1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
|
/**
* PLL (version 1.0.0) a software library for phylogenetic inference
* Copyright (C) 2013 Tomas Flouri and Alexandros Stamatakis
*
* Derived from
* RAxML-HPC, a program for sequential and parallel estimation of phylogenetic
* trees by Alexandros Stamatakis
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*
* For any other enquiries send an Email to Tomas Flouri
* Tomas.Flouri@h-its.org
*
* When publishing work that uses PLL please cite PLL
*
* @file genericParallelization.c
*/
#include "mem_alloc.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <limits.h>
#ifdef MEASURE_TIME_PARALLEL
#include <time.h>
#endif
#include <assert.h>
#include "genericParallelization.h"
#include "pllInternal.h"
#include "pll.h"
/** @file genericParallelization.c
@brief Generic master-worker parallelization with either pthreads or MPI.
Worker threads/processes mostly work on a local
tree. Implementationwise, MPI operations are abstracted as good as
possible via defines (that translate to no-ops or memcpy-calls in
the pthreads version).
@todo the code still contains many memory copy operations that
could be executed more efficiently in-place
*/
void perSiteLogLikelihoodsPthreads(pllInstance *tr, partitionList *pr, double *lhs, int n, int tid);
void broadcastAfterRateOpt(pllInstance *tr, pllInstance *localTree, partitionList *pr, int n, int tid);
void branchLength_parallelReduce(pllInstance *tr, double *dlnLdlz, double *d2lnLdlz2, int numBranches );
void pllMasterPostBarrier(pllInstance *tr, partitionList *pr, int jobType);
static void distributeYVectors(pllInstance *localTree, pllInstance *tr, partitionList *localPr);
static void distributeWeights(pllInstance *localTree, pllInstance *tr, partitionList *localPr);
static pllBoolean execFunction(pllInstance *tr, pllInstance *localTree, partitionList *pr, partitionList *localPr, int tid, int n);
static void *likelihoodThread(void *tData);
static void multiprocessorScheduling(pllInstance * tr, partitionList *pr, int tid);
static void computeFraction(partitionList *localPr, int tid, int n);
static void computeFractionMany(partitionList *localPr, int tid);
static void initializePartitionsMaster(pllInstance *tr, pllInstance *localTree, partitionList *pr, partitionList *localPr, int tid, int n);
#ifdef _FINE_GRAIN_MPI
static char* addBytes(char *buf, void *toAdd, size_t numBytes);
static char* popBytes(char *buf, void *result, size_t numBytes);
static void defineTraversalInfoMPI(void);
static pllBoolean pllWorkerTrap(pllInstance *tr, partitionList *pr);
#endif
#ifdef _USE_PTHREADS
static pthread_t *threads;
static threadData *tData;
#endif
extern volatile int jobCycle;
extern volatile int threadJob; /**< current job to be done by worker threads/processes */
extern pllBoolean treeIsInitialized;
#ifdef MEASURE_TIME_PARALLEL
extern double masterTimePerPhase;
double timeBuffer[NUM_PAR_JOBS];
double timePerRegion[NUM_PAR_JOBS];
#endif
extern char* getJobName(int tmp);
//extern double *globalResult;
extern volatile char *barrierBuffer;
#ifdef _FINE_GRAIN_MPI
extern MPI_Datatype TRAVERSAL_MPI;
/** @brief Pthreads helper function for adding bytes to communication buffer.
Copy from \toAdd to \a buf \a numBytes bytes
@param buf
Where to place bytes
@pram toAdd
Where to copy them from
@para numBytes
How many to copy
@return
Pointer to the end of placed data in communication buffer (first free slot)
*/
static char* addBytes(char *buf, void *toAdd, size_t numBytes)
{
memcpy(buf, toAdd, numBytes);
return buf + numBytes;
}
/** @brief Pthreads helper function for removing bytes from communication buffer
Copies \a numBytes from communication buffer \a buf to some local buffer \a buf
@param buf
Where to store the bytes
@param result
Where to copy from
@param numBytes
How many to copy
@return
Pointer to the end of read data in communication buffer (first free slot)
*/
static char* popBytes(char *buf, void *result, size_t numBytes)
{
memcpy(result, buf, numBytes);
return buf + numBytes;
}
/** @brief Lock the MPI slave processes prior allocating partitions
MPI slave processes are locked and wait until the master process
has read the number of partitions, which it then broadcasts
to slaves, effectively unlocking them. The slave processes will
then allocate their own data structures and be locked in the
likelihood function.
@param tr
PLL instance
@todo
This function should not be called by the user. It is called
at \a pllCreateInstance. Probably this function should be removed
and inline code be placed in \a pllCreateInstance.
*/
void pllLockMPI (pllInstance * tr)
{
int numberOfPartitions;
partitionList * pr;
if (!MASTER_P)
{
//MPI_Bcast (&numberOfPartitions, 1, MPI_INT, MPI_ROOT, MPI_COMM_WORLD);
MPI_Bcast (&numberOfPartitions, 1, MPI_INT, 0, MPI_COMM_WORLD);
pr = (partitionList *) rax_calloc (1, sizeof (partitionList));
pr->numberOfPartitions = numberOfPartitions;
pllWorkerTrap (tr, pr);
MPI_Barrier (MPI_COMM_WORLD);
MPI_Finalize ();
exit(0);
}
}
/** Finalize MPI run
Finalizes MPI run by synchronizing all processes (master + slaves) with a
barrier so that all free their allocated resources. Then \a MPI_Finalize ()
is called.
@todo
Similarly as with the \a pllLockMPI function, this should not be called
by the user, but it is called implicitly at the end of \a pllDestroyInstance.
Probably this function should be removed and inline code be placed in
\a pllDestroyInstance.
*/
void pllFinalizeMPI (void)
{
MPI_Barrier (MPI_COMM_WORLD);
MPI_Finalize ();
}
/**
@brief Sets up the MPI environment.
Calls the \a MPI_Init function and makes sure all processes store
their process ID and the total number of processes, using a barrier.
@note this should be the first call that is executed in your main
method.
@param argc
Address of argc from main
@param argv
Address of argv from main
*/
void pllInitMPI(int * argc, char **argv[])
{
MPI_Init(argc, argv);
MPI_Comm_rank(MPI_COMM_WORLD, &processID);
MPI_Comm_size(MPI_COMM_WORLD, &processes);
/* if(MASTER_P) */
/* printf("\nThis is RAxML Process Number: %d (MASTER)\n", processID); */
MPI_Barrier(MPI_COMM_WORLD);
}
/**
@brief Traps worker MPI processes.
@note This function should be called immediately after initMPI()
@param tr
PLL instance
@param pr
List of partitions
@return
Returns /b PLL_FALSE if the callee was the master thread/process, otherwise /b PLL_TRUE
*/
static pllBoolean pllWorkerTrap(pllInstance *tr, partitionList *pr)
{
/// @note for the broadcasting, we need to, if the tree structure has already been initialized
treeIsInitialized = PLL_FALSE;
if(NOT MASTER_P)
{
threadData tData;
tData.tr = tr;
tData.threadNumber = processID;
tData.pr = pr;
likelihoodThread(&tData);
/* notice: the next call MUST be the return call from the main method */
return PLL_TRUE;
}
return PLL_FALSE;
}
#define ELEMS_IN_TRAV_INFO 9
/** @brief Create a datastructure for sending the traversal descriptor.
@note This seems to be a very safe method to define your own mpi
datatypes (often there are problems with padding). But it is not
entirely for the weak of heart...
*/
static void defineTraversalInfoMPI (void)
{
MPI_Datatype *result = &TRAVERSAL_MPI;
int i ;
MPI_Aint base;
int blocklen[ELEMS_IN_TRAV_INFO+1] = {1, 1, 1, 1, PLL_NUM_BRANCHES, PLL_NUM_BRANCHES, 1,1,1,1};
MPI_Aint disp[ELEMS_IN_TRAV_INFO+1];
MPI_Datatype type[ELEMS_IN_TRAV_INFO+1] = {MPI_INT, MPI_INT, MPI_INT, MPI_INT, MPI_DOUBLE, MPI_DOUBLE, MPI_INT, MPI_INT, MPI_INT, MPI_UB};
traversalInfo desc[2];
MPI_Get_address( desc, disp);
MPI_Get_address( &(desc[0].pNumber), disp + 1 );
MPI_Get_address( &(desc[0].qNumber), disp + 2 );
MPI_Get_address( &(desc[0].rNumber), disp + 3);
MPI_Get_address( desc[0].qz, disp + 4 );
MPI_Get_address( desc[0].rz, disp + 5 );
MPI_Get_address( &(desc[0].slot_p), disp + 6);
MPI_Get_address( &(desc[0].slot_q), disp + 7);
MPI_Get_address( &(desc[0].slot_r), disp + 8);
MPI_Get_address( desc + 1, disp + 9);
base = disp[0];
for(i = 0; i < ELEMS_IN_TRAV_INFO+1; ++i)
disp[i] -= base;
MPI_Type_create_struct( ELEMS_IN_TRAV_INFO+1 , blocklen, disp, type, result);
MPI_Type_commit(result);
}
#endif
/********************/
/* PTHREAD-SPECIFIC */
/********************/
#ifdef _USE_PTHREADS
#ifndef _PORTABLE_PTHREADS
/** @brief Pins a thread to a core (for efficiency).
This is a non-portable function that works only on some linux distributions of pthreads.
It sets the affinity of each thread to a specific core so that the performance is not
degraded due to threads migration.
@note
It is only called if \a _PORTABLE_PTHREADS is not defined
@param tid the thread id
*/
void pinToCore(int tid)
{
static int nextCore = 0;
cpu_set_t cpuset;
CPU_ZERO(&cpuset);
CPU_SET(nextCore++, &cpuset);
if(pthread_setaffinity_np(pthread_self(), sizeof(cpu_set_t), &cpuset) != 0)
{
assert(0);
}
}
#endif
/** Start PThreads
Start JOINABLE threads by executing \a pthread_create. The threads
are attached to the \a pllLikelihoodThread function
@param tr
PLL instance
@param pr
List of partitions
@todo
This function should never be called by the user. It is called
implicitly at \a pllInitModel. Perhaps we should add a check
or inline the code
*/
void pllStartPthreads (pllInstance *tr, partitionList *pr)
{
pthread_attr_t attr;
int rc, t;
treeIsInitialized = PLL_FALSE;
jobCycle = 0;
threadJob = 0;
/* printf("\nThis is the RAxML Master Pthread\n"); */
#if (NOT defined(_USE_PTHREADS) && defined( MEASURE_TIME_PARALLEL))
timeBuffer = rax_calloc(NUM_PAR_JOBS * tr->numberOfThreads, sizeof(double));
#endif
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);
threads = (pthread_t *)rax_malloc((size_t)tr->numberOfThreads * sizeof(pthread_t));
tData = (threadData *)rax_malloc((size_t)tr->numberOfThreads * sizeof(threadData));
barrierBuffer = (volatile char *) rax_malloc(sizeof(volatile char) * (size_t)tr->numberOfThreads);
for(t = 0; t < tr->numberOfThreads; t++)
barrierBuffer[t] = 0;
for(t = 1; t < tr->numberOfThreads; t++)
{
tData[t].tr = tr;
tData[t].pr = pr;
tData[t].threadNumber = t;
rc = pthread_create(&threads[t], &attr, likelihoodThread, (void *)(&tData[t]));
if(rc)
{
printf("ERROR; return code from pthread_create() is %d\n", rc);
exit(-1);
}
}
pthread_attr_destroy (&attr);
}
/** Stop PThread
Stop threads by \a pthread_join
@param tr
PLL instance
@todo
This function should never be called by the user. It is implicitly called
at \a pllPartitionsDestroy. We should inline the code
*/
void pllStopPthreads (pllInstance * tr)
{
int i;
for (i = 1; i < tr->numberOfThreads; ++ i)
{
pthread_join (threads[i], NULL);
}
rax_free (threads);
rax_free (tData);
rax_free ((void *)barrierBuffer);
rax_free (globalResult);
}
#endif
/** Compute per-site log likelihoods (PThreads version)
Worker threads evaluate the likelihood on their sites
@param tr
Tree instance
@param lhs
Likelihood array
@param n
Number of threads
@param tid
Thread id
*/
void perSiteLogLikelihoodsPthreads(pllInstance *tr, partitionList *pr, double *lhs, int n, int tid)
{
size_t
model,
i;
for(model = 0; model < (size_t)pr->numberOfPartitions; model++)
{
size_t
localIndex = 0;
/* decide if this partition is handled by the thread when -Q is ativated
or when -Q is not activated figure out which sites have been assigned to the
current thread */
pllBoolean
execute = ((tr->manyPartitions && isThisMyPartition(pr, tid, model)) || (!tr->manyPartitions));
/* if the entire partition has been assigned to this thread (-Q) or if -Q is not activated
we need to compute some per-site log likelihoods with thread tid for this partition */
if(execute)
for(i = (size_t)(pr->partitionData[model]->lower); i < (size_t)(pr->partitionData[model]->upper); i++)
{
/* if -Q is active we compute all per-site log likelihoods for the partition,
othwerise we only compute those that have been assigned to thread tid
using the cyclic distribution scheme */
if(tr->manyPartitions || (i % n == (size_t)tid))
{
double
l;
/* now compute the per-site log likelihood at the current site */
switch(tr->rateHetModel)
{
case PLL_CAT:
l = evaluatePartialGeneric (tr, pr, localIndex, pr->partitionData[model]->perSiteRates[pr->partitionData[model]->rateCategory[localIndex]], model);
break;
case PLL_GAMMA:
l = evaluatePartialGeneric (tr, pr, localIndex, 1.0, model);
break;
default:
assert(0);
}
/* store it in an array that is local in memory to the current thread,
see function collectDouble() in axml.c for understanding how we then collect these
values stored in local arrays from the threads */
lhs[i] = l;
localIndex++;
}
}
}
}
/** @brief Check if a partition is assign to a thread/process.
Checks whether partition \a model from partition list \a localPr is
assigned to be processed by process/thread with id \a tid.
@param localTree
Local PLL instance
@param tid
Thread/Process id
@param model
Partition number
*/
pllBoolean isThisMyPartition(partitionList *localPr, int tid, int model)
{
if(localPr->partitionData[model]->partitionAssignment == tid)
return PLL_TRUE;
else
return PLL_FALSE;
}
/** @brief Computes partition size for all partitions (in case full partitions are assigns to workers).
@param localPr the local partitions instance
@param tid thread id
*/
static void computeFractionMany(partitionList *localPr, int tid)
{
int
sites = 0;
int
model;
for(model = 0; model < localPr->numberOfPartitions; model++)
{
if(isThisMyPartition(localPr, tid, model))
{
localPr->partitionData[model]->width = localPr->partitionData[model]->upper - localPr->partitionData[model]->lower;
sites += localPr->partitionData[model]->width;
}
else
localPr->partitionData[model]->width = 0;
}
}
/** @brief Computes partition size for all partitions (for cyclic distribution of sites)
@param localPr the local partitions instance
@param tid thread id
@param n number of workers
*/
static void computeFraction(partitionList *localPr, int tid, int n)
{
int
i,
model;
for(model = 0; model < localPr->numberOfPartitions; model++)
{
int width = 0;
for(i = localPr->partitionData[model]->lower; i < localPr->partitionData[model]->upper; i++)
if(i % n == tid)
width++;
localPr->partitionData[model]->width = width;
}
}
/** @brief Compare partition sizes.
@param p1 pointer to a partition
@param p2 pointer to another partition
*/
static int partCompare(const void *p1, const void *p2)
{
partitionType
*rc1 = (partitionType *)p1,
*rc2 = (partitionType *)p2;
int
i = rc1->partitionLength,
j = rc2->partitionLength;
if (i > j)
return (-1);
if (i < j)
return (1);
return (0);
}
/** @brief Top-level function for the multi processor scheduling
scheme (assigns full partitions to workers).
tr->manyPartitions is set to PLL_TRUE if the user has indicated via -Q
that there are substantially more partitions than threads/cores
available. In that case we do not distribute sites from each
partition in a cyclic fashion to the cores , but distribute entire
partitions to cores. Achieving a good balance of alignment sites
to cores boils down to the multi-processor scheduling problem known
from theoretical comp. sci. which is NP-complete. We have
implemented very simple "standard" heuristics for solving the
multiprocessor scheduling problem that turn out to work very well
and are cheap to compute.
@param pr
List of partitions
@param tid
Id of current process/thread
*/
static void multiprocessorScheduling(pllInstance * tr, partitionList *pr, int tid)
{
int
s,
model,
modelStates[2] = {4, 20},
numberOfPartitions[2] = {0 , 0},
arrayLength = sizeof(modelStates) / sizeof(int);
/* check that we have not addedd any new models for data types with a different number of states
and forgot to update modelStates */
for(model = 0; model < pr->numberOfPartitions; model++)
{
pllBoolean
exists = PLL_FALSE;
for(s = 0; s < arrayLength; s++)
{
exists = exists || (pr->partitionData[model]->states == modelStates[s]);
if(pr->partitionData[model]->states == modelStates[s])
numberOfPartitions[s] += 1;
}
assert(exists);
}
for(s = 0; s < arrayLength; s++)
{
if(numberOfPartitions[s] > 0)
{
size_t
checkSum = 0,
sum = 0;
int
i,
k,
#ifndef _FINE_GRAIN_MPI
n = tr->numberOfThreads,
#else
n = processes,
#endif
p = numberOfPartitions[s],
*assignments = (int *)rax_calloc((size_t)n, sizeof(int));
partitionType
*pt = (partitionType *)rax_malloc(sizeof(partitionType) * (size_t)p);
for(i = 0, k = 0; i < pr->numberOfPartitions; i++)
{
if(pr->partitionData[i]->states == modelStates[s])
{
pt[k].partitionNumber = i;
pt[k].partitionLength = pr->partitionData[i]->upper - pr->partitionData[i]->lower;
sum += (size_t)pt[k].partitionLength;
k++;
}
}
assert(k == p);
qsort(pt, p, sizeof(partitionType), partCompare);
for(i = 0; i < p; i++)
{
int
k,
min = INT_MAX,
minIndex = -1;
for(k = 0; k < n; k++)
if(assignments[k] < min)
{
min = assignments[k];
minIndex = k;
}
assert(minIndex >= 0);
assignments[minIndex] += pt[i].partitionLength;
assert(pt[i].partitionNumber >= 0 && pt[i].partitionNumber < pr->numberOfPartitions);
pr->partitionData[pt[i].partitionNumber]->partitionAssignment = minIndex;
}
/* Process i gets assignments[i] sites for modelStates[s] state model */
for(i = 0; i < n; i++)
checkSum += (size_t)assignments[i];
assert(sum == checkSum);
rax_free(assignments);
rax_free(pt);
}
}
}
/** @brief Reduce the first and second derivative of the likelihood
function.
We collect the first and second derivatives from the various
threads and sum them up. It's similar to what we do in
pllEvaluateGeneric() with the only difference that we have to collect
two values (firsrt and second derivative) instead of onyly one (the
log likelihood
@warning operates on global reduction buffers \a globalResult
@param tr tree
@param dlnLdlz first derivative
@param d2lnLdlz2 second derivative
*/
void branchLength_parallelReduce(pllInstance *tr, double *dlnLdlz, double *d2lnLdlz2, int numBranches )
{
#ifdef _REPRODUCIBLE_MPI_OR_PTHREADS
/* only the master executes this */
assert(tr->threadID == 0);
int b;
int t;
for(b = 0; b < numBranches; ++b)
{
dlnLdlz[b] = 0;
d2lnLdlz2[b] = 0;
for(t = 0; t < tr->numberOfThreads; ++t)
{
dlnLdlz[b] += globalResult[t * numBranches * 2 + b ];
d2lnLdlz2[b] += globalResult[t * numBranches * 2 + numBranches + b];
}
}
#else
memcpy(dlnLdlz, globalResult, sizeof(double) * numBranches);
memcpy(d2lnLdlz2, globalResult + numBranches, sizeof(double) * numBranches);
#endif
}
/** @brief Read from buffer or writes rates into buffer. Return
number of elems written.
If \a read is set to \b PLL_TRUE, then the contents \a srcTar are
copied to \a buf. Otherwise, the contents of \a buf are moved to
\a srcTar.
@param buf
Buffer
@param srcTar
Pointer to either source or destination array
@param tr
PLL instance
@param n number of workers
@param tid process id
@param read
If read-mode then set to \b PLL_TRUE
@param countOnly
if \b PLL_TRUE, simply return the number of elements
*/
static int doublesToBuffer(double *buf, double *srcTar, pllInstance *tr, partitionList *pr, int n, int tid, pllBoolean read, pllBoolean countOnly)
{
int
model,
i;
double
*initPtr = buf;
for(model = 0; model < pr->numberOfPartitions; model++)
{
if(tr->manyPartitions)
{
if(isThisMyPartition(pr, tid, model))
for(i = pr->partitionData[model]->lower; i < pr->partitionData[model]->upper; i++)
{
if(NOT countOnly)
{
if(read)
*buf = srcTar[i];
else
srcTar[i] = *buf;
}
buf++;
}
}
else
{
for(i = pr->partitionData[model]->lower; i < pr->partitionData[model]->upper; i++)
if(i % n == tid)
{
if(NOT countOnly)
{
if(read)
*buf = srcTar[i];
else
srcTar[i] = *buf;
}
buf++;
}
}
}
return buf - initPtr;
}
/** @brief broadcast rates after rate optimization.
@param tre Library instance
@param localTree local library instance
@param n number of workers
@param tid worker id
@todo mpi_alltoallv/w may be more efficient, but it is a hell to set up
*/
void broadcastAfterRateOpt(pllInstance *tr, pllInstance *localTree, partitionList *pr, int n, int tid)
{
int
num1 = 0,
num2 = 0,
num3 = 0,
i ;
for(i = 0; i < n; ++i)
{
double
allBuf[tr->originalCrunchedLength * 3],
buf1[tr->originalCrunchedLength],
buf2[tr->originalCrunchedLength],
buf3[tr->originalCrunchedLength];
#ifdef _USE_PTHREADS
if(i != tid)
continue;
#endif
int numDouble = 0;
/* extract doubles */
num1 = doublesToBuffer(buf1, localTree->patrat, tr, pr, n,i, PLL_TRUE, i!= tid);
num2 = doublesToBuffer(buf2, localTree->patratStored, tr, pr, n,i, PLL_TRUE, i!= tid);
num3 = doublesToBuffer(buf3, localTree->lhs, tr, pr, n,i, PLL_TRUE, i!= tid);
/* printf("%d + %d + %d\n", num1, num2, num3); */
numDouble += num1 + num2 + num3;
/* copy doubles */
memcpy(allBuf, buf1, num1 * sizeof(double));
memcpy(allBuf + num1, buf2, num2 * sizeof(double));
memcpy(allBuf + (num1 + num2) , buf3, num3 * sizeof(double));
BCAST_BUF(allBuf, numDouble, MPI_DOUBLE, i);
memcpy(buf1, allBuf, num1 * sizeof(double));
memcpy(buf2, allBuf + num1, num2 * sizeof(double));
memcpy(buf3, allBuf + (num1 + num2), num3 * sizeof(double));
/* re-insert doubles */
int assertCtr = 0;
assertCtr += doublesToBuffer(buf1, tr->patrat, tr, pr, n,i,PLL_FALSE, PLL_FALSE);
assertCtr += doublesToBuffer(buf2, tr->patratStored, tr, pr, n,i,PLL_FALSE, PLL_FALSE);
assertCtr += doublesToBuffer(buf3, tr->lhs, tr, pr, n,i,PLL_FALSE, PLL_FALSE);
assert(assertCtr == numDouble);
}
}
/** @brief Collect doubles from workers to master.
@param dst destination array
@param src source array
@param tr library instance
@param n number of workers
@param tid worker id
*/
static void collectDouble(double *dst, double *src, pllInstance *tr, partitionList *pr, int n, int tid)
{
#ifdef _FINE_GRAIN_MPI
int
assertNum = 0,
i,
displacements[tr->numberOfThreads];
double
buf[tr->originalCrunchedLength],
resultBuf[tr->originalCrunchedLength];
/* NOTE: This was moved here because it was an additional unnecessary move for the PTHREADS version. I didnt
have time to check the MPI version, have to get back to this and remove it */
/* gather own persite log likelihood values into local buffer */
int numberCollected = doublesToBuffer(buf, src, tr, pr,n,tid,PLL_TRUE, PLL_FALSE);
/* this communicates all the values to the master */
int numberPerWorker[tr->numberOfThreads];
if(MASTER_P) /* master counts number to receive, receives and writes back */
{
for(i = 0; i < n; ++i)
{
numberPerWorker[i] = doublesToBuffer(buf,src,tr,pr,n,i,PLL_FALSE, PLL_TRUE);
displacements[i] = i == 0 ? 0 : displacements[i-1] + numberPerWorker[i-1];
}
MPI_Gatherv(buf, numberCollected, MPI_DOUBLE,
resultBuf, numberPerWorker, displacements, MPI_DOUBLE,
0, MPI_COMM_WORLD);
double *bufPtr = resultBuf;
for(i = 0 ; i < n; ++i)
{
int numberWritten = doublesToBuffer(bufPtr, dst,tr,pr,n,i, PLL_FALSE, PLL_FALSE);
bufPtr += numberWritten;
assertNum += numberWritten;
}
assert(assertNum == tr->originalCrunchedLength);
}
else /* workers only send their buffer */
MPI_Gatherv(buf, numberCollected, MPI_DOUBLE, resultBuf, numberPerWorker, displacements, MPI_DOUBLE, 0, MPI_COMM_WORLD);
#else
/* pthread version only writes to global space */
//assertNum = doublesToBuffer(buf, dst,tr,pr,n,tid, PLL_FALSE, PLL_FALSE);
doublesToBuffer (dst, src, tr, pr, n, tid, PLL_TRUE, PLL_FALSE);
//assert(assertNum == numberCollected);
#endif
}
/** @brief broadcast a new alpha (for the GAMMA model)
@param localTree local library instance
@param tr library instance
@param tid worker id
*/
static void broadCastAlpha(partitionList *localPr, partitionList *pr)
{
int i,
model;
#ifdef _FINE_GRAIN_MPI
int bufSize = localPr->numberOfPartitions * 4 * sizeof(double);
char bufDbl[bufSize];
char *bufPtrDbl = bufDbl;
#endif
RECV_BUF(bufDbl, bufSize, MPI_BYTE);
for(model = 0; model < localPr->numberOfPartitions; model++)
for(i = 0; i < 4; ++i)
ASSIGN_BUF_DBL(localPr->partitionData[model]->gammaRates[i], pr->partitionData[model]->gammaRates[i]);
SEND_BUF(bufDbl, bufSize, MPI_BYTE);
}
/** @brief broadcast new LG4X weights
@param localTree local library instance
@param tr library instance
@param tid worker id
*/
static void broadCastLg4xWeights(partitionList *localPr, partitionList *pr)
{
int i,
model;
#ifdef _FINE_GRAIN_MPI
int bufSize = localPr->numberOfPartitions * 4 * sizeof(double);
char bufDbl[bufSize];
char *bufPtrDbl = bufDbl;
#endif
RECV_BUF(bufDbl, bufSize, MPI_BYTE);
for(model = 0; model < localPr->numberOfPartitions; model++)
for(i = 0; i < 4; ++i)
ASSIGN_BUF_DBL(localPr->partitionData[model]->lg4x_weights[i], pr->partitionData[model]->lg4x_weights[i]);
SEND_BUF(bufDbl, bufSize, MPI_BYTE);
}
static void copyLG4(partitionList *localPr, partitionList *pr)
{
int model, i, k;
/* determine size of buffer needed first */
int bufSize = 0;
#ifdef _FINE_GRAIN_MPI
for(model = 0; model < localPr->numberOfPartitions; ++model )
{
const partitionLengths *pl = getPartitionLengths(pr->partitionData[model]);
bufSize += 4*(pl->eignLength + pl->evLength + pl->eiLength + pl->tipVectorLength + pl->substRatesLength + pl->frequenciesLength) * sizeof(double) ;
}
#endif
char
bufDbl[bufSize];
char *bufPtrDbl = bufDbl;
RECV_BUF(bufDbl, bufSize, MPI_BYTE);
for (model = 0; model < localPr->numberOfPartitions; model++)
{
pInfo * localInfo = localPr->partitionData[model];
pInfo * info = pr->partitionData[model];
if (info->protModels == PLL_LG4M || info->protModels == PLL_LG4X)
{
for (k = 0; k < 4; k++)
{
const partitionLengths *pl = getPartitionLengths(pr->partitionData[model]);
for (i = 0; i < pl->eignLength; ++i)
ASSIGN_BUF_DBL(
localPr->partitionData[model]->EIGN_LG4[k][i],
pr->partitionData[model]->EIGN_LG4[k][i]);
for (i = 0; i < pl->evLength; ++i)
ASSIGN_BUF_DBL(localPr->partitionData[model]->EV_LG4[k][i],
pr->partitionData[model]->EV_LG4[k][i]);
for (i = 0; i < pl->eiLength; ++i)
ASSIGN_BUF_DBL(localPr->partitionData[model]->EI_LG4[k][i],
pr->partitionData[model]->EI_LG4[k][i]);
for (i = 0; i < pl->substRatesLength; ++i)
ASSIGN_BUF_DBL(
localPr->partitionData[model]->substRates_LG4[k][i],
pr->partitionData[model]->substRates_LG4[k][i]);
for (i = 0; i < pl->frequenciesLength; ++i)
ASSIGN_BUF_DBL(
localPr->partitionData[model]->frequencies_LG4[k][i],
pr->partitionData[model]->frequencies_LG4[k][i]);
for (i = 0; i < pl->tipVectorLength; ++i)
ASSIGN_BUF_DBL(
localPr->partitionData[model]->tipVector_LG4[k][i],
pr->partitionData[model]->tipVector_LG4[k][i]);
}
}
}
SEND_BUF(bufDbl, bufSize, MPI_BYTE); /* */
}
/** @brief Master broadcasts rates.
@param localTree local library instance
@param tr library instance
@param tid worker id
*/
static void broadCastRates(partitionList *localPr, partitionList *pr)
{
int
model;
/* determine size of buffer needed first */
int bufSize = 0;
#ifdef _FINE_GRAIN_MPI
for(model = 0; model < localPr->numberOfPartitions; ++model )
{
const partitionLengths *pl = getPartitionLengths(pr->partitionData[model]); /* this is constant, isnt it? */
bufSize += (pl->eignLength + pl->evLength + pl->eiLength + pl->tipVectorLength) * sizeof(double) ;
}
#endif
char
bufDbl[bufSize];
char *bufPtrDbl = bufDbl;
RECV_BUF(bufDbl, bufSize, MPI_BYTE);
int i ;
for(model = 0; model < localPr->numberOfPartitions; model++)
{
const partitionLengths *pl = getPartitionLengths(pr->partitionData[model]); /* this is constant, isnt it? */
for(i = 0; i < pl->eignLength; ++i)
ASSIGN_BUF_DBL(localPr->partitionData[model]->EIGN[i], pr->partitionData[model]->EIGN[i]);
for(i = 0; i < pl->evLength; ++i)
ASSIGN_BUF_DBL(localPr->partitionData[model]->EV[i],pr->partitionData[model]->EV[i]);
for(i = 0; i < pl->eiLength; ++i)
ASSIGN_BUF_DBL(localPr->partitionData[model]->EI[i], pr->partitionData[model]->EI[i]);
for(i = 0; i < pl->tipVectorLength; ++i)
ASSIGN_BUF_DBL(localPr->partitionData[model]->tipVector[i], pr->partitionData[model]->tipVector[i]);
}
SEND_BUF(bufDbl, bufSize, MPI_BYTE); /* */
copyLG4(localPr, pr);
}
/** @brief Evaluate the likelihood of this topology (PThreads/MPI implementation)
Evaluate the likelihood of the topology described in the PLL instance. First
every thread calls \a pllEvaluateIterative where it computes the log likelihoods
for the portion of each assigned partition. The results (for all partition) are stored
as elements of a local buffer array (\a buf). This is done by all threads. Subsequently,
an \a MPI_Reduce operation sums the contents of corresponding elements of the local
buffer arrays into another array (\a targetBuf) which are the log likelihoods of
each (complete) partition. Finally, the last array is copied to the master thread/process.
In addition, if \a getPerSiteLikelihoods is enabled the log likelihoods for each site
in the (compressed) alignment are stored in the array \a tr->lhs.
@param tr
PLL instance
@param tr
Local (thread/process) PLL instance
@param pr
Local (thread/process) list of partitions
@param tid
Thread/Process ID
@param getPerSiteLikelihoods
If set to \b PLL_TRUE, compute the log likelihood for each site.
*/
static void reduceEvaluateIterative(pllInstance *tr, pllInstance *localTree, partitionList *localPr, int tid, pllBoolean getPerSiteLikelihoods)
{
int model;
pllEvaluateIterative(localTree, localPr, getPerSiteLikelihoods);
/* when this is done we need to write the per-thread log likelihood to the
global reduction buffer. Tid is the thread ID, hence thread 0 will write its
results to reductionBuffer[0] thread 1 to reductionBuffer[1] etc.
the actual sum over the entries in the reduction buffer will then be computed
by the master thread which ensures that the sum is determinsitic */
/* if (getPerSiteLikelihoods == PLL_TRUE) store per-site likelihoods in array tr->lhs */
if(getPerSiteLikelihoods)
{
#ifdef _FINE_GRAIN_MPI
int n = processes;
#else
int n = tr->numberOfThreads;
#endif
/* rearrange per site likelihoods into single local array for gathering */
int i ;
for(model = 0; model < localPr->numberOfPartitions; ++model)
{
pInfo *partition = localPr->partitionData[model];
pllBoolean isMyPartition = isThisMyPartition(localPr, tid, model);
int ctr = 0;
for(i = partition->lower; i < partition->upper; ++i)
{
if(tr->manyPartitions && isMyPartition)
localTree->lhs[i] = partition->perSiteLikelihoods[ ctr++];
else if(NOT tr->manyPartitions && (i % n) == tid)
localTree->lhs[i] = partition->perSiteLikelihoods[ctr++];
}
}
/* gather all the double into the global array */
collectDouble(tr->lhs, localTree->lhs, localTree, localPr, n, tid);
}
/* printf("collecting done\n" ); */
#ifdef _REPRODUCIBLE_MPI_OR_PTHREADS
/*
aberer: I implemented this as a mpi_gather operation into this buffer,
pthreads version emulates this gather;
master takes care of the reduction;
*/
double
buf[localPr->numberOfPartitions];
for(model = 0; model < localPr->numberOfPartitions; ++model)
buf[model] = localPr->partitionData[model]->partitionLH;
/* either make reproducible or efficient */
ASSIGN_GATHER(globalResult, buf, localPr->numberOfPartitions, PLL_DOUBLE, tid);
/* printf("gather worked\n"); */
#else
/* the efficient mpi version: a proper reduce */
double
buf[localPr->numberOfPartitions];
for(model = 0; model < localPr->numberOfPartitions; ++model)
buf[model] = localPr->partitionData[model]->partitionLH;
double
targetBuf[localPr->numberOfPartitions];
memset(targetBuf, 0, sizeof(double) * localPr->numberOfPartitions);
MPI_Reduce(buf, targetBuf, localPr->numberOfPartitions, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
if(MASTER_P)
{
for(model = 0; model < localPr->numberOfPartitions; ++model) {
localPr->partitionData[model]->partitionLH = targetBuf[model];
}
}
#endif
}
/*@ @brief Broadcast the traversal descriptor to worker threads.
The one below is a hack we are re-assigning the local pointer to
the global one the memcpy version below is just for testing and
preparing the fine-grained MPI BlueGene version
@param localTree local library instance
@param tr library instance
*/
/* TODO: we should reset this at some point, the excplicit copy is just done for testing */
__inline static void broadcastTraversalInfo(pllInstance *localTree, pllInstance *tr, partitionList *localPr)
{
/* @todo these two regions could be joined */
#ifdef _USE_PTHREADS
/* memcpy -> memmove (see ticket #43). This function is sometimes called with localTree == tr,
* in which case some memcpy implementations can corrupt the buffers.
*/
localTree->td[0].functionType = tr->td[0].functionType;
localTree->td[0].count = tr->td[0].count ;
localTree->td[0].traversalHasChanged = tr->td[0].traversalHasChanged;
memmove(localTree->td[0].executeModel, tr->td[0].executeModel, sizeof(pllBoolean) * localPr->numberOfPartitions);
memmove(localTree->td[0].parameterValues, tr->td[0].parameterValues, sizeof(double) * localPr->numberOfPartitions);
if(localTree->td[0].traversalHasChanged)
memmove(localTree->td[0].ti, tr->td[0].ti, localTree->td[0].count * sizeof(traversalInfo));
#else
/* MPI */
/* like in raxml-light: first we send a small message, if the
travesalDescriptor is longer, then resend */
int length = treeIsInitialized ? localPr->numberOfPartitions : 0;
char broadCastBuffer[messageSize(length)];
char *bufPtr = broadCastBuffer;
int i;
RECV_BUF(broadCastBuffer, messageSize(length), MPI_BYTE);
ASSIGN_BUF(localTree->td[0].functionType, tr->td[0].functionType , int);
ASSIGN_BUF(localTree->td[0].count, tr->td[0].count , int);
ASSIGN_BUF(localTree->td[0].traversalHasChanged, tr->td[0].traversalHasChanged , int);
if(treeIsInitialized)
{
for(i = 0; i < localPr->numberOfPartitions; ++i)
{
ASSIGN_BUF(localTree->td[0].executeModel[i], tr->td[0].executeModel[i], int);
ASSIGN_BUF(localTree->td[0].parameterValues[i], tr->td[0].parameterValues[i], double);
}
for(i = 0; i < TRAVERSAL_LENGTH; ++i )
ASSIGN_BUF(localTree->td[0].ti[i], tr->td[0].ti[i], traversalInfo);
}
SEND_BUF(broadCastBuffer, messageSize(length), MPI_BYTE);
/* now we send the second part of the traversal descriptor, if we
exceed the pre-set number of elements */
if(treeIsInitialized && localTree->td[0].count > TRAVERSAL_LENGTH)
{
/* lets use the MPI_Datatype for this thing, what I've read it's
supposed to be more secure and efficient */
MPI_Bcast(localTree->td[0].ti + TRAVERSAL_LENGTH, localTree->td[0].count - TRAVERSAL_LENGTH, TRAVERSAL_MPI, 0, MPI_COMM_WORLD );
}
#endif
}
/** @brief helper that yields a string representation of a parallel region.
@param type type of parallel region
*/
char* getJobName(int type)
{
switch(type)
{
case PLL_THREAD_NEWVIEW:
return "PLL_THREAD_NEWVIEW";
case PLL_THREAD_EVALUATE:
return "PLL_THREAD_EVALUATE";
case PLL_THREAD_MAKENEWZ:
return "PLL_THREAD_MAKENEWZ";
case PLL_THREAD_MAKENEWZ_FIRST:
return "PLL_THREAD_MAKENEWZ_FIRST";
case PLL_THREAD_RATE_CATS:
return "PLL_THREAD_RATE_CATS";
case PLL_THREAD_COPY_RATE_CATS:
return "PLL_THREAD_COPY_RATE_CATS";
case PLL_THREAD_COPY_INIT_MODEL:
return "PLL_THREAD_COPY_INIT_MODEL";
case PLL_THREAD_INIT_PARTITION:
return "PLL_THREAD_INIT_PARTITION";
case PLL_THREAD_OPT_ALPHA:
return "PLL_THREAD_OPT_ALPHA";
case PLL_THREAD_OPT_RATE:
return "PLL_THREAD_OPT_RATE";
case PLL_THREAD_COPY_ALPHA:
return "PLL_THREAD_COPY_ALPHA";
case PLL_THREAD_COPY_RATES:
return "PLL_THREAD_COPY_RATES";
case PLL_THREAD_PER_SITE_LIKELIHOODS:
return "PLL_THREAD_PER_SITE_LIKELIHOODS";
case PLL_THREAD_NEWVIEW_ANCESTRAL:
return "PLL_THREAD_NEWVIEW_ANCESTRAL";
case PLL_THREAD_GATHER_ANCESTRAL:
return "PLL_THREAD_GATHER_ANCESTRAL";
case PLL_THREAD_EXIT_GRACEFULLY:
return "PLL_THREAD_EXIT_GRACEFULLY";
case PLL_THREAD_EVALUATE_PER_SITE_LIKES:
return "PLL_THREAD_EVALUATE_PER_SITE_LIKES";
default: assert(0);
}
}
/**
@brief Generic entry point for parallel regions (mostly broadcasts
traversal descriptor first).
This function here handles all parallel regions in the Pthreads
version, when we enter this function pllMasterBarrier() has been called
by the master thread from within the sequential part of the
program, tr is the library instance (tree) at the master thread,
localTree is the library instance (tree) at the worker threads
While this is not necessary, adress spaces of threads are indeed
separated for easier transition to a distributed memory paradigm
@param tr library instance
@param localTree local library instance
@param tid worker id
@param n number of workers
*/
static pllBoolean execFunction(pllInstance *tr, pllInstance *localTree, partitionList *pr, partitionList *localPr, int tid, int n)
{
int
i,
model,
localCounter;
#ifdef MEASURE_TIME_PARALLEL
double timeForParallelRegion = gettime();
#endif
#ifdef _USE_PTHREADS
/* some stuff associated with the barrier implementation using Pthreads and busy wait */
int currentJob = threadJob >> 16;
#endif
/* here the master sends and all threads/processes receive the traversal descriptor */
broadcastTraversalInfo(localTree, tr, localPr);
#ifdef _USE_PTHREADS
/* make sure that nothing is going wrong */
assert(currentJob == localTree->td[0].functionType);
#else
localTree = tr;
int currentJob = localTree->td[0].functionType;
#endif
#ifdef DEBUG_PARALLEL
printf("[%d] working on %s\n", tid, getJobName(currentJob));
#endif
switch(currentJob)
{
case PLL_THREAD_NEWVIEW:
/* just a newview on the fraction of sites that have been assigned to this thread */
pllNewviewIterative(localTree, localPr, 0);
break;
case PLL_THREAD_EVALUATE:
reduceEvaluateIterative(tr, localTree, localPr, tid, PLL_FALSE);
break;
case PLL_THREAD_MAKENEWZ_FIRST:
/* this is the first call from within makenewz that requires getting the likelihood vectors to the left and
right of the branch via newview and doing some precomputations.
For details see comments in makenewzGenericSpecial.c
*/
case PLL_THREAD_MAKENEWZ:
{
double
dlnLdlz[PLL_NUM_BRANCHES],
d2lnLdlz2[PLL_NUM_BRANCHES];
if(localTree->td[0].functionType == PLL_THREAD_MAKENEWZ_FIRST)
makenewzIterative(localTree, localPr);
execCore(localTree, localPr, dlnLdlz, d2lnLdlz2);
/* gather the first and second derivatives that have been written by each thread */
/* as for evaluate above, the final sum over the derivatives will be computed by the
master thread in its sequential part of the code */
int numBranches = localPr->perGeneBranchLengths?localPr->numberOfPartitions:1;
#ifdef _REPRODUCIBLE_MPI_OR_PTHREADS
/* MPI: implemented as a gather again, pthreads: just buffer copying */
double buf[ 2 * numBranches];
memcpy( buf, dlnLdlz, numBranches * sizeof(double) );
memcpy(buf + numBranches, d2lnLdlz2, numBranches * sizeof(double));
ASSIGN_GATHER(globalResult, buf, 2 * numBranches, PLL_DOUBLE, tid);
#else
double result[numBranches];
memset(result,0, numBranches * sizeof(double));
MPI_Reduce( dlnLdlz , result , numBranches, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
if(MASTER_P)
memcpy(globalResult, result, sizeof(double) * numBranches);
memset(result,0,numBranches * sizeof(double));
MPI_Reduce( d2lnLdlz2 , result , numBranches, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
if(MASTER_P)
memcpy(globalResult + numBranches, result, sizeof(double) * numBranches);
#endif
}
break;
case PLL_THREAD_INIT_PARTITION:
/* broadcast data and initialize and allocate arrays in partitions */
initializePartitionsMaster(tr, localTree, pr, localPr, tid, n);
break;
case PLL_THREAD_COPY_ALPHA:
case PLL_THREAD_OPT_ALPHA:
/* this is when we have changed the alpha parameter, inducing a change in the discrete gamma rate categories.
this is called when we are optimizing or sampling (in the Bayesioan case) alpha parameter values */
/* distribute the new discrete gamma rates to the threads */
broadCastAlpha(localPr,pr);
/* compute the likelihood, note that this is always a full tree traversal ! */
if(localTree->td[0].functionType == PLL_THREAD_OPT_ALPHA)
reduceEvaluateIterative(tr, localTree, localPr, tid, PLL_FALSE);
break;
case PLL_THREAD_OPT_RATE:
case PLL_THREAD_COPY_RATES:
/* if we are optimizing the rates in the transition matrix Q this induces recomputing the eigenvector eigenvalue
decomposition and the tipVector as well because of the special numerics in RAxML, the matrix of eigenvectors
is "rotated" into the tip lookup table.
Hence if the sequential part of the program that steers the Q matrix rate optimization has changed a rate we
need to broadcast all eigenvectors, eigenvalues etc to each thread
*/
broadCastRates(localPr, pr);
/* now evaluate the likelihood of the new Q matrix, this always requires a full tree traversal because the changes need
to be propagated throughout the entire tree */
if(localTree->td[0].functionType == PLL_THREAD_OPT_RATE)
reduceEvaluateIterative(tr, localTree, localPr, tid, PLL_FALSE);
break;
case PLL_THREAD_COPY_LG4X_RATES:
broadCastLg4xWeights(localPr, pr);
broadCastAlpha(localPr, pr);
assert(localPr->partitionData[0]->lg4x_weights[0] == pr->partitionData[0]->lg4x_weights[0]);
break;
case PLL_THREAD_OPT_LG4X_RATE:
broadCastLg4xWeights(localPr, pr);
broadCastAlpha(localPr, pr);
assert(localPr->partitionData[0]->lg4x_weights[0] == pr->partitionData[0]->lg4x_weights[0]);
/* compute the likelihood, note that this is always a full tree traversal ! */
reduceEvaluateIterative(tr, localTree, localPr, tid, PLL_FALSE);
break;
case PLL_THREAD_COPY_INIT_MODEL:
{
/* need to be very careful here ! PLL_THREAD_COPY_INIT_MODEL is also used when the program is restarted
it is hence not sufficient to just initialize everything by the default values ! */
broadCastRates(localPr, pr);
broadCastAlpha(localPr, pr); /* isnt that only executed when we are on gamma? */
broadCastLg4xWeights(localPr, pr);
/*
copy initial model parameters, the Q matrix and alpha are initially, when we start our likelihood search
set to default values.
Hence we need to copy all those values that are required for computing the likelihood
with newview(), evaluate() and makenez() to the private memory of the threads
*/
if( localTree->rateHetModel == PLL_CAT) /* TRICKY originally this should only be executed by workers */
{
#ifdef _FINE_GRAIN_MPI
int bufSize = 2 * localTree->originalCrunchedLength * sizeof(double);
char bufDbl[bufSize],
*bufPtrDbl = bufDbl;
#endif
RECV_BUF(bufDbl, bufSize,MPI_BYTE);
/* this should be local */
for(model = 0; model < localPr->numberOfPartitions; model++)
localPr->partitionData[model]->numberOfCategories = pr->partitionData[model]->numberOfCategories;
/* this is only relevant for the PSR model, we can worry about this later */
for(i = 0; i < localTree->originalCrunchedLength; ++i)
{
ASSIGN_BUF_DBL(localTree->patrat[i], tr->patrat[i]);
ASSIGN_BUF_DBL(localTree->patratStored[i], tr->patratStored[i]);
}
SEND_BUF(bufDbl, bufSize, MPI_BYTE);
}
}
break;
case PLL_THREAD_RATE_CATS:
{
/* this is for optimizing per-site rate categories under PSR, let's worry about this later */
ASSIGN_DBL( localTree->lower_spacing, tr->lower_spacing);
ASSIGN_DBL( localTree->upper_spacing, tr->upper_spacing);
optRateCatPthreads(localTree, localPr, localTree->lower_spacing, localTree->upper_spacing, localTree->lhs, n, tid);
broadcastAfterRateOpt(tr, localTree, localPr, n, tid);
}
break;
case PLL_THREAD_COPY_RATE_CATS:
{
/*
this is invoked when we have changed the per-site rate category assignment
In essence it distributes the new per site rates to all threads
The pthread-version here simply assigns everything as ought to
be. The MPI-version is configured to write to a buffer instead
and SEND (master) or RECV (workers) it.
*/
/*
start of communication part
*/
int i,
/* buf[localPr->numberOfPartitions], */
/* assertCtr = 0, */
dblBufSize = 0;
#ifdef _FINE_GRAIN_MPI
int bufSize = localPr->numberOfPartitions * sizeof(int);
char buf[bufSize];
char *bufPtr = buf;
#endif
RECV_BUF(buf, bufSize, MPI_BYTE);
for( model = 0; model < localPr->numberOfPartitions; ++model)
{
ASSIGN_BUF(localPr->partitionData[model]->numberOfCategories, pr->partitionData[model]->numberOfCategories, int);
dblBufSize += localPr->partitionData[model]->numberOfCategories * sizeof(double);
}
SEND_BUF(buf, bufSize, MPI_BYTE);
dblBufSize += 2 * localTree->originalCrunchedLength * sizeof(double);
#ifdef _FINE_GRAIN_MPI
char bufDbl[dblBufSize],
*bufPtrDbl = bufDbl;
#endif
RECV_BUF(bufDbl, dblBufSize, MPI_BYTE);
for(i = 0; i < localTree->originalCrunchedLength; ++i)
{
ASSIGN_BUF_DBL(localTree->patrat[i], tr->patrat[i]);
ASSIGN_BUF_DBL(localTree->patratStored[i], tr->patratStored[i]);
}
for( model = 0; model < localPr->numberOfPartitions; ++model)
for(i = 0; i < localPr->partitionData[model]->numberOfCategories; i++)
ASSIGN_BUF_DBL(localPr->partitionData[model]->perSiteRates[i], pr->partitionData[model]->perSiteRates[i]);
SEND_BUF(bufDbl, dblBufSize, MPI_BYTE);
/* lets test, if it is a good idea to send around the basic categories */
#ifdef _FINE_GRAIN_MPI
/* TODO this is inefficient, but is seems to have a small impact on performance */
MPI_Bcast(tr->rateCategory, tr->originalCrunchedLength, MPI_INT, 0, MPI_COMM_WORLD);
#endif
/*
now re-assign values
*/
for(model = 0; model < localPr->numberOfPartitions; model++)
{
if(localTree->manyPartitions)
{
if(isThisMyPartition(localPr, tid, model))
for(localCounter = 0, i = localPr->partitionData[model]->lower; i < localPr->partitionData[model]->upper; i++, localCounter++)
{
localPr->partitionData[model]->rateCategory[localCounter] = tr->rateCategory[i];
}
}
else
{
for(localCounter = 0, i = localPr->partitionData[model]->lower; i < localPr->partitionData[model]->upper; i++)
{
if(i % n == tid)
{
localPr->partitionData[model]->rateCategory[localCounter] = tr->rateCategory[i];
localCounter++;
}
}
}
}
}
break;
case PLL_THREAD_PER_SITE_LIKELIHOODS:
{
/* compute per-site log likelihoods for the sites/partitions
that are handled by this thread */
perSiteLogLikelihoodsPthreads(localTree, localPr, localTree->lhs, n, tid);
/* do a parallel gather operation, the threads will write their results
into the global buffer tr->lhs that will then contain all per-site log likelihoods
in the proper order
*/
collectDouble(tr->lhs, localTree->lhs, localTree, localPr, n, tid);
}
break;
/* check for errors */
case PLL_THREAD_NEWVIEW_ANCESTRAL:
assert(0);
break;
case PLL_THREAD_GATHER_ANCESTRAL:
assert(0);
break;
case PLL_THREAD_EXIT_GRACEFULLY:
{
/* cleans up the workers memory */
#ifdef _USE_PTHREADS
/* TODO destroying the tree does not work yet in a highly
generic manner. */
if(NOT MASTER_P)
{
pllPartitionsDestroy (localTree, &localPr);
/* pllTreeDestroy (localTree); */
}
else
{
//pllPartitionsDestroy (tr, &pr);
/* pllTreeDestroy (tr); */
}
#else
//pllPartitionsDestroy (tr, &pr);
/* pllTreeDestroy (tr); */
//MPI_Finalize();
//exit(0);
#endif
return PLL_FALSE;
}
break;
case PLL_THREAD_EVALUATE_PER_SITE_LIKES:
{
reduceEvaluateIterative(tr, localTree, localPr, tid, PLL_TRUE);
}
break;
default:
printf("Job %d\n", currentJob);
assert(0);
}
return PLL_TRUE;
}
/** Target function where the threads/processes are trapped
The threads/processes spend all of their time in this function
running operations on the data (computing likelihoods).
@param tData
Structure that contains the vital information for the thread/process,
i.e. PLL instance, list of partitions and thread ID
@note
The data in \a tData are different for pthreads and MPI.
Expand this section.
*/
static void *likelihoodThread(void *tData)
{
threadData *td = (threadData*)tData;
pllInstance
*tr = td->tr;
partitionList *pr = td->pr;
#ifdef _USE_PTHREADS
pllInstance *localTree = rax_calloc(1,sizeof(pllInstance ));
partitionList *localPr = rax_calloc(1,sizeof(partitionList));
int
myCycle = 0,
localTrap = 1;
const int
n = td->tr->numberOfThreads,
tid = td->threadNumber;
#ifndef _PORTABLE_PTHREADS
pinToCore(tid);
#endif
/* printf("\nThis is RAxML Worker Pthread Number: %d\n", tid); */
while(localTrap)
{
while (myCycle == threadJob);
myCycle = threadJob;
if ((threadJob >> 16) != PLL_THREAD_INIT_PARTITION) {
localPr->perGeneBranchLengths = pr->perGeneBranchLengths;
localPr->numberOfPartitions = pr->numberOfPartitions;
}
localTrap = execFunction(tr, localTree, pr, localPr, tid, n);
barrierBuffer[tid] = 1;
}
rax_free (localTree->td[0].executeModel); //localTree->td[0].executeModel = NULL;
rax_free (localTree->td[0].parameterValues); //localTree->td[0].parameterValues = NULL;
rax_free (localTree->rateCategory); //localTree->rateCategory = NULL;
rax_free (localTree->lhs); //localTree->lhs = NULL;
rax_free (localTree->patrat); //localTree->patrat = NULL;
rax_free (localTree->patratStored); //localTree->patratStored = NULL;
rax_free (localTree->td[0].ti); //localTree->td[0].ti = NULL;
rax_free (localTree);
#else
const int
n = processes,
tid = td->threadNumber;
int i;
/* printf("\nThis is RAxML Worker Process Number: %d\n", tid); */
while(execFunction(tr, tr, pr, pr, tid,n));
rax_free (tr->lhs);
rax_free (tr->td[0].ti);
rax_free (tr->td[0].executeModel);
rax_free (tr->td[0].parameterValues);
rax_free (tr->patrat);
rax_free (tr->patratStored);
rax_free (tr->aliaswgt);
rax_free (tr->y_ptr);
for (i = 0; i < pr->numberOfPartitions; ++ i)
rax_free (pr->partitionData[i]);
rax_free (pr->partitionData);
rax_free (pr);
rax_free (tr);
#endif
return (void*)NULL;
}
/**
@brief Cleanup step once the master barrier succeeded.
This is master specific code called once the barrier is
passed. Stuff such as reduction operations. If we execute this
here, we can keep the code mostly free from parallel -specific
code.
@param tr
PLL instance
@param pr
List of partitions
@param jobType
Job that is to be executed
*/
void pllMasterPostBarrier(pllInstance *tr, partitionList *pr, int jobType)
{
assert(tr->threadID == 0);
switch(jobType)
{
case PLL_THREAD_EVALUATE:
case PLL_THREAD_OPT_RATE:
case PLL_THREAD_OPT_ALPHA:
case PLL_THREAD_OPT_LG4X_RATE:
case PLL_THREAD_EVALUATE_PER_SITE_LIKES:
{
#ifdef _REPRODUCIBLE_MPI_OR_PTHREADS
int i,j;
volatile double partitionResult;
for(j = 0; j < pr->numberOfPartitions; j++)
{
for(i = 0, partitionResult = 0.0; i < tr->numberOfThreads; i++)
partitionResult += globalResult[i * pr->numberOfPartitions+ j];
pr->partitionData[j]->partitionLH = partitionResult;
}
#endif
break;
}
case PLL_THREAD_PER_SITE_LIKELIHOODS:
{
int i;
/* now just compute the sum over per-site log likelihoods for error checking */
double accumulatedPerSiteLikelihood = 0.;
for(i = 0; i < tr->originalCrunchedLength; i++)
accumulatedPerSiteLikelihood += tr->lhs[i];
/* printf("RESULT: %f\t%f", tr->likelihood, accumulatedPerSiteLikelihood); */
assert(PLL_ABS(tr->likelihood - accumulatedPerSiteLikelihood) < 0.00001);
}
break;
default:
; /* dont do anything on default,
mostly, we can skip that */
}
}
/**
@brief A generic master barrier for executing parallel parts of the code
A generic master barrier through which the master thread/process controls
the work job execution. Through the parameter \a jobType the master instructs
the slaves of what type of work they must conduct.
@param tr
PLL instance
@param pr
List of partitions
@param jobType
Type of job to be conducted
*/
void pllMasterBarrier(pllInstance *tr, partitionList *pr, int jobType)
{
#ifdef MEASURE_TIME_PARALLEL
assert(jobType < NUM_PAR_JOBS);
timePerRegion[NUM_PAR_JOBS] += gettime()- masterTimePerPhase ;
masterTimePerPhase = gettime();
#endif
#ifdef _USE_PTHREADS
const int
n = tr->numberOfThreads;
tr->td[0].functionType = jobType;
jobCycle = !jobCycle;
threadJob = (jobType << 16) + jobCycle;
execFunction(tr, tr, pr, pr, 0, n);
int
i,
sum;
do
{
for(i = 1, sum = 1; i < n; i++)
sum += barrierBuffer[i];
}
while(sum < n);
for(i = 1; i < n; i++)
barrierBuffer[i] = 0;
#else
tr->td[0].functionType = jobType;
execFunction(tr,tr,pr,pr,0,processes);
#endif
/* code executed by the master, once the barrier is crossed */
pllMasterPostBarrier(tr, pr, jobType);
#ifdef MEASURE_TIME_PARALLEL
timePerRegion[jobType] += gettime() - masterTimePerPhase;
masterTimePerPhase = gettime();
#endif
}
#if (defined(_FINE_GRAIN_MPI) || defined(_USE_PTHREADS))
/** @brief Initialize structures for slave process/threads
Allocate all memory structures required by slave threads/processes
@param tr
PLL Instance
@param localTree
A local PLL instance for the slave process/thread which is initialized in this function based on \a tr
@pram pr
List of partitions
@param localPr
A local list of partitions for the slave process/thread which will be initialized based on \a pr
@pram tid
The slave process/thread ID
@note
This function should never be called by the master thread, but is called by master process in MPI implementation.
*/
static void assignAndInitPart1(pllInstance *localTree, pllInstance *tr, partitionList *localPr, partitionList *pr, int *tid)
{
size_t
model;
int
totalLength = 0;
#ifdef _USE_PTHREADS
localTree->threadID = *tid;
/* printf("my id is %d\n", *tid); */
assert(localTree != tr);
localTree->numberOfThreads = tr->numberOfThreads;
#else /* => MPI */
*tid = processID;
localTree->threadID = processID;
tr->numberOfThreads = processes;
int bufSize = (9 + pr->numberOfPartitions* 8) * sizeof(int);
char buf[bufSize],
*bufPtr = buf;
#endif
RECV_BUF(buf, bufSize, MPI_BYTE);
ASSIGN_BUF( localTree->useRecom, tr->useRecom, int);
ASSIGN_BUF( localTree->rateHetModel, tr->rateHetModel, int);
ASSIGN_BUF( localTree->useMedian, tr->useMedian, int);
ASSIGN_BUF( localTree->saveMemory, tr->saveMemory, int);
ASSIGN_BUF( localTree->maxCategories, tr->maxCategories, int);
ASSIGN_BUF( localTree->originalCrunchedLength, tr->originalCrunchedLength, int);
ASSIGN_BUF( localTree->mxtips, tr->mxtips, int);
ASSIGN_BUF( localPr->numberOfPartitions, pr->numberOfPartitions, int);
ASSIGN_BUF( localPr->perGeneBranchLengths, pr->perGeneBranchLengths, pllBoolean);
localTree->td[0].count = 0;
if(NOT MASTER_P)
{
localTree->lhs = (double*)rax_calloc((size_t)localTree->originalCrunchedLength, sizeof(double));
localPr->partitionData = (pInfo**)rax_calloc(PLL_NUM_BRANCHES,sizeof(pInfo*));
for(model = 0; model < (size_t)localPr->numberOfPartitions; model++) {
localPr->partitionData[model] = (pInfo*)rax_calloc(1,sizeof(pInfo));
}
localTree->td[0].ti = (traversalInfo *)rax_malloc(sizeof(traversalInfo) * (size_t)localTree->mxtips);
localTree->td[0].executeModel = (pllBoolean *)rax_malloc(sizeof(pllBoolean) * PLL_NUM_BRANCHES);
localTree->td[0].parameterValues = (double *)rax_malloc(sizeof(double) * PLL_NUM_BRANCHES);
localTree->patrat = (double*)rax_malloc(sizeof(double) * (size_t)localTree->originalCrunchedLength);
localTree->patratStored = (double*)rax_malloc(sizeof(double) * (size_t)localTree->originalCrunchedLength);
}
for(model = 0; model < (size_t)localPr->numberOfPartitions; model++)
{
ASSIGN_BUF(localPr->partitionData[model]->numberOfCategories, pr->partitionData[model]->numberOfCategories, int);
ASSIGN_BUF(localPr->partitionData[model]->states, pr->partitionData[model]->states, int);
ASSIGN_BUF(localPr->partitionData[model]->maxTipStates , pr->partitionData[model]->maxTipStates, int);
ASSIGN_BUF(localPr->partitionData[model]->dataType , pr->partitionData[model]->dataType, int);
ASSIGN_BUF(localPr->partitionData[model]->protModels , pr->partitionData[model]->protModels, int);
ASSIGN_BUF(localPr->partitionData[model]->protUseEmpiricalFreqs , pr->partitionData[model]->protUseEmpiricalFreqs, int);
ASSIGN_BUF(localPr->partitionData[model]->lower , pr->partitionData[model]->lower, int);
ASSIGN_BUF(localPr->partitionData[model]->upper , pr->partitionData[model]->upper, int);
ASSIGN_BUF(localPr->partitionData[model]->ascBias, pr->partitionData[model]->ascBias, pllBoolean);
localPr->partitionData[model]->partitionLH = 0.0;
totalLength += (localPr->partitionData[model]->upper - localPr->partitionData[model]->lower);
}
SEND_BUF(buf, bufSize, MPI_BYTE);
assert(totalLength == localTree->originalCrunchedLength);
ASSIGN_DBL(localTree->vectorRecomFraction, tr->vectorRecomFraction);
}
#endif
/** @brief Distribute y-vectors during initialization.
Distribute the alignment data to the slave process/threads. Each slave
copies the data (alignment) from its assigned partition to its local
partition structure.
@param tr
PLL instance
@param localTree
Local library instance for the current thread
@param localPr
Local list of partitions structure for the current thread
*/
static void distributeYVectors(pllInstance *localTree, pllInstance *tr, partitionList *localPr)
{
size_t
i,
n = localTree->numberOfThreads,
globalCounter = 0,
localCounter = 0,
model = 0,
j;
int tid = localTree->threadID;
/* distribute the y-vectors */
for(j = 1 ; j <= (size_t)localTree->mxtips; j++)
{
#ifdef _FINE_GRAIN_MPI
unsigned char yBuf[tr->originalCrunchedLength];
if(MASTER_P)
memcpy(yBuf, tr->yVector[j], tr->originalCrunchedLength * sizeof(unsigned char));
MPI_Bcast( yBuf, tr->originalCrunchedLength, MPI_UNSIGNED_CHAR,0,MPI_COMM_WORLD);
#endif
for(model = 0, globalCounter = 0; model < (size_t)localPr->numberOfPartitions; model++)
{
if(tr->manyPartitions)
{
if(isThisMyPartition(localPr, tid, model))
{
assert(localPr->partitionData[model]->upper - localPr->partitionData[model]->lower == localPr->partitionData[model]->width);
for(localCounter = 0, i = (size_t)localPr->partitionData[model]->lower; i < (size_t)localPr->partitionData[model]->upper; i++, localCounter++, globalCounter++)
#ifdef _USE_PTHREADS
localPr->partitionData[model]->yVector[j][localCounter] = tr->yVector[j][globalCounter];
#else
localPr->partitionData[model]->yVector[j][localCounter] = yBuf[globalCounter];
#endif
}
else
globalCounter += (localPr->partitionData[model]->upper - localPr->partitionData[model]->lower);
}
else
{
for(localCounter = 0, i = (size_t)localPr->partitionData[model]->lower; i < (size_t)localPr->partitionData[model]->upper; i++, globalCounter++)
{
if(i % (size_t)n == (size_t)tid)
{
#ifdef _USE_PTHREADS
localPr->partitionData[model]->yVector[j][localCounter] = tr->yVector[j][globalCounter];
#else
localPr->partitionData[model]->yVector[j][localCounter] = yBuf[globalCounter];
#endif
++localCounter;
}
}
}
}
}
}
/** @brief Distribute the weights in the alignment of slave process/threads
Allocate space in the local tree structure for the alignment weights. Then
copy the weights vector from the master process/thread to the slaves.
@param tr
PLL instance
@param localTree
Local library instance for the current process/thread
@param localPr
Local list of partitions for the current process/thread
@todo
The alignment weights should go to the partitions structure rather than the tree structure
*/
static void distributeWeights(pllInstance *localTree, pllInstance *tr, partitionList *localPr)
{
int tid = localTree->threadID;
int n = localTree->numberOfThreads;
size_t
globalCounter = 0,
i,
localCounter = 0,
model;
/* distribute the weights */
#ifdef _FINE_GRAIN_MPI /* need to broadcast a few things first */
if(NOT MASTER_P)
tr->aliaswgt = rax_malloc(sizeof(int) * tr->originalCrunchedLength);
MPI_Bcast(tr->aliaswgt, tr->originalCrunchedLength, MPI_INT, 0, MPI_COMM_WORLD);
#endif
for(model = 0, globalCounter = 0; model < (size_t)localPr->numberOfPartitions; model++)
{
if(tr->manyPartitions)
{
if(isThisMyPartition(localPr, tid, model))
{
assert(localPr->partitionData[model]->upper - localPr->partitionData[model]->lower == localPr->partitionData[model]->width);
for(localCounter = 0, i = (size_t)localPr->partitionData[model]->lower; i < (size_t)localPr->partitionData[model]->upper; i++, localCounter++, globalCounter++)
localPr->partitionData[model]->wgt[localCounter] = tr->aliaswgt[globalCounter];
}
else
globalCounter += (localPr->partitionData[model]->upper - localPr->partitionData[model]->lower);
}
else
{
for(localCounter = 0, i = (size_t)localPr->partitionData[model]->lower; i < (size_t)localPr->partitionData[model]->upper; i++, globalCounter++)
{
if(i % (size_t)n == (size_t)tid)
localPr->partitionData[model]->wgt[localCounter++] = tr->aliaswgt[globalCounter];
}
}
}
}
/** @brief Initialize the partitioning scheme (master function) in parallel environment.
Initialize the partition scheme in all processes/threads. This is a wrapper function
that calls all necessary functions for allocating the local structures for slave threads
and for distributing all necessary data from the master threads, such as alignment data,
and weight vectors.
@param tr
PLL instance
@param localTree
Local PLL instance for the slave process/thread
@param pr
List of partitions
@param localPr
Local partition structure for the slave process/thread
@param tid
Process/thread id
@param n
Number of processes/threads
*/
static void initializePartitionsMaster(pllInstance *tr, pllInstance *localTree, partitionList *pr, partitionList *localPr, int tid, int n)
{
size_t
model;
treeIsInitialized = PLL_TRUE;
ASSIGN_INT(localTree->manyPartitions, tr->manyPartitions);
ASSIGN_INT(localTree->numberOfThreads, tr->numberOfThreads);
ASSIGN_INT(localPr->numberOfPartitions, pr->numberOfPartitions);
#ifdef _USE_PTHREADS
if(MASTER_P)
globalResult = rax_calloc((size_t) tr->numberOfThreads * (size_t)pr->numberOfPartitions* 2 ,sizeof(double));
else
assignAndInitPart1(localTree, tr, localPr, pr, &tid);
#else
globalResult = rax_calloc((size_t) tr->numberOfThreads * (size_t)pr->numberOfPartitions* 2 ,sizeof(double));
assignAndInitPart1(localTree, tr, localPr, pr, &tid);
defineTraversalInfoMPI();
#endif
for(model = 0; model < (size_t)localPr->numberOfPartitions; model++)
localPr->partitionData[model]->width = 0;
if(tr->manyPartitions)
{
multiprocessorScheduling(localTree, localPr, tid);
computeFractionMany(localPr, tid);
}
else
computeFraction(localPr, tid, n);
initializePartitionData(localTree, localPr);
{
size_t
model,
i,
countOffset,
myLength = 0;
for(model = 0; model < (size_t)localPr->numberOfPartitions; model++)
myLength += localPr->partitionData[model]->width;
/* assign local memory for storing sequence data */
localTree->y_ptr = (unsigned char *)rax_malloc(myLength * (size_t)(localTree->mxtips) * sizeof(unsigned char));
assert(localTree->y_ptr != NULL);
for(i = 0; i < (size_t)localTree->mxtips; i++)
{
for(model = 0, countOffset = 0; model < (size_t)localPr->numberOfPartitions; model++)
{
localPr->partitionData[model]->yVector[i+1] = &localTree->y_ptr[i * myLength + countOffset];
countOffset += localPr->partitionData[model]->width;
}
assert(countOffset == myLength);
}
/* figure in data */
distributeWeights(localTree, tr, localPr);
distributeYVectors(localTree, tr, localPr);
}
initMemorySavingAndRecom(localTree, localPr);
}
|