1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
|
/***************************************************************************
* Copyright (C) 2009 by BUI Quang Minh *
* minh.bui@univie.ac.at *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifndef GTRMODEL_H
#define GTRMODEL_H
#define EIGEN
#include "phylotree.h"
#include "modelsubst.h"
#include "optimization.h"
#include "alignment.h"
#include "eigendecomposition.h"
const double MIN_RATE = 1e-4;
const double TOL_RATE = 1e-4;
const double MAX_RATE = 100;
/**
General Time Reversible (GTR) model of substitution.
This works for all kind of data, not only DNA
@author BUI Quang Minh <minh.bui@univie.ac.at>
*/
class ModelGTR : public ModelSubst, public EigenDecomposition
{
friend class ModelSet;
friend class ModelMixture;
public:
/**
constructor
@param tree associated tree for the model
*/
ModelGTR(PhyloTree *tree, bool count_rates = true);
/**
init the model and decompose the rate matrix. This function should always be called
after creating the class. Otherwise it will not work properly.
@param freq_type state frequency type, can be FREQ_USER_DEFINED, FREQ_EQUAL, FREQ_EMPIRICAL, or FREQ_ESTIMATE
*/
void init(StateFreqType freq_type);
/**
this function is served for ModelDNA and ModelProtein
@param model_name name of the model
@param freq_type state frequency type, can be FREQ_USER_DEFINED, FREQ_EQUAL, FREQ_EMPIRICAL, or FREQ_ESTIMATE
*/
virtual void init(const char *model_name, string model_params, StateFreqType freq, string freq_params) {}
/**
destructor
*/
virtual ~ModelGTR();
/**
save object into the checkpoint
*/
virtual void saveCheckpoint();
/**
restore object from the checkpoint
*/
virtual void restoreCheckpoint();
/**
* @return model name
*/
virtual string getName();
/**
* @return model name with parameters in form of e.g. GTR{a,b,c,d,e,f}
*/
virtual string getNameParams();
/**
internal function: return string for frequency
@param retname output stream
*/
void getNameParamsFreq(ostream &retname);
/**
set the associated tree
@param tree the associated tree
*/
void setTree(PhyloTree *tree);
/**
Read the upper-triangle rate matrix from an input stream.
It will throw error messages if failed
@param in input stream
*/
virtual void readRates(istream &in) throw(const char*, string);
/**
Read the rate parameters from a comma-separated string
It will throw error messages if failed
@param in input stream
*/
virtual void readRates(string str) throw(const char*);
/**
Read state frequencies from an input stream.
It will throw error messages if failed
@param in input stream
*/
virtual void readStateFreq(istream &in) throw(const char*);
/**
Read state frequencies from comma-separated string
It will throw error messages if failed
@param str input string
*/
virtual void readStateFreq(string str) throw(const char*);
/**
read model parameters from a file
@param file_name file containing upper-triangle rate matrix and state frequencies
*/
void readParameters(const char *file_name);
/**
compute the transition probability matrix.
@param time time between two events
@param trans_matrix (OUT) the transition matrix between all pairs of states.
Assume trans_matrix has size of num_states * num_states.
*/
virtual void computeTransMatrix(double time, double *trans_matrix);
/**
* wrapper for computing transition matrix times state frequency vector
* @param time time between two events
* @param trans_matrix (OUT) the transition matrix between all pairs of states.
* Assume trans_matrix has size of num_states * num_states.
*/
virtual void computeTransMatrixFreq(double time, double *trans_matrix);
/**
compute the transition probability between two states
@param time time between two events
@param state1 first state
@param state2 second state
*/
virtual double computeTrans(double time, int state1, int state2);
/**
compute the transition probability between two states
@param time time between two events
@param state1 first state
@param state2 second state
@param derv1 (OUT) 1st derivative
@param derv2 (OUT) 2nd derivative
*/
virtual double computeTrans(double time, int state1, int state2, double &derv1, double &derv2);
/**
Get the rate matrix.
@param rate_mat (OUT) upper-triagle rate matrix. Assume rate_mat has size of num_states*(num_states-1)/2
*/
virtual void getRateMatrix(double *rate_mat);
/**
Set the rate matrix.
@param rate_mat upper-triagle rate matrix. Assume rate_mat has size of num_states*(num_states-1)/2
*/
virtual void setRateMatrix(double *rate_mat);
/**
compute the state frequency vector
@param state_freq (OUT) state frequency vector. Assume state_freq has size of num_states
*/
virtual void getStateFrequency(double *state_freq);
/**
set the state frequency vector
@param state_freq (IN) state frequency vector. Assume state_freq has size of num_states
*/
virtual void setStateFrequency(double *state_freq);
/**
* compute Q matrix
* @param q_mat (OUT) Q matrix, assuming of size num_states * num_states
*/
virtual void getQMatrix(double *q_mat);
/**
rescale the state frequencies
@param sum_one TRUE to make frequencies sum to 1, FALSE to make last entry equal to 1
*/
void scaleStateFreq(bool sum_one);
/**
get frequency type
@return frequency type
*/
virtual StateFreqType getFreqType() { return freq_type; }
/**
compute the transition probability matrix.and the derivative 1 and 2
@param time time between two events
@param trans_matrix (OUT) the transition matrix between all pairs of states.
Assume trans_matrix has size of num_states * num_states.
@param trans_derv1 (OUT) the 1st derivative matrix between all pairs of states.
@param trans_derv2 (OUT) the 2nd derivative matrix between all pairs of states.
*/
virtual void computeTransDerv(double time, double *trans_matrix,
double *trans_derv1, double *trans_derv2);
/**
compute the transition probability matrix.and the derivative 1 and 2 times state frequency vector
@param time time between two events
@param trans_matrix (OUT) the transition matrix between all pairs of states.
Assume trans_matrix has size of num_states * num_states.
@param trans_derv1 (OUT) the 1st derivative matrix between all pairs of states.
@param trans_derv2 (OUT) the 2nd derivative matrix between all pairs of states.
*/
virtual void computeTransDervFreq(double time, double rate_val, double *trans_matrix,
double *trans_derv1, double *trans_derv2);
/**
@return the number of dimensions
*/
virtual int getNDim();
/**
@return the number of dimensions corresponding to state frequencies
*/
virtual int getNDimFreq();
/**
the target function which needs to be optimized
@param x the input vector x
@return the function value at x
*/
virtual double targetFunk(double x[]);
/**
* setup the bounds for joint optimization with BFGS
*/
virtual void setBounds(double *lower_bound, double *upper_bound, bool *bound_check);
/**
optimize model parameters
@return the best likelihood
*/
virtual double optimizeParameters(double gradient_epsilon);
/**
* @return TRUE if parameters are at the boundary that may cause numerical unstability
*/
virtual bool isUnstableParameters();
/**
write information
@param out output stream
*/
virtual void writeInfo(ostream &out);
/**
write parameters, used with modeltest
@param out output stream
*/
virtual void writeParameters(ostream &out){}
/**
decompose the rate matrix into eigenvalues and eigenvectors
*/
virtual void decomposeRateMatrix();
// double *getEigenCoeff() const;
virtual double *getEigenvalues() const;
virtual double *getEigenvectors() const;
virtual double *getInverseEigenvectors() const;
// void setEigenCoeff(double *eigenCoeff);
void setEigenvalues(double *eigenvalues);
void setEigenvectors(double *eigenvectors);
/**
* compute the memory size for the model, can be large for site-specific models
* @return memory size required in bytes
*/
virtual uint64_t getMemoryRequired() {
return ModelSubst::getMemoryRequired() + sizeof(double)*num_states*num_states*3;
}
/** default TRUE: store only upper half of the rate matrix */
bool half_matrix;
protected:
/**
this function is served for the multi-dimension optimization. It should pack the model parameters
into a vector that is index from 1 (NOTE: not from 0)
@param variables (OUT) vector of variables, indexed from 1
*/
virtual void setVariables(double *variables);
/**
this function is served for the multi-dimension optimization. It should assign the model parameters
from a vector of variables that is index from 1 (NOTE: not from 0)
@param variables vector of variables, indexed from 1
@return TRUE if parameters are changed, FALSE otherwise (2015-10-20)
*/
virtual bool getVariables(double *variables);
virtual void freeMem();
/**
phylogenetic tree associated
*/
PhyloTree *phylo_tree;
/**
rates between pairs of states of the unit rate matrix Q.
In order A-C, A-G, A-T, C-G, C-T (rate G-T = 1 always)
*/
double *rates;
/**
the number of free rate parameters
*/
int num_params;
/**
eigenvalues of the rate matrix Q
*/
double *eigenvalues;
/**
eigenvectors of the rate matrix Q
*/
double *eigenvectors;
/**
inverse eigenvectors of the rate matrix Q
*/
double *inv_eigenvectors;
/**
coefficient cache, served for fast computation of the P(t) matrix
*/
// double *eigen_coeff;
/** state with highest frequency, used when optimizing state frequencies +FO */
int highest_freq_state;
};
#endif
|