1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
|
/**
* PLL (version 1.0.0) a software library for phylogenetic inference
* Copyright (C) 2013 Tomas Flouri and Alexandros Stamatakis
*
* Derived from
* RAxML-HPC, a program for sequential and parallel estimation of phylogenetic
* trees by Alexandros Stamatakis
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*
* For any other enquiries send an Email to Tomas Flouri
* Tomas.Flouri@h-its.org
*
* When publishing work that uses PLL please cite PLL
*
* @file topologies.c
* @brief Miscellanous functions working with tree topology
*/
#include "mem_alloc.h"
#ifndef WIN32
#include <sys/times.h>
#include <sys/types.h>
#include <sys/time.h>
#include <unistd.h>
#endif
#include <math.h>
#include <time.h>
#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>
#include <string.h>
#include <assert.h>
#include "pll.h"
#include "pllInternal.h"
static void saveTopolRELLRec(pllInstance *tr, nodeptr p, topolRELL *tpl, int *i, int numsp)
{
int k;
if(isTip(p->number, numsp))
return;
else
{
nodeptr q = p->next;
while(q != p)
{
tpl->connect[*i].p = q;
tpl->connect[*i].q = q->back;
if(tr->grouped || tr->constrained)
{
tpl->connect[*i].cp = tr->constraintVector[q->number];
tpl->connect[*i].cq = tr->constraintVector[q->back->number];
}
for(k = 0; k < PLL_NUM_BRANCHES; k++)
tpl->connect[*i].z[k] = q->z[k];
*i = *i + 1;
saveTopolRELLRec(tr, q->back, tpl, i, numsp);
q = q->next;
}
}
}
static void saveTopolRELL(pllInstance *tr, topolRELL *tpl)
{
nodeptr p = tr->start;
int k, i = 0;
tpl->likelihood = tr->likelihood;
tpl->start = 1;
tpl->connect[i].p = p;
tpl->connect[i].q = p->back;
if(tr->grouped || tr->constrained)
{
tpl->connect[i].cp = tr->constraintVector[p->number];
tpl->connect[i].cq = tr->constraintVector[p->back->number];
}
for(k = 0; k < PLL_NUM_BRANCHES; k++)
tpl->connect[i].z[k] = p->z[k];
i++;
saveTopolRELLRec(tr, p->back, tpl, &i, tr->mxtips);
assert(i == 2 * tr->mxtips - 3);
}
static void restoreTopolRELL(pllInstance *tr, topolRELL *tpl, int numBranches)
{
int i;
for (i = 0; i < 2 * tr->mxtips - 3; i++)
{
hookup(tpl->connect[i].p, tpl->connect[i].q, tpl->connect[i].z, numBranches);
tr->constraintVector[tpl->connect[i].p->number] = tpl->connect[i].cp;
tr->constraintVector[tpl->connect[i].q->number] = tpl->connect[i].cq;
}
tr->likelihood = tpl->likelihood;
tr->start = tr->nodep[tpl->start];
/* TODO */
}
/** @brief Initializes space as large as the tree
*
* @param rl
* RELL
*
* @param tr
* PLL instance
*
* @param n
* Number of
*
* @todo
* Don't know what is this used for. Something with RELL?
*
*/
void initTL(topolRELL_LIST *rl, pllInstance *tr, int n)
{
int i;
rl->max = n;
rl->t = (topolRELL **)rax_malloc(sizeof(topolRELL *) * n);
for(i = 0; i < n; i++)
{
rl->t[i] = (topolRELL *)rax_malloc(sizeof(topolRELL));
rl->t[i]->connect = (connectRELL *)rax_malloc((2 * tr->mxtips - 3) * sizeof(connectRELL));
rl->t[i]->likelihood = PLL_UNLIKELY;
}
}
/** @brief Deallocate the space associated with this structure
*
* @paral rl
* This structure
*
* @todo
* fill the description
*/
void freeTL(topolRELL_LIST *rl)
{
int i;
for(i = 0; i < rl->max; i++)
{
rax_free(rl->t[i]->connect);
rax_free(rl->t[i]);
}
rax_free(rl->t);
}
void restoreTL(topolRELL_LIST *rl, pllInstance *tr, int n, int numBranches)
{
assert(n >= 0 && n < rl->max);
restoreTopolRELL(tr, rl->t[n], numBranches);
}
/** @brief Reset this structure
*
* Reset the likelihoods in this structure
*
* @param rl
* This structure
*
* @todo
* Complete this
*/
void resetTL(topolRELL_LIST *rl)
{
int i;
for(i = 0; i < rl->max; i++)
rl->t[i]->likelihood = PLL_UNLIKELY;
}
/** @brief Save
*
* Save this topology?
*
* @todo
* Complete this
*/
void saveTL(topolRELL_LIST *rl, pllInstance *tr, int index)
{
assert(index >= 0 && index < rl->max);
if(tr->likelihood > rl->t[index]->likelihood)
saveTopolRELL(tr, rl->t[index]);
}
static void *tipValPtr (nodeptr p)
{
return (void *) & p->number;
}
static int cmpTipVal (void *v1, void *v2)
{
int i1, i2;
i1 = *((int *) v1);
i2 = *((int *) v2);
return (i1 < i2) ? -1 : ((i1 == i2) ? 0 : 1);
}
/* These are the only routines that need to UNDERSTAND topologies */
/** @brief Allocate and initialize space for a tree topology
Allocate and initialize a \a topol structure for a tree topology of
\a maxtips tips
@param
Number of tips of topology
@return
Pointer to the allocated \a topol structure
*/
topol *setupTopol (int maxtips)
{
topol *tpl;
if (! (tpl = (topol *) rax_malloc(sizeof(topol))) ||
! (tpl->links = (connptr) rax_malloc((2*maxtips-3) * sizeof(pllConnect))))
{
printf("ERROR: Unable to get topology memory");
tpl = (topol *) NULL;
}
else
{
tpl->likelihood = PLL_UNLIKELY;
tpl->start = (node *) NULL;
tpl->nextlink = 0;
tpl->ntips = 0;
tpl->nextnode = 0;
tpl->scrNum = 0; /* position in sorted list of scores */
tpl->tplNum = 0; /* position in sorted list of trees */
}
return tpl;
}
/** @brief Deallocate the space occupied by a \a topol structure
Deallocate the space occupied by a \a topol structure
@param tpl
The \a topol structure that is to be deallocated
*/
void freeTopol (topol *tpl)
{
rax_free(tpl->links);
rax_free(tpl);
}
static int saveSubtree (nodeptr p, topol *tpl, int numsp, int numBranches)
{
connptr r, r0;
nodeptr q, s;
int t, t0, t1, k;
r0 = tpl->links;
r = r0 + (tpl->nextlink)++;
r->p = p;
r->q = q = p->back;
for(k = 0; k < numBranches; k++)
r->z[k] = p->z[k];
r->descend = 0; /* No children (yet) */
if (isTip(q->number, numsp))
{
r->valptr = tipValPtr(q); /* Assign value */
}
else
{ /* Internal node, look at children */
s = q->next; /* First child */
do
{
t = saveSubtree(s, tpl, numsp, numBranches); /* Generate child's subtree */
t0 = 0; /* Merge child into list */
t1 = r->descend;
while (t1 && (cmpTipVal(r0[t1].valptr, r0[t].valptr) < 0)) {
t0 = t1;
t1 = r0[t1].sibling;
}
if (t0) r0[t0].sibling = t; else r->descend = t;
r0[t].sibling = t1;
s = s->next; /* Next child */
} while (s != q);
r->valptr = r0[r->descend].valptr; /* Inherit first child's value */
} /* End of internal node processing */
return (r - r0);
}
/** @brief Get the node with the smallest tip value
Recursively finds and returns the tip with the smallest value around a node
\a p0, or returns \a p0 if it is a tip.
@param p0
Node around which to at which the recursion starts
@param numsp
Number of species (tips) in the tree
@todo
Why do we return p0 immediately if it is a tip? Perhaps one of the two other nodes,
i.e. p0->next and p0->next->next, is a tip as well with a smaller number than p0.
*/
static nodeptr minSubtreeTip (nodeptr p0, int numsp)
{
nodeptr minTip, p, testTip;
if (isTip(p0->number, numsp))
return p0;
p = p0->next;
minTip = minSubtreeTip(p->back, numsp);
while ((p = p->next) != p0)
{
testTip = minSubtreeTip(p->back, numsp);
if (cmpTipVal(tipValPtr(testTip), tipValPtr(minTip)) < 0)
minTip = testTip;
}
return minTip;
}
/** @brief
*/
static nodeptr minTreeTip (nodeptr p, int numsp)
{
nodeptr minp, minpb;
minp = minSubtreeTip(p, numsp);
minpb = minSubtreeTip(p->back, numsp);
return (cmpTipVal(tipValPtr(minp), tipValPtr(minpb)) < 0 ? minp : minpb);
}
/** @brief Save the tree topology in a \a topol structure
Save the current tree topology in \a topol structure \a tpl.
*/
void saveTree (pllInstance *tr, topol *tpl, int numBranches)
/* Save a tree topology in a standard order so that first branches
* from a node contain lower value tips than do second branches from
* the node. The root tip should have the lowest value of all.
*/
{
connptr r;
tpl->nextlink = 0; /* Reset link pointer */
r = tpl->links + saveSubtree(minTreeTip(tr->start, tr->mxtips), tpl, tr->mxtips, numBranches); /* Save tree */
r->sibling = 0;
tpl->likelihood = tr->likelihood;
tpl->start = tr->start;
tpl->ntips = tr->ntips;
tpl->nextnode = tr->nextnode;
} /* saveTree */
/* @brief Transform tree to a given topology and evaluate likelihood
Transform our current tree topology to the one stored in \a tpl and
evaluates the likelihood
@param tr
PLL instance
@param pr
List of partitions
@return
\b PLL_TRUE
@todo
Remove the return value, unnecessary
*/
pllBoolean restoreTree (topol *tpl, pllInstance *tr, partitionList *pr)
{
connptr r;
nodeptr p, p0;
int i;
/* first of all set all backs to NULL so that tips do not point anywhere */
for (i = 1; i <= 2*(tr->mxtips) - 2; i++)
{
/* Uses p = p->next at tip */
p0 = p = tr->nodep[i];
do
{
p->back = (nodeptr) NULL;
p = p->next;
}
while (p != p0);
}
/* Copy connections from topology */
/* then connect the nodes together */
for (r = tpl->links, i = 0; i < tpl->nextlink; r++, i++)
hookup(r->p, r->q, r->z, pr->perGeneBranchLengths?pr->numberOfPartitions:1);
tr->likelihood = tpl->likelihood;
tr->start = tpl->start;
tr->ntips = tpl->ntips;
tr->nextnode = tpl->nextnode;
pllEvaluateLikelihood (tr, pr, tr->start, PLL_TRUE, PLL_FALSE);
return PLL_TRUE;
}
/** @brief Initialize a list of best trees
Initialize a list that will contain the best \a newkeep tree topologies,
i.e. the ones that yield the best likelihood. Inside the list initialize
space for \a newkeep + 1 topologies of \a numsp tips. The additional
topology is the starting one
@param bt
Pointer to \a bestlist to be initialized
@param newkeep
Number of new topologies to keep
@param numsp
Number of species (tips)
@return
number of tree topology slots in the list (minus the starting one)
@todo
Is there a reason that this function is so complex? Many of the checks
are unnecessary as the function is called only at two places in the
code with newkeep=1 and newkeep=20
*/
int initBestTree (bestlist *bt, int newkeep, int numsp)
{ /* initBestTree */
int i;
bt->nkeep = 0;
if (bt->ninit <= 0)
{
if (! (bt->start = setupTopol(numsp))) return 0;
bt->ninit = -1;
bt->nvalid = 0;
bt->numtrees = 0;
bt->best = PLL_UNLIKELY;
bt->improved = PLL_FALSE;
bt->byScore = (topol **) rax_malloc((newkeep + 1) * sizeof(topol *));
bt->byTopol = (topol **) rax_malloc((newkeep + 1) * sizeof(topol *));
if (! bt->byScore || ! bt->byTopol) {
printf( "initBestTree: malloc failure\n");
return 0;
}
}
else if (PLL_ABS(newkeep) > bt->ninit) {
if (newkeep < 0) newkeep = -(bt->ninit);
else newkeep = bt->ninit;
}
if (newkeep < 1) { /* Use negative newkeep to clear list */
newkeep = -newkeep;
if (newkeep < 1) newkeep = 1;
bt->nvalid = 0;
bt->best = PLL_UNLIKELY;
}
if (bt->nvalid >= newkeep) {
bt->nvalid = newkeep;
bt->worst = bt->byScore[newkeep]->likelihood;
}
else
{
bt->worst = PLL_UNLIKELY;
}
for (i = bt->ninit + 1; i <= newkeep; i++)
{
if (! (bt->byScore[i] = setupTopol(numsp))) break;
bt->byTopol[i] = bt->byScore[i];
bt->ninit = i;
}
return (bt->nkeep = PLL_MIN(newkeep, bt->ninit));
} /* initBestTree */
void resetBestTree (bestlist *bt)
{ /* resetBestTree */
bt->best = PLL_UNLIKELY;
bt->worst = PLL_UNLIKELY;
bt->nvalid = 0;
bt->improved = PLL_FALSE;
} /* resetBestTree */
pllBoolean freeBestTree(bestlist *bt)
{ /* freeBestTree */
while (bt->ninit >= 0) freeTopol(bt->byScore[(bt->ninit)--]);
/* VALGRIND */
rax_free(bt->byScore);
rax_free(bt->byTopol);
/* VALGRIND END */
freeTopol(bt->start);
return PLL_TRUE;
} /* freeBestTree */
/* Compare two trees, assuming that each is in standard order. Return
* -1 if first preceeds second, 0 if they are identical, or +1 if first
* follows second in standard order. Lower number tips preceed higher
* number tips. A tip preceeds a corresponding internal node. Internal
* nodes are ranked by their lowest number tip.
*/
static int cmpSubtopol (connptr p10, connptr p1, connptr p20, connptr p2)
{
connptr p1d, p2d;
int cmp;
if (! p1->descend && ! p2->descend) /* Two tips */
return cmpTipVal(p1->valptr, p2->valptr);
if (! p1->descend) return -1; /* p1 = tip, p2 = node */
if (! p2->descend) return 1; /* p2 = tip, p1 = node */
p1d = p10 + p1->descend;
p2d = p20 + p2->descend;
while (1) { /* Two nodes */
if ((cmp = cmpSubtopol(p10, p1d, p20, p2d))) return cmp; /* Subtrees */
if (! p1d->sibling && ! p2d->sibling) return 0; /* Lists done */
if (! p1d->sibling) return -1; /* One done, other not */
if (! p2d->sibling) return 1; /* One done, other not */
p1d = p10 + p1d->sibling; /* Neither done */
p2d = p20 + p2d->sibling;
}
}
static int cmpTopol (void *tpl1, void *tpl2)
{
connptr r1, r2;
int cmp;
r1 = ((topol *) tpl1)->links;
r2 = ((topol *) tpl2)->links;
cmp = cmpTipVal(tipValPtr(r1->p), tipValPtr(r2->p));
if (cmp)
return cmp;
return cmpSubtopol(r1, r1, r2, r2);
}
static int cmpTplScore (void *tpl1, void *tpl2)
{
double l1, l2;
l1 = ((topol *) tpl1)->likelihood;
l2 = ((topol *) tpl2)->likelihood;
return (l1 > l2) ? -1 : ((l1 == l2) ? 0 : 1);
}
/* Find an item in a sorted list of n items. If the item is in the list,
* return its index. If it is not in the list, return the negative of the
* position into which it should be inserted.
*/
static int findInList (void *item, void *list[], int n, int (* cmpFunc)(void *, void *))
{
int mid, hi, lo, cmp = 0;
if (n < 1) return -1; /* No match; first index */
lo = 1;
mid = 0;
hi = n;
while (lo < hi) {
mid = (lo + hi) >> 1;
cmp = (* cmpFunc)(item, list[mid-1]);
if (cmp) {
if (cmp < 0) hi = mid;
else lo = mid + 1;
}
else return mid; /* Exact match */
}
if (lo != mid) {
cmp = (* cmpFunc)(item, list[lo-1]);
if (cmp == 0) return lo;
}
if (cmp > 0) lo++; /* Result of step = 0 test */
return -lo;
}
static int findTreeInList (bestlist *bt, pllInstance *tr, int numBranches)
{
topol *tpl;
tpl = bt->byScore[0];
saveTree(tr, tpl, numBranches);
return findInList((void *) tpl, (void **) (& (bt->byTopol[1])),
bt->nvalid, cmpTopol);
}
/** @brief Save the current tree in the \a bestlist structure
Save the current tree topology in \a bestlist structure \a bt.
@param tr
The PLL instance
@param bt
The \a bestlist structure
@param numBranches
Number of branches u
@return
it is never used
@todo
What to do with the return value? Should we simplify the code?
*/
int saveBestTree (bestlist *bt, pllInstance *tr, int numBranches)
{
topol *tpl, *reuse;
int tplNum, scrNum, reuseScrNum, reuseTplNum, i, oldValid, newValid;
tplNum = findTreeInList(bt, tr, numBranches);
tpl = bt->byScore[0];
oldValid = newValid = bt->nvalid;
if (tplNum > 0) { /* Topology is in list */
reuse = bt->byTopol[tplNum]; /* Matching topol */
reuseScrNum = reuse->scrNum;
reuseTplNum = reuse->tplNum;
}
/* Good enough to keep? */
else if (tr->likelihood < bt->worst) return 0;
else { /* Topology is not in list */
tplNum = -tplNum; /* Add to list (not replace) */
if (newValid < bt->nkeep) bt->nvalid = ++newValid;
reuseScrNum = newValid; /* Take worst tree */
reuse = bt->byScore[reuseScrNum];
reuseTplNum = (newValid > oldValid) ? newValid : reuse->tplNum;
if (tr->likelihood > bt->start->likelihood) bt->improved = PLL_TRUE;
}
scrNum = findInList((void *) tpl, (void **) (& (bt->byScore[1])),
oldValid, cmpTplScore);
scrNum = PLL_ABS(scrNum);
if (scrNum < reuseScrNum)
for (i = reuseScrNum; i > scrNum; i--)
(bt->byScore[i] = bt->byScore[i-1])->scrNum = i;
else if (scrNum > reuseScrNum) {
scrNum--;
for (i = reuseScrNum; i < scrNum; i++)
(bt->byScore[i] = bt->byScore[i+1])->scrNum = i;
}
if (tplNum < reuseTplNum)
for (i = reuseTplNum; i > tplNum; i--)
(bt->byTopol[i] = bt->byTopol[i-1])->tplNum = i;
else if (tplNum > reuseTplNum) {
tplNum--;
for (i = reuseTplNum; i < tplNum; i++)
(bt->byTopol[i] = bt->byTopol[i+1])->tplNum = i;
}
tpl->scrNum = scrNum;
tpl->tplNum = tplNum;
bt->byTopol[tplNum] = bt->byScore[scrNum] = tpl;
bt->byScore[0] = reuse;
if (scrNum == 1) bt->best = tr->likelihood;
if (newValid == bt->nkeep) bt->worst = bt->byScore[newValid]->likelihood;
return scrNum;
}
/** @brief Restore the best tree from \a bestlist structure
Restore the \a rank-th best tree from the \a bestlist structure \a bt.
@param bt
The \a bestlist structure containing the stored best trees
@param rank
The rank (by score) of the tree we want to retrieve
@param tr
PLL instance
@param pr
List of partitions
@return
Index (rank) of restored topology in \a bestlist
*/
int recallBestTree (bestlist *bt, int rank, pllInstance *tr, partitionList *pr)
{
if (rank < 1) rank = 1;
if (rank > bt->nvalid) rank = bt->nvalid;
if (rank > 0) if (! restoreTree(bt->byScore[rank], tr, pr)) return PLL_FALSE;
return rank;
}
|