1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
|
#include <omp.h>
#include <immintrin.h>
#include <string.h>
#include <math.h>
#include "pll.h"
#include "mic_native.h"
static const int states = 4;
static const int statesSquare = 16;
static const int span = 4 * 4;
static const int maxStateValue = 16;
__inline void mic_broadcast16x64(const double* inv, double* outv)
{
__mmask8 k1 = _mm512_int2mask(0x0F);
__mmask8 k2 = _mm512_int2mask(0xF0);
for(int l = 0; l < 16; l += 2)
{
__m512d t = _mm512_setzero_pd();
t = _mm512_mask_extload_pd(t, k1, &inv[(l%4)*4 + l/4], _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, _MM_HINT_NONE);
t = _mm512_mask_extload_pd(t, k2, &inv[((l+1)%4)*4 + (l+1)/4], _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, _MM_HINT_NONE);
_mm512_store_pd(&outv[l*4], t);
}
}
void newviewGTRGAMMA_MIC(int tipCase,
double *x1, double *x2, double *x3, double *extEV, double *tipVector,
int *ex3, unsigned char *tipX1, unsigned char *tipX2,
int n, double *left, double *right, int *wgt, int *scalerIncrement, const pllBoolean fastScaling)
{
__m512d minlikelihood_MIC = _mm512_set1_pd(PLL_MINLIKELIHOOD);
__m512d twotothe256_MIC = _mm512_set1_pd(PLL_TWOTOTHE256);
__m512i absMask_MIC = _mm512_set1_epi64(0x7fffffffffffffffULL);
int addScale = 0;
double aEV[64] __attribute__((align(PLL_BYTE_ALIGNMENT)));
#pragma ivdep
for (int l = 0; l < 64; ++l)
{
aEV[l] = extEV[(l / 16) * 4 + (l % 4)];
}
switch(tipCase)
{
case PLL_TIP_TIP:
{
/* multiply all possible tip state vectors with the respective P-matrices
*/
double umpX1[256] __attribute__((align(PLL_BYTE_ALIGNMENT)));
double umpX2[256] __attribute__((align(PLL_BYTE_ALIGNMENT)));
for(int k = 0; k < 256; ++k)
{
umpX1[k] = 0.0;
umpX2[k] = 0.0;
}
for(int i = 0; i < maxStateValue; ++i)
{
for(int l = 0; l < states; ++l)
{
#pragma ivdep
for(int k = 0; k < span; ++k)
{
umpX1[16 * i + k] += tipVector[i * 4 + l] * left[k * 4 + l];
umpX2[16 * i + k] += tipVector[i * 4 + l] * right[k * 4 + l];
}
}
}
double auX[64] __attribute__((align(64)));
for(int i = 0; i < n; ++i)
{
_mm_prefetch((const char*) (const char*) &x3[span*(i+8)], _MM_HINT_ET1);
_mm_prefetch((const char*) &x3[span*(i+8) + 8], _MM_HINT_ET1);
_mm_prefetch((const char*) &x3[span*(i+1)], _MM_HINT_ET0);
_mm_prefetch((const char*) &x3[span*(i+1) + 8], _MM_HINT_ET0);
const double *uX1 = &umpX1[16 * tipX1[i]];
const double *uX2 = &umpX2[16 * tipX2[i]];
double uX[16] __attribute__((align(PLL_BYTE_ALIGNMENT)));
double* v = &x3[i * 16];
#pragma ivdep
#pragma vector aligned
for(int l = 0; l < 16; ++l)
{
uX[l] = uX1[l] * uX2[l];
v[l] = 0.;
}
mic_broadcast16x64(uX, auX);
for (int j = 0; j < 4; ++j)
{
#pragma ivdep
#pragma vector aligned
#pragma vector nontemporal
for(int k = 0; k < 16; ++k)
{
v[k] += auX[j*16 + k] * aEV[j*16 + k];
}
}
// init scaling counter for the site
if (!fastScaling)
ex3[i] = 0;
} // sites loop
}
break;
case PLL_TIP_INNER:
{
/* we do analogous pre-computations as above, with the only difference that we now do them
only for one tip vector */
double umpX1[256] __attribute__((align(PLL_BYTE_ALIGNMENT)));
/* precompute P and left tip vector product */
for(int k = 0; k < 256; ++k)
{
umpX1[k] = 0.0;
}
for(int i = 0; i < 16; ++i)
{
for(int l = 0; l < 4; ++l)
{
#pragma ivdep
for(int k = 0; k < 16; ++k)
{
umpX1[16 * i + k] += tipVector[i * 4 + l] * left[k * 4 + l];
}
}
}
// re-arrange right matrix for better memory layout
double aRight[64] __attribute__((align(PLL_BYTE_ALIGNMENT)));
for(int j = 0; j < 4; j++)
{
for(int l = 0; l < 16; l++)
{
aRight[j*16 + l] = right[l*4 + j];
}
}
for (int i = 0; i < n; i++)
{
_mm_prefetch((const char*) &x2[span*(i+16)], _MM_HINT_T1);
_mm_prefetch((const char*) &x2[span*(i+16) + 8], _MM_HINT_T1);
_mm_prefetch((const char*) &x3[span*(i+16)], _MM_HINT_ET1);
_mm_prefetch((const char*) &x3[span*(i+16) + 8], _MM_HINT_ET1);
_mm_prefetch((const char*) &x2[span*(i+1)], _MM_HINT_T0);
_mm_prefetch((const char*) &x2[span*(i+1) + 8], _MM_HINT_T0);
_mm_prefetch((const char*) &x3[span*(i+1)], _MM_HINT_ET0);
_mm_prefetch((const char*) &x3[span*(i+1) + 8], _MM_HINT_ET0);
/* access pre-computed value based on the raw sequence data tipX1 that is used as an index */
double* uX1 = &umpX1[span * tipX1[i]];
double uX2[16] __attribute__((align(PLL_BYTE_ALIGNMENT)));
double uX[16] __attribute__((align(PLL_BYTE_ALIGNMENT)));
#pragma vector aligned
for(int l = 0; l < 16; ++l)
{
uX2[l] = 0.;
}
double aV2[64] __attribute__((align(PLL_BYTE_ALIGNMENT)));
const double* v2 = &(x2[16 * i]);
mic_broadcast16x64(v2, aV2);
for(int j = 0; j < 4; j++)
{
#pragma ivdep
#pragma vector aligned
for(int l = 0; l < 16; l++)
{
uX2[l] += aV2[j*16 + l] * aRight[j*16 + l];
}
}
double* v3 = &(x3[span * i]);
#pragma ivdep
#pragma vector aligned
for(int l = 0; l < 16; ++l)
{
uX[l] = uX1[l] * uX2[l];
v3[l] = 0.;
}
double auX[64] __attribute__((align(PLL_BYTE_ALIGNMENT)));
mic_broadcast16x64(uX, auX);
for (int j = 0; j < 4; ++j)
{
#pragma ivdep
#pragma vector aligned
for(int k = 0; k < 16; ++k)
{
v3[k] += auX[j*16 + k] * aEV[j*16 + k];
}
}
__m512d t1 = _mm512_load_pd(&v3[0]);
t1 = _mm512_castsi512_pd(_mm512_and_epi64(_mm512_castpd_si512(t1), absMask_MIC));
double vmax1 = _mm512_reduce_gmax_pd(t1);
__m512d t2 = _mm512_load_pd(&v3[8]);
t2 = _mm512_castsi512_pd(_mm512_and_epi64(_mm512_castpd_si512(t2), absMask_MIC));
double vmax2 = _mm512_reduce_gmax_pd(t2);
if(vmax1 < PLL_MINLIKELIHOOD && vmax2 < PLL_MINLIKELIHOOD)
{
t1 = _mm512_mul_pd(t1, twotothe256_MIC);
_mm512_store_pd(&v3[0], t1);
t2 = _mm512_mul_pd(t2, twotothe256_MIC);
_mm512_store_pd(&v3[8], t2);
if(!fastScaling)
ex3[i] += 1;
else
addScale += wgt[i];
}
} // site loop
}
break;
case PLL_INNER_INNER:
{
/* same as above, without pre-computations */
// re-arrange right matrix for better memory layout
double aLeft[64] __attribute__((align(PLL_BYTE_ALIGNMENT)));
double aRight[64] __attribute__((align(PLL_BYTE_ALIGNMENT)));
for(int j = 0; j < 4; j++)
{
for(int l = 0; l < 16; l++)
{
aLeft[j*16 + l] = left[l*4 + j];
aRight[j*16 + l] = right[l*4 + j];
}
}
for (int i = 0; i < n; i++)
{
_mm_prefetch((const char*) &x1[span*(i+8)], _MM_HINT_T1);
_mm_prefetch((const char*) &x1[span*(i+8) + 8], _MM_HINT_T1);
_mm_prefetch((const char*) &x2[span*(i+8)], _MM_HINT_T1);
_mm_prefetch((const char*) &x2[span*(i+8) + 8], _MM_HINT_T1);
_mm_prefetch((const char*) &x3[span*(i+8)], _MM_HINT_ET1);
_mm_prefetch((const char*) &x3[span*(i+8) + 8], _MM_HINT_ET1);
_mm_prefetch((const char*) &x1[span*(i+1)], _MM_HINT_T0);
_mm_prefetch((const char*) &x1[span*(i+1) + 8], _MM_HINT_T0);
_mm_prefetch((const char*) &x2[span*(i+1)], _MM_HINT_T0);
_mm_prefetch((const char*) &x2[span*(i+1) + 8], _MM_HINT_T0);
_mm_prefetch((const char*) &x3[span*(i+1)], _MM_HINT_ET0);
_mm_prefetch((const char*) &x3[span*(i+1) + 8], _MM_HINT_ET0);
double uX1[16] __attribute__((align(64)));
double uX2[16] __attribute__((align(64)));
double uX[16] __attribute__((align(64)));
for(int l = 0; l < 16; l++)
{
uX1[l] = 0.;
uX2[l] = 0.;
}
double aV1[64] __attribute__((align(64)));
double aV2[64] __attribute__((align(64)));
const double* v1 = &(x1[span * i]);
const double* v2 = &(x2[span * i]);
mic_broadcast16x64(v1, aV1);
mic_broadcast16x64(v2, aV2);
for(int j = 0; j < 4; j++)
{
#pragma ivdep
#pragma vector aligned
for(int l = 0; l < 16; l++)
{
uX1[l] += aV1[j*16 + l] * aLeft[j*16 + l];
uX2[l] += aV2[j*16 + l] * aRight[j*16 + l];
}
}
double* v3 = &(x3[span * i]);
#pragma ivdep
#pragma vector aligned
for(int l = 0; l < 16; ++l)
{
uX[l] = uX1[l] * uX2[l];
v3[l] = 0.;
}
double auX[64] __attribute__((align(64)));
mic_broadcast16x64(uX, auX);
for(int j = 0; j < 4; ++j)
{
#pragma ivdep
#pragma vector aligned
for(int k = 0; k < 16; ++k)
{
v3[k] += auX[j*16 + k] * aEV[j*16 + k];
}
}
__m512d t1 = _mm512_load_pd(&v3[0]);
t1 = _mm512_castsi512_pd(_mm512_and_epi64(_mm512_castpd_si512(t1), absMask_MIC));
double vmax1 = _mm512_reduce_gmax_pd(t1);
__m512d t2 = _mm512_load_pd(&v3[8]);
t2 = _mm512_castsi512_pd(_mm512_and_epi64(_mm512_castpd_si512(t2), absMask_MIC));
double vmax2 = _mm512_reduce_gmax_pd(t2);
if(vmax1 < PLL_MINLIKELIHOOD && vmax2 < PLL_MINLIKELIHOOD)
{
t1 = _mm512_mul_pd(t1, twotothe256_MIC);
_mm512_store_pd(&v3[0], t1);
t2 = _mm512_mul_pd(t2, twotothe256_MIC);
_mm512_store_pd(&v3[8], t2);
if(!fastScaling)
ex3[i] += 1;
else
addScale += wgt[i];
}
}
} break;
default:
// assert(0);
break;
}
/* as above, increment the global counter that counts scaling multiplications by the scaling multiplications
carried out for computing the likelihood array at node p */
if (fastScaling)
{
*scalerIncrement = addScale;
}
}
double evaluateGTRGAMMA_MIC(int *ex1, int *ex2, int *wgt,
double *x1_start, double *x2_start,
double *tipVector,
unsigned char *tipX1, const int n, double *diagptable, const pllBoolean fastScaling)
{
double sum = 0.0;
/* the left node is a tip */
if(tipX1)
{
double aTipVec[256] __attribute__((align(PLL_BYTE_ALIGNMENT)));
for(int k = 0; k < 16; k++)
{
for(int l = 0; l < 4; l++)
{
aTipVec[k*16 + l] = aTipVec[k*16 + 4 + l] = aTipVec[k*16 + 8 + l] = aTipVec[k*16 + 12 + l] = tipVector[k*4 + l];
}
}
/* loop over the sites of this partition */
for (int i = 0; i < n; i++)
{
_mm_prefetch((const char*) &x2_start[span*(i+8)], _MM_HINT_T1);
_mm_prefetch((const char*) &x2_start[span*(i+8) + 8], _MM_HINT_T1);
_mm_prefetch((const char*) &x2_start[span*(i+1)], _MM_HINT_T0);
_mm_prefetch((const char*) &x2_start[span*(i+1) + 8], _MM_HINT_T0);
/* access pre-computed tip vector values via a lookup table */
const double *x1 = &(aTipVec[16 * tipX1[i]]);
/* access the other(inner) node at the other end of the branch */
const double *x2 = &(x2_start[span * i]);
double term = 0.;
#pragma ivdep
#pragma vector aligned
for(int j = 0; j < span; j++)
term += x1[j] * x2[j] * diagptable[j];
if(!fastScaling)
term = log(0.25 * term) + (ex2[i] * log(PLL_MINLIKELIHOOD));
else
term = log(0.25 * term);
sum += wgt[i] * term;
}
}
else
{
for (int i = 0; i < n; i++)
{
_mm_prefetch((const char*) &x1_start[span*(i+8)], _MM_HINT_T1);
_mm_prefetch((const char*) &x1_start[span*(i+8) + 8], _MM_HINT_T1);
_mm_prefetch((const char*) &x2_start[span*(i+8)], _MM_HINT_T1);
_mm_prefetch((const char*) &x2_start[span*(i+8) + 8], _MM_HINT_T1);
_mm_prefetch((const char*) &x1_start[span*(i+1)], _MM_HINT_T0);
_mm_prefetch((const char*) &x1_start[span*(i+1) + 8], _MM_HINT_T0);
_mm_prefetch((const char*) &x2_start[span*(i+1)], _MM_HINT_T0);
_mm_prefetch((const char*) &x2_start[span*(i+1) + 8], _MM_HINT_T0);
const double *x1 = &(x1_start[span * i]);
const double *x2 = &(x2_start[span * i]);
double term = 0.;
#pragma ivdep
#pragma vector aligned
for(int j = 0; j < span; j++)
term += x1[j] * x2[j] * diagptable[j];
if(!fastScaling)
term = log(0.25 * fabs(term)) + ((ex1[i] + ex2[i]) * log(PLL_MINLIKELIHOOD));
else
term = log(0.25 * term);
sum += wgt[i] * term;
}
}
return sum;
}
void sumGTRGAMMA_MIC(int tipCase, double *sumtable, double *x1_start, double *x2_start, double *tipVector,
unsigned char *tipX1, unsigned char *tipX2, int n)
{
double aTipVec[256] __attribute__((align(PLL_BYTE_ALIGNMENT)));
for(int k = 0; k < 16; k++)
{
for(int l = 0; l < 4; l++)
{
aTipVec[k*16 + l] = aTipVec[k*16 + 4 + l] = aTipVec[k*16 + 8 + l] = aTipVec[k*16 + 12 + l] = tipVector[k*4 + l];
}
}
switch(tipCase)
{
case PLL_TIP_TIP:
{
for(int i = 0; i < n; i++)
{
const double *left = &(aTipVec[16 * tipX1[i]]);
const double *right = &(aTipVec[16 * tipX2[i]]);
double* sum = &sumtable[i * span];
#pragma ivdep
#pragma vector aligned nontemporal
for(int l = 0; l < span; l++)
{
sum[l] = left[l] * right[l];
}
}
} break;
case PLL_TIP_INNER:
{
for(int i = 0; i < n; i++)
{
_mm_prefetch((const char*) &x2_start[span*(i+32)], _MM_HINT_T1);
_mm_prefetch((const char*) &x2_start[span*(i+32) + 8], _MM_HINT_T1);
_mm_prefetch((const char*) &x2_start[span*(i+4)], _MM_HINT_T0);
_mm_prefetch((const char*) &x2_start[span*(i+4) + 8], _MM_HINT_T0);
const double *left = &(aTipVec[16 * tipX1[i]]);
const double *right = &(x2_start[span * i]);
double* sum = &sumtable[i * span];
#pragma ivdep
#pragma vector aligned nontemporal
for(int l = 0; l < span; l++)
{
sum[l] = left[l] * right[l];
}
}
} break;
case PLL_INNER_INNER:
{
for(int i = 0; i < n; i++)
{
_mm_prefetch((const char*) &x1_start[span*(i+32)], _MM_HINT_T1);
_mm_prefetch((const char*) &x1_start[span*(i+32) + 8], _MM_HINT_T1);
_mm_prefetch((const char*) &x2_start[span*(i+32)], _MM_HINT_T1);
_mm_prefetch((const char*) &x2_start[span*(i+32) + 8], _MM_HINT_T1);
_mm_prefetch((const char*) &x1_start[span*(i+4)], _MM_HINT_T0);
_mm_prefetch((const char*) &x1_start[span*(i+4) + 8], _MM_HINT_T0);
_mm_prefetch((const char*) &x2_start[span*(i+4)], _MM_HINT_T0);
_mm_prefetch((const char*) &x2_start[span*(i+4) + 8], _MM_HINT_T0);
const double *left = &(x1_start[span * i]);
const double *right = &(x2_start[span * i]);
double* sum = &sumtable[i * span];
#pragma ivdep
#pragma vector aligned nontemporal
for(int l = 0; l < span; l++)
{
sum[l] = left[l] * right[l];
}
}
} break;
// default:
// assert(0);
}
}
void coreGTRGAMMA_MIC(const int upper, double *sumtable,
volatile double *ext_dlnLdlz, volatile double *ext_d2lnLdlz2, double *EIGN, double *gammaRates, double lz, int *wgt)
{
double diagptable0[16] __attribute__((align(PLL_BYTE_ALIGNMENT)));
double diagptable1[16] __attribute__((align(PLL_BYTE_ALIGNMENT)));
double diagptable2[16] __attribute__((align(PLL_BYTE_ALIGNMENT)));
double diagptable01[16] __attribute__((align(PLL_BYTE_ALIGNMENT)));
double diagptable02[16] __attribute__((align(PLL_BYTE_ALIGNMENT)));
/* pre-compute the derivatives of the P matrix for all discrete GAMMA rates */
for(int i = 0; i < 4; i++)
{
const double ki = gammaRates[i];
const double kisqr = ki * ki;
diagptable0[i*4] = 1.;
diagptable1[i*4] = 0.;
diagptable2[i*4] = 0.;
for(int l = 1; l < states; l++)
{
diagptable0[i * 4 + l] = exp(EIGN[l] * ki * lz);
diagptable1[i * 4 + l] = EIGN[l] * ki;
diagptable2[i * 4 + l] = EIGN[l] * EIGN[l] * kisqr;
}
}
#pragma ivdep
for(int i = 0; i < 16; i++)
{
diagptable01[i] = diagptable0[i] * diagptable1[i];
diagptable02[i] = diagptable0[i] * diagptable2[i];
}
/* loop over sites in this partition */
const int aligned_width = upper % 8 == 0 ? upper / 8 : upper / 8 + 1;
double dlnLBuf[8] __attribute__((align(PLL_BYTE_ALIGNMENT)));
double d2lnLBuf[8] __attribute__((align(PLL_BYTE_ALIGNMENT)));
for (int j = 0; j < 8; ++j)
{
dlnLBuf[j] = 0.;
d2lnLBuf[j] = 0.;
}
__mmask16 k1 = _mm512_int2mask(0x000000FF);
for (int i = 0; i < aligned_width; i++)
{
_mm_prefetch((const char*) &sumtable[i * span * 8], _MM_HINT_T0);
_mm_prefetch((const char*) &sumtable[i * span * 8 + 8], _MM_HINT_T0);
/* access the array with pre-computed values */
const double *sum = &sumtable[i * span * 8];
/* initial per-site likelihood and 1st and 2nd derivatives */
double invBuf[8] __attribute__((align(64)));
double d1Buf[8] __attribute__((align(64)));
double d2Buf[8] __attribute__((align(64)));
__m512d invVec;
__m512d d1Vec;
__m512d d2Vec;
int mask = 0x01;
#pragma noprefetch sum
#pragma unroll(8)
for(int j = 0; j < 8; j++)
{
_mm_prefetch((const char*) &sum[span*(j+8)], _MM_HINT_T1);
_mm_prefetch((const char*) &sum[span*(j+8) + 8], _MM_HINT_T1);
_mm_prefetch((const char*) &sum[span*(j+1)], _MM_HINT_T0);
_mm_prefetch((const char*) &sum[span*(j+1) + 8], _MM_HINT_T0);
__m512d d0_1 = _mm512_load_pd(&diagptable0[0]);
__m512d d0_2 = _mm512_load_pd(&diagptable0[8]);
__m512d d01_1 = _mm512_load_pd(&diagptable01[0]);
__m512d d01_2 = _mm512_load_pd(&diagptable01[8]);
__m512d d02_1 = _mm512_load_pd(&diagptable02[0]);
__m512d d02_2 = _mm512_load_pd(&diagptable02[8]);
__m512d s_1 = _mm512_load_pd(&sum[j*16]);
__m512d s_2 = _mm512_load_pd(&sum[j*16 + 8]);
__m512d inv_1 = _mm512_mul_pd(d0_1, s_1);
__m512d d1_1 = _mm512_mul_pd(d01_1, s_1);
__m512d d2_1 = _mm512_mul_pd(d02_1, s_1);
__m512d inv_2 = _mm512_fmadd_pd(d0_2, s_2, inv_1);
__m512d d1_2 = _mm512_fmadd_pd(d01_2, s_2, d1_1);
__m512d d2_2 = _mm512_fmadd_pd(d02_2, s_2, d2_1);
__mmask8 k1 = _mm512_int2mask(mask);
mask <<= 1;
// reduce
inv_2 = _mm512_add_pd (inv_2, _mm512_swizzle_pd(inv_2, _MM_SWIZ_REG_CDAB));
inv_2 = _mm512_add_pd (inv_2, _mm512_swizzle_pd(inv_2, _MM_SWIZ_REG_BADC));
inv_2 = _mm512_add_pd (inv_2, _mm512_castsi512_pd(_mm512_permute4f128_epi32(_mm512_castpd_si512(inv_2), _MM_PERM_BADC)));
invVec = _mm512_mask_mov_pd(invVec, k1, inv_2);
d1_2 = _mm512_add_pd (d1_2, _mm512_swizzle_pd(d1_2, _MM_SWIZ_REG_CDAB));
d1_2 = _mm512_add_pd (d1_2, _mm512_swizzle_pd(d1_2, _MM_SWIZ_REG_BADC));
d1_2 = _mm512_add_pd (d1_2, _mm512_castsi512_pd(_mm512_permute4f128_epi32(_mm512_castpd_si512(d1_2), _MM_PERM_BADC)));
d1Vec = _mm512_mask_mov_pd(d1Vec, k1, d1_2);
d2_2 = _mm512_add_pd (d2_2, _mm512_swizzle_pd(d2_2, _MM_SWIZ_REG_CDAB));
d2_2 = _mm512_add_pd (d2_2, _mm512_swizzle_pd(d2_2, _MM_SWIZ_REG_BADC));
d2_2 = _mm512_add_pd (d2_2, _mm512_castsi512_pd(_mm512_permute4f128_epi32(_mm512_castpd_si512(d2_2), _MM_PERM_BADC)));
d2Vec = _mm512_mask_mov_pd(d2Vec, k1, d2_2);
}
_mm512_store_pd(&invBuf[0], invVec);
_mm512_store_pd(&d1Buf[0], d1Vec);
_mm512_store_pd(&d2Buf[0], d2Vec);
#pragma ivdep
#pragma vector aligned
for (int j = 0; j < 8; ++j)
{
const double inv_Li = 1.0 / invBuf[j];
const double d1 = d1Buf[j] * inv_Li;
const double d2 = d2Buf[j] * inv_Li;
dlnLBuf[j] += wgt[i * 8 + j] * d1;
d2lnLBuf[j] += wgt[i * 8 + j] * (d2 - d1 * d1);
}
} // site loop
double dlnLdlz = 0.;
double d2lnLdlz2 = 0.;
for (int j = 0; j < 8; ++j)
{
dlnLdlz += dlnLBuf[j];
d2lnLdlz2 += d2lnLBuf[j];
}
*ext_dlnLdlz = dlnLdlz;
*ext_d2lnLdlz2 = d2lnLdlz2;
}
|