0) {
		iy = (-(*n) + 1) * *incy + 1;
	}
	// i__1 = *n;
	for (i = 1; i <= *n; ++i) {
		DY(iy) = DX(ix);
		ix += *incx;
		iy += *incy;
		/* L10: */
	}
	return 0;

	/*        code for both increments equal to 1


	 clean-up loop */

	L20:
	m = *n % 7;
	if (m == 0) {
		goto L40;
	}
	// i__1 = m;
	for (i = 1; i <= m; ++i) {
		DY(i) = DX(i);
		/* L30: */
	}
	if (*n < 7) {
		return 0;
	}
	L40:
	mp1 = m + 1;
	// i__1 = *n;
	for (i = mp1; i <= *n; i += 7) {
		DY(i) = DX(i);
		DY(i + 1) = DX(i + 1);
		DY(i + 2) = DX(i + 2);
		DY(i + 3) = DX(i + 3);
		DY(i + 4) = DX(i + 4);
		DY(i + 5) = DX(i + 5);
		DY(i + 6) = DX(i + 6);
		/* L50: */
	}
	return 0;
} /* dcopy */

void timer(double * ttime)
{
	*ttime = 0.0;
}

int dscal(int *n, double *da, double *dx,
		int *incx)
{


	/* System generated locals */
	// int i__1, i__2;

	/* Local variables */
	int i, m, nincx, mp1;


	/*     scales a vector by a constant.
	 uses unrolled loops for increment equal to one.
	 jack dongarra, linpack, 3/11/78.
	 modified 3/93 to return if incx .le. 0.
	 modified 12/3/93, array(1) declarations changed to array(*)



	 Parameter adjustments
	 Function Body */


	if (*n <= 0 || *incx <= 0) {
		return 0;
	}
	if (*incx == 1) {
		goto L20;
	}

	/*        code for increment not equal to 1 */

	nincx = *n * *incx;
	// i__1 = nincx;
	// i__2 = *incx;
	for (i = 1; *incx < 0 ? i >= nincx : i <= nincx; i += *incx) {
		DX(i) = *da * DX(i);
		/* L10: */
	}
	return 0;

	/*        code for increment equal to 1


	 clean-up loop */

	L20:
	m = *n % 5;
	if (m == 0) {
		goto L40;
	}
	// i__2 = m;
	for (i = 1; i <= m; ++i) {
		DX(i) = *da * DX(i);
		/* L30: */
	}
	if (*n < 5) {
		return 0;
	}
	L40:
	mp1 = m + 1;
	// i__2 = *n;
	for (i = mp1; i <= *n; i += 5) {
		DX(i) = *da * DX(i);
		DX(i + 1) = *da * DX(i + 1);
		DX(i + 2) = *da * DX(i + 2);
		DX(i + 3) = *da * DX(i + 3);
		DX(i + 4) = *da * DX(i + 4);
		/* L50: */
	}
	return 0;
} /* dscal */

double ddot(int *n, double *dx, int *incx, double *dy,
		int *incy)
{


	/* System generated locals */
	// int i__1;
	double ret_val;

	/* Local variables */
	int i, m;
	double dtemp;
	int ix, iy, mp1;


	/*     forms the dot product of two vectors.
	 uses unrolled loops for increments equal to one.
	 jack dongarra, linpack, 3/11/78.
	 modified 12/3/93, array(1) declarations changed to array(*)



	 Parameter adjustments
	 Function Body */


	ret_val = 0.;
	dtemp = 0.;
	if (*n <= 0) {
		return ret_val;
	}
	if (*incx == 1 && *incy == 1) {
		goto L20;
	}

	/*        code for unequal increments or equal increments
	 not equal to 1 */

	ix = 1;
	iy = 1;
	if (*incx < 0) {
		ix = (-(*n) + 1) * *incx + 1;
	}
	if (*incy < 0) {
		iy = (-(*n) + 1) * *incy + 1;
	}
	// i__1 = *n;
	for (i = 1; i <= *n; ++i) {
		dtemp += DX(ix) * DY(iy);
		ix += *incx;
		iy += *incy;
		/* L10: */
	}
	ret_val = dtemp;
	return ret_val;

	/*        code for both increments equal to 1


	 clean-up loop */

	L20:
	m = *n % 5;
	if (m == 0) {
		goto L40;
	}
	// i__1 = m;
	for (i = 1; i <= m; ++i) {
		dtemp += DX(i) * DY(i);
		/* L30: */
	}
	if (*n < 5) {
		goto L60;
	}
	L40:
	mp1 = m + 1;
	// i__1 = *n;
	for (i = mp1; i <= *n; i += 5) {
		dtemp = dtemp + DX(i) * DY(i) + DX(i + 1) * DY(i + 1) + DX(i + 2) *
				DY(i + 2) + DX(i + 3) * DY(i + 3) + DX(i + 4) * DY(i + 4);
		/* L50: */
	}
	L60:
	ret_val = dtemp;
	return ret_val;
} /* ddot */

int daxpy(int *n, double *da, double *dx,
		int *incx, double *dy, int *incy)
{


	/* System generated locals */
	// int i__1;

	/* Local variables */
	int i, m, ix, iy, mp1;


	/*     constant times a vector plus a vector.
	 uses unrolled loops for increments equal to one.
	 jack dongarra, linpack, 3/11/78.
	 modified 12/3/93, array(1) declarations changed to array(*)



	 Parameter adjustments
	 Function Body */    

	if (*n <= 0) {
		return 0;
	}
	if (*da == 0.) {
		return 0;
	}
	if (*incx == 1 && *incy == 1) {
		goto L20;
	}

	/*        code for unequal increments or equal increments
	 not equal to 1 */

	ix = 1;
	iy = 1;
	if (*incx < 0) {
		ix = (-(*n) + 1) * *incx + 1;
	}
	if (*incy < 0) {
		iy = (-(*n) + 1) * *incy + 1;
	}
	// i__1 = *n;
	for (i = 1; i <= *n; ++i) {
		DY(iy) += *da * DX(ix);
		ix += *incx;
		iy += *incy;
		/* L10: */
	}
	return 0;

	/*        code for both increments equal to 1


	 clean-up loop */

	L20:
	m = *n % 4;
	if (m == 0) {
		goto L40;
	}
	// i__1 = m;
	for (i = 1; i <= m; ++i) {
		DY(i) += *da * DX(i);
		/* L30: */
	}
	if (*n < 4) {
		return 0;
	}
	L40:
	mp1 = m + 1;
	// i__1 = *n;
	for (i = mp1; i <= *n; i += 4) {
		DY(i) += *da * DX(i);
		DY(i + 1) += *da * DX(i + 1);
		DY(i + 2) += *da * DX(i + 2);
		DY(i + 3) += *da * DX(i + 3);
		/* L50: */
	}
	return 0;
} /* daxpy */

int dpofa(double *a, int *lda, int *n, int *info)
{
	/* System generated locals */
	int a_dim1, a_offset, i__1, i__2, i__3;

	/* Local variables */
	int j, k;
	double s, t;
	int jm1;

	/*<       integer lda,n,info >*/
	/*<       double precision a(lda,1) >*/

	/*     dpofa factors a double precision symmetric positive definite */
	/*     matrix. */

	/*     dpofa is usually called by dpoco, but it can be called */
	/*     directly with a saving in time if  rcond  is not needed. */
	/*     (time for dpoco) = (1 + 18/n)*(time for dpofa) . */

	/*     on entry */

	/*        a       double precision(lda, n) */
	/*                the symmetric matrix to be factored.  only the */
	/*                diagonal and upper triangle are used. */

	/*        lda     integer */
	/*                the leading dimension of the array  a . */

	/*        n       integer */
	/*                the order of the matrix  a . */

	/*     on return */

	/*        a       an upper triangular matrix  r  so that  a = trans(r)*r */
	/*                where  trans(r)  is the transpose. */
	/*                the strict lower triangle is unaltered. */
	/*                if  info .ne. 0 , the factorization is not complete. */

	/*        info    integer */
	/*                = 0  for normal return. */
	/*                = k  signals an error condition.  the leading minor */
	/*                     of order  k  is not positive definite. */

	/*     linpack.  this version dated 08/14/78 . */
	/*     cleve moler, university of new mexico, argonne national lab. */

	/*     subroutines and functions */

	/*     blas ddot */
	/*     fortran dsqrt */

	/*     internal variables */

	/*<       double precision ddot,t >*/
	/*<       double precision s >*/
	/*<       integer j,jm1,k >*/
	/*     begin block with ...exits to 40 */


	/*<          do 30 j = 1, n >*/
	/* Parameter adjustments */
	a_dim1 = *lda;
	a_offset = 1 + a_dim1;
	a -= a_offset;

	/* Function Body */
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
		/*<             info = j >*/
		*info = j;
		/*<             s = 0.0d0 >*/
		s = 0.;
		/*<             jm1 = j - 1 >*/
		jm1 = j - 1;
		/*<             if (jm1 .lt. 1) go to 20 >*/
		if (jm1 < 1) {
			goto L20;
		}
		/*<             do 10 k = 1, jm1 >*/
		i__2 = jm1;
		for (k = 1; k <= i__2; ++k) {
			/*<                t = a(k,j) - ddot(k-1,a(1,k),1,a(1,j),1) >*/
			i__3 = k - 1;
			t = a[k + j * a_dim1] - ddot(&i__3, &a[k * a_dim1 + 1], &c__1, &
					a[j * a_dim1 + 1], &c__1);
			/*<                t = t/a(k,k) >*/
			t /= a[k + k * a_dim1];
			/*<                a(k,j) = t >*/
			a[k + j * a_dim1] = t;
			/*<                s = s + t*t >*/
			s += t * t;
			/*<    10       continue >*/
			/* L10: */
		}
		/*<    20       continue >*/
		L20:
		/*<             s = a(j,j) - s >*/
		s = a[j + j * a_dim1] - s;
		/*     ......exit */
		/*<             if (s .le. 0.0d0) go to 40 >*/
		if (s <= 0.) {
			goto L40;
		}
		/*<             a(j,j) = dsqrt(s) >*/
		a[j + j * a_dim1] = sqrt(s);
		/*<    30    continue >*/
		/* L30: */
	}
	/*<          info = 0 >*/
	*info = 0;
	/*<    40 continue >*/
	L40:
	/*<       return >*/
	return 0;
	/*<       end >*/
} /* dpofa */

int dtrsl(double *t, int *ldt, int *n,
		double *b, int *job, int *info)
{
	/* System generated locals */
	int t_dim1, t_offset, i__1, i__2;

	/* Local variables */
	int j, jj, case__;
	double temp;


	/*     dtrsl solves systems of the form */

	/*                   t * x = b */
	/*     or */
	/*                   trans(t) * x = b */

	/*     where t is a triangular matrix of order n. here trans(t) */
	/*     denotes the transpose of the matrix t. */

	/*     on entry */

	/*         t         double precision(ldt,n) */
	/*                   t contains the matrix of the system. the zero */
	/*                   elements of the matrix are not referenced, and */
	/*                   the corresponding elements of the array can be */
	/*                   used to store other information. */

	/*         ldt       integer */
	/*                   ldt is the leading dimension of the array t. */

	/*         n         integer */
	/*                   n is the order of the system. */

	/*         b         double precision(n). */
	/*                   b contains the right hand side of the system. */

	/*         job       integer */
	/*                   job specifies what kind of system is to be solved. */
	/*                   if job is */

	/*                        00   solve t*x=b, t lower triangular, */
	/*                        01   solve t*x=b, t upper triangular, */
	/*                        10   solve trans(t)*x=b, t lower triangular, */
	/*                        11   solve trans(t)*x=b, t upper triangular. */

	/*     on return */

	/*         b         b contains the solution, if info .eq. 0. */
	/*                   otherwise b is unaltered. */

	/*         info      integer */
	/*                   info contains zero if the system is nonsingular. */
	/*                   otherwise info contains the index of */
	/*                   the first zero diagonal element of t. */

	/*     linpack. this version dated 08/14/78 . */
	/*     g. w. stewart, university of maryland, argonne national lab. */

	/*     subroutines and functions */

	/*     blas daxpy,ddot */
	/*     fortran mod */

	/*     internal variables */


	/*     begin block permitting ...exits to 150 */

	/*        check for zero diagonal elements. */

	/* Parameter adjustments */
	t_dim1 = *ldt;
	t_offset = 1 + t_dim1;
	t -= t_offset;
	--b;

	/* Function Body */
	i__1 = *n;
	for (*info = 1; *info <= i__1; ++(*info)) {
		/*     ......exit */
		if (t[*info + *info * t_dim1] == 0.) {
			goto L150;
		}
		/* L10: */
	}
	*info = 0;

	/*        determine the task and go to it. */

	case__ = 1;
	if (*job % 10 != 0) {
		case__ = 2;
	}
	if (*job % 100 / 10 != 0) {
		case__ += 2;
	}
	switch (case__) {
	case 1:  goto L20;
	case 2:  goto L50;
	case 3:  goto L80;
	case 4:  goto L110;
	}

	/*        solve t*x=b for t lower triangular */

	L20:
	b[1] /= t[t_dim1 + 1];
	if (*n < 2) {
		goto L40;
	}
	i__1 = *n;
	for (j = 2; j <= i__1; ++j) {
		temp = -b[j - 1];
		i__2 = *n - j + 1;
		daxpy(&i__2, &temp, &t[j + (j - 1) * t_dim1], &c__1, &b[j], &c__1);
		b[j] /= t[j + j * t_dim1];
		/* L30: */
	}
	L40:
	goto L140;

	/*        solve t*x=b for t upper triangular. */

	L50:
	b[*n] /= t[*n + *n * t_dim1];
	if (*n < 2) {
		goto L70;
	}
	i__1 = *n;
	for (jj = 2; jj <= i__1; ++jj) {
		j = *n - jj + 1;
		temp = -b[j + 1];
		daxpy(&j, &temp, &t[(j + 1) * t_dim1 + 1], &c__1, &b[1], &c__1);
		b[j] /= t[j + j * t_dim1];
		/* L60: */
	}
	L70:
	goto L140;

	/*        solve trans(t)*x=b for t lower triangular. */

	L80:
	b[*n] /= t[*n + *n * t_dim1];
	if (*n < 2) {
		goto L100;
	}
	i__1 = *n;
	for (jj = 2; jj <= i__1; ++jj) {
		j = *n - jj + 1;
		i__2 = jj - 1;
		b[j] -= ddot(&i__2, &t[j + 1 + j * t_dim1], &c__1, &b[j + 1], &c__1);
		b[j] /= t[j + j * t_dim1];
		/* L90: */
	}
	L100:
	goto L140;

	/*        solve trans(t)*x=b for t upper triangular. */

	L110:
	b[1] /= t[t_dim1 + 1];
	if (*n < 2) {
		goto L130;
	}
	i__1 = *n;
	for (j = 2; j <= i__1; ++j) {
		i__2 = j - 1;
		b[j] -= ddot(&i__2, &t[j * t_dim1 + 1], &c__1, &b[1], &c__1);
		b[j] /= t[j + j * t_dim1];
		/* L120: */
	}
	L130:
	L140:
	L150:
	return 0;
} /* dtrsl */