1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
|
/***************************************************************************
* Copyright (C) 2009 by BUI Quang Minh *
* minh.bui@univie.ac.at *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#include <stdarg.h>
#include "phylotree.h"
#include "superalignment.h"
#include "phylosupertree.h"
SuperAlignment::SuperAlignment() : Alignment() {
max_num_states = 0;
}
SuperAlignment::SuperAlignment(PhyloSuperTree *super_tree) : Alignment()
{
max_num_states = 0;
// first build taxa_index and partitions
int site, seq, nsite = super_tree->size();
PhyloSuperTree::iterator it;
// BUG FIX 2016-11-29: when merging partitions with -m TESTMERGE, sequence order is changed
// get the taxa names from existing tree
if (super_tree->root) {
super_tree->getTaxaName(seq_names);
taxa_index.resize(seq_names.size());
for (auto i = taxa_index.begin(); i != taxa_index.end(); i++)
i->resize(nsite, -1);
}
for (site = 0, it = super_tree->begin(); it != super_tree->end(); it++, site++) {
partitions.push_back((*it)->aln);
int nseq = (*it)->aln->getNSeq();
//cout << "nseq = " << nseq << endl;
for (seq = 0; seq < nseq; seq++) {
int id = getSeqID((*it)->aln->getSeqName(seq));
if (id < 0) {
seq_names.push_back((*it)->aln->getSeqName(seq));
id = seq_names.size()-1;
IntVector vec(nsite, -1);
vec[site] = seq;
taxa_index.push_back(vec);
} else
taxa_index[id][site] = seq;
}
}
// now the patterns of sequence-genes presence/absence
buildPattern();
}
void SuperAlignment::buildPattern() {
int site, seq, nsite = partitions.size();
seq_type = SEQ_BINARY;
num_states = 2; // binary type because the super alignment presents the presence/absence of taxa in the partitions
STATE_UNKNOWN = 2;
site_pattern.resize(nsite, -1);
clear();
pattern_index.clear();
VerboseMode save_mode = verbose_mode;
verbose_mode = min(verbose_mode, VB_MIN); // to avoid printing gappy sites in addPattern
int nseq = getNSeq();
for (site = 0; site < nsite; site++) {
Pattern pat;
pat.append(nseq, 0);
for (seq = 0; seq < nseq; seq++)
pat[seq] = (taxa_index[seq][site] >= 0)? 1 : 0;
addPattern(pat, site);
}
verbose_mode = save_mode;
countConstSite();
buildSeqStates();
}
void SuperAlignment::linkSubAlignment(int part) {
assert(taxa_index.size() == getNSeq());
int nseq = getNSeq(), seq;
vector<bool> checked;
checked.resize(partitions[part]->getNSeq(), false);
for (seq = 0; seq < nseq; seq++) {
int id = partitions[part]->getSeqID(getSeqName(seq));
if (id < 0)
taxa_index[seq][part] = -1;
else {
taxa_index[seq][part] = id;
checked[id] = true;
}
}
if (verbose_mode >= VB_MED) {
}
// sanity check that all seqnames in partition must be present in superalignment
for (seq = 0; seq < checked.size(); seq++) {
assert(checked[seq]);
}
}
void SuperAlignment::extractSubAlignment(Alignment *aln, IntVector &seq_id, int min_true_char, int min_taxa, IntVector *kept_partitions) {
assert(aln->isSuperAlignment());
SuperAlignment *saln = (SuperAlignment*)aln;
int i;
IntVector::iterator it;
for (it = seq_id.begin(); it != seq_id.end(); it++) {
assert(*it >= 0 && *it < aln->getNSeq());
seq_names.push_back(aln->getSeqName(*it));
}
// BUG HERE!
//Alignment::extractSubAlignment(aln, seq_id, 0);
taxa_index.resize(getNSeq());
for (i = 0; i < getNSeq(); i++)
taxa_index[i].resize(saln->partitions.size(), -1);
int part = 0;
// partitions.resize(saln->partitions.size());
partitions.resize(0);
for (vector<Alignment*>::iterator ait = saln->partitions.begin(); ait != saln->partitions.end(); ait++, part++) {
IntVector sub_seq_id;
for (IntVector::iterator it = seq_id.begin(); it != seq_id.end(); it++)
if (saln->taxa_index[*it][part] >= 0)
sub_seq_id.push_back(saln->taxa_index[*it][part]);
if (sub_seq_id.size() < min_taxa)
continue;
Alignment *subaln = new Alignment;
subaln->extractSubAlignment(*ait, sub_seq_id, 0);
partitions.push_back(subaln);
linkSubAlignment(partitions.size()-1);
if (kept_partitions) kept_partitions->push_back(part);
// cout << subaln->getNSeq() << endl;
// subaln->printPhylip(cout);
}
if (partitions.size() < saln->partitions.size()) {
for (i = 0; i < getNSeq(); i++)
taxa_index[i].resize(partitions.size());
}
// now build the patterns based on taxa_index
buildPattern();
}
Alignment *SuperAlignment::removeIdenticalSeq(string not_remove, bool keep_two, StrVector &removed_seqs, StrVector &target_seqs) {
IntVector checked;
vector<bool> removed;
checked.resize(getNSeq(), 0);
removed.resize(getNSeq(), false);
int seq1;
for (seq1 = 0; seq1 < getNSeq(); seq1++) {
if (checked[seq1]) continue;
bool first_ident_seq = true;
for (int seq2 = seq1+1; seq2 < getNSeq(); seq2++) {
if (getSeqName(seq2) == not_remove) continue;
bool equal_seq = true;
int part = 0;
// check if seq1 and seq2 are identical over all partitions
for (vector<Alignment*>::iterator ait = partitions.begin(); ait != partitions.end(); ait++, part++) {
int subseq1 = taxa_index[seq1][part];
int subseq2 = taxa_index[seq2][part];
if (subseq1 < 0 && subseq2 < 0) // continue if both seqs are absent in this partition
continue;
if (subseq1 < 0 && subseq2 > 0) {
// if one sequence is present and the other is absent for a gene, we conclude that they are not identical
equal_seq = false;
break;
}
if (subseq1 > 0 && subseq2 < 0) {
// if one sequence is present and the other is absent for a gene, we conclude that they are not identical
equal_seq = false;
break;
}
// now if both seqs are present, check sequence content
for (iterator it = (*ait)->begin(); it != (*ait)->end(); it++)
if ((*it)[subseq1] != (*it)[subseq2]) {
equal_seq = false;
break;
}
}
if (equal_seq) {
if (removed_seqs.size() < getNSeq()-3 && (!keep_two || !first_ident_seq)) {
removed_seqs.push_back(getSeqName(seq2));
target_seqs.push_back(getSeqName(seq1));
removed[seq2] = true;
}
checked[seq2] = 1;
first_ident_seq = false;
}
}
checked[seq1] = 1;
}
if (removed_seqs.empty()) return this; // do nothing if the list is empty
if (removed_seqs.size() >= getNSeq()-3)
outWarning("Your alignment contains too many identical sequences!");
// now remove identical sequences
IntVector keep_seqs;
for (seq1 = 0; seq1 < getNSeq(); seq1++)
if (!removed[seq1]) keep_seqs.push_back(seq1);
SuperAlignment *aln;
aln = new SuperAlignment;
aln->extractSubAlignment(this, keep_seqs, 0);
return aln;
}
/*
void SuperAlignment::checkGappySeq() {
int nseq = getNSeq(), part = 0, i;
IntVector gap_only_seq;
gap_only_seq.resize(nseq, 1);
//cout << "Checking gaps..." << endl;
for (vector<Alignment*>::iterator it = partitions.begin(); it != partitions.end(); it++, part++) {
IntVector keep_seqs;
for (i = 0; i < nseq; i++)
if (taxa_index[i][part] >= 0)
if (!(*it)->isGapOnlySeq(taxa_index[i][part])) {
keep_seqs.push_back(taxa_index[i][part]);
gap_only_seq[i] = 0;
}
if (keep_seqs.size() < (*it)->getNSeq()) {
cout << "Discard " << (*it)->getNSeq() - keep_seqs.size()
<< " sequences from partition number " << part+1 << endl;
Alignment *aln = new Alignment;
aln->extractSubAlignment((*it), keep_seqs, 0);
delete (*it);
(*it) = aln;
linkSubAlignment(part);
}
cout << __func__ << " num_states = " << (*it)->num_states << endl;
}
int wrong_seq = 0;
for (i = 0; i < nseq; i++)
if (gap_only_seq[i]) {
cout << "ERROR: Sequence " << getSeqName(i) << " contains only gaps or missing data" << endl;
wrong_seq++;
}
if (wrong_seq) {
outError("Some sequences (see above) are problematic, please check your alignment again");
}
}
*/
void SuperAlignment::getSitePatternIndex(IntVector &pattern_index) {
int nptn = 0;
for (vector<Alignment*>::iterator it = partitions.begin(); it != partitions.end(); it++) {
int nsite = pattern_index.size();
pattern_index.insert(pattern_index.end(), (*it)->site_pattern.begin(), (*it)->site_pattern.end());
for (int i = nsite; i < pattern_index.size(); i++)
pattern_index[i] += nptn;
nptn += (*it)->getNPattern();
}
}
void SuperAlignment::getPatternFreq(IntVector &pattern_freq) {
if (!isSuperAlignment()) outError("Internal error: ", __func__);
int offset = 0;
if (!pattern_freq.empty()) pattern_freq.resize(0);
for (vector<Alignment*>::iterator it = partitions.begin(); it != partitions.end(); it++) {
IntVector freq;
(*it)->getPatternFreq(freq);
pattern_freq.insert(pattern_freq.end(), freq.begin(), freq.end());
offset += freq.size();
}
}
void SuperAlignment::createBootstrapAlignment(Alignment *aln, IntVector* pattern_freq, const char *spec) {
if (!aln->isSuperAlignment()) outError("Internal error: ", __func__);
if (pattern_freq) outError("Unsupported yet.", __func__);
if (spec) outError("Unsupported yet.", __func__);
Alignment::copyAlignment(aln);
SuperAlignment *super_aln = (SuperAlignment*) aln;
if (!partitions.empty()) outError("Internal error: ", __func__);
for (vector<Alignment*>::iterator it = super_aln->partitions.begin(); it != super_aln->partitions.end(); it++) {
Alignment *boot_aln = new Alignment;
boot_aln->createBootstrapAlignment(*it);
partitions.push_back(boot_aln);
}
taxa_index = super_aln->taxa_index;
}
void SuperAlignment::createBootstrapAlignment(IntVector &pattern_freq, const char *spec) {
if (!isSuperAlignment()) outError("Internal error: ", __func__);
int nptn = 0;
for (vector<Alignment*>::iterator it = partitions.begin(); it != partitions.end(); it++) {
nptn += (*it)->getNPattern();
}
pattern_freq.resize(0);
int *internal_freq = new int[nptn];
createBootstrapAlignment(internal_freq, spec);
pattern_freq.insert(pattern_freq.end(), internal_freq, internal_freq + nptn);
delete [] internal_freq;
/* if (spec && strncmp(spec, "GENE", 4) != 0) outError("Unsupported yet.", __func__);
int offset = 0;
if (!pattern_freq.empty()) pattern_freq.resize(0);
if (spec && strncmp(spec, "GENE", 4) == 0) {
// resampling whole genes
int nptn = 0;
IntVector part_pos;
for (vector<Alignment*>::iterator it = partitions.begin(); it != partitions.end(); it++) {
part_pos.push_back(nptn);
nptn += (*it)->getNPattern();
}
pattern_freq.resize(nptn, 0);
for (int i = 0; i < partitions.size(); i++) {
int part = random_int(partitions.size());
for (int j = 0; j < partitions[part]->getNPattern(); j++)
pattern_freq[j + part_pos[part]] += partitions[part]->at(j).frequency;
}
} else {
// resampling sites within genes
for (vector<Alignment*>::iterator it = partitions.begin(); it != partitions.end(); it++) {
IntVector freq;
(*it)->createBootstrapAlignment(freq);
pattern_freq.insert(pattern_freq.end(), freq.begin(), freq.end());
offset += freq.size();
}
}*/
}
void SuperAlignment::createBootstrapAlignment(int *pattern_freq, const char *spec, int *rstream) {
if (!isSuperAlignment()) outError("Internal error: ", __func__);
// if (spec && strncmp(spec, "GENE", 4) != 0) outError("Unsupported yet. ", __func__);
if (spec && strncmp(spec, "GENE", 4) == 0) {
// resampling whole genes
int nptn = 0;
IntVector part_pos;
for (vector<Alignment*>::iterator it = partitions.begin(); it != partitions.end(); it++) {
part_pos.push_back(nptn);
nptn += (*it)->getNPattern();
}
memset(pattern_freq, 0, nptn * sizeof(int));
for (int i = 0; i < partitions.size(); i++) {
int part = random_int(partitions.size(), rstream);
Alignment *aln = partitions[part];
if (strncmp(spec,"GENESITE",8) == 0) {
// then resampling sites in resampled gene
for (int j = 0; j < aln->getNSite(); j++) {
int ptn_id = aln->getPatternID(random_int(aln->getNPattern(), rstream));
pattern_freq[ptn_id + part_pos[part]]++;
}
} else {
for (int j = 0; j < aln->getNPattern(); j++)
pattern_freq[j + part_pos[part]] += aln->at(j).frequency;
}
}
} else {
// resampling sites within genes
int offset = 0;
for (vector<Alignment*>::iterator it = partitions.begin(); it != partitions.end(); it++) {
if (spec && strncmp(spec, "SCALE=", 6) == 0)
(*it)->createBootstrapAlignment(pattern_freq + offset, spec, rstream);
else
(*it)->createBootstrapAlignment(pattern_freq + offset, NULL, rstream);
offset += (*it)->getNPattern();
}
}
}
/**
* shuffle alignment by randomizing the order of sites
*/
void SuperAlignment::shuffleAlignment() {
if (!isSuperAlignment()) outError("Internal error: ", __func__);
for (vector<Alignment*>::iterator it = partitions.begin(); it != partitions.end(); it++) {
(*it)->shuffleAlignment();
}
}
double SuperAlignment::computeObsDist(int seq1, int seq2) {
int site;
int diff_pos = 0, total_pos = 0;
for (site = 0; site < getNSite(); site++) {
int id1 = taxa_index[seq1][site];
int id2 = taxa_index[seq2][site];
if (id1 < 0 || id2 < 0) continue;
int num_states = partitions[site]->num_states;
for (Alignment::iterator it = partitions[site]->begin(); it != partitions[site]->end(); it++)
if ((*it)[id1] < num_states && (*it)[id2] < num_states) {
total_pos += (*it).frequency;
if ((*it)[id1] != (*it)[id2] )
diff_pos += (*it).frequency;
}
}
if (!total_pos)
return MAX_GENETIC_DIST; // return +INF if no overlap between two sequences
return ((double)diff_pos) / total_pos;
}
double SuperAlignment::computeDist(int seq1, int seq2) {
if (partitions.empty()) return 0.0;
double obs_dist = computeObsDist(seq1, seq2);
int num_states = partitions[0]->num_states;
double z = (double)num_states / (num_states-1);
double x = 1.0 - (z * obs_dist);
if (x <= 0) {
/* string str = "Too long distance between two sequences ";
str += getSeqName(seq1);
str += " and ";
str += getSeqName(seq2);
outWarning(str);*/
return MAX_GENETIC_DIST;
}
return -log(x) / z;
//return computeObsDist(seq1, seq2);
// AVERAGE DISTANCE
double dist = 0;
int part = 0, num = 0;
for (vector<Alignment*>::iterator it = partitions.begin(); it != partitions.end(); it++, part++) {
int id1 = taxa_index[seq1][part];
int id2 = taxa_index[seq2][part];
if (id1 < 0 || id2 < 0) continue;
dist += (*it)->computeDist(id1, id2);
}
if (num == 0) // two sequences are not overlapping at all!
return MAX_GENETIC_DIST;
return dist / num;
}
SuperAlignment::~SuperAlignment()
{
for (vector<Alignment*>::reverse_iterator it = partitions.rbegin(); it != partitions.rend(); it++)
delete (*it);
partitions.clear();
}
void SuperAlignment::printCombinedAlignment(ostream &out, bool print_taxid) {
vector<Alignment*>::iterator pit;
int final_length = 0;
for (pit = partitions.begin(); pit != partitions.end(); pit++)
if ((*pit)->seq_type == SEQ_CODON)
final_length += 3*(*pit)->getNSite();
else
final_length += (*pit)->getNSite();
out << getNSeq() << " " << final_length << endl;
int max_len = getMaxSeqNameLength();
if (print_taxid) max_len = 10;
if (max_len < 10) max_len = 10;
int seq_id;
for (seq_id = 0; seq_id < seq_names.size(); seq_id++) {
out.width(max_len);
if (print_taxid)
out << left << seq_id << " ";
else
out << left << seq_names[seq_id] << " ";
int part = 0;
for (pit = partitions.begin(); pit != partitions.end(); pit++, part++) {
int part_seq_id = taxa_index[seq_id][part];
int nsite = (*pit)->getNSite();
if (part_seq_id >= 0) {
for (int i = 0; i < nsite; i++)
out << (*pit)->convertStateBackStr((*pit)->getPattern(i) [part_seq_id]);
} else {
string str(nsite, '?');
out << str;
}
}
out << endl;
}
}
void SuperAlignment::printCombinedAlignment(const char *file_name, bool append) {
try {
ofstream out;
out.exceptions(ios::failbit | ios::badbit);
if (append)
out.open(file_name, ios_base::out | ios_base::app);
else
out.open(file_name);
printCombinedAlignment(out);
out.close();
cout << "Concatenated alignment was printed to " << file_name << endl;
} catch (ios::failure) {
outError(ERR_WRITE_OUTPUT, file_name);
}
}
void SuperAlignment::printSubAlignments(Params ¶ms, vector<PartitionInfo> &part_info) {
vector<Alignment*>::iterator pit;
string filename;
int part;
assert(part_info.size() == partitions.size());
for (pit = partitions.begin(), part = 0; pit != partitions.end(); pit++, part++) {
if (params.aln_output)
filename = params.aln_output;
else
filename = params.out_prefix;
filename += "." + part_info[part].name;
if (params.aln_output_format == ALN_PHYLIP)
(*pit)->printPhylip(filename.c_str(), false, NULL, params.aln_nogaps, false, NULL);
else if (params.aln_output_format == ALN_FASTA)
(*pit)->printFasta(filename.c_str(), false, NULL, params.aln_nogaps, false, NULL);
}
}
double SuperAlignment::computeUnconstrainedLogL() {
double logl = 0.0;
vector<Alignment*>::iterator pit;
for (pit = partitions.begin(); pit != partitions.end(); pit++)
logl += (*pit)->computeUnconstrainedLogL();
return logl;
}
double SuperAlignment::computeMissingData() {
double ret = 0.0;
int len = 0;
vector<Alignment*>::iterator pit;
for (pit = partitions.begin(); pit != partitions.end(); pit++) {
ret += (*pit)->getNSeq() * (*pit)->getNSite();
len += (*pit)->getNSite();
}
ret /= getNSeq() * len;
return 1.0 - ret;
}
Alignment *SuperAlignment::concatenateAlignments(IntVector &ids) {
string union_taxa;
int nsites = 0, nstates = 0, i;
SeqType sub_type = SEQ_UNKNOWN;
for (i = 0; i < ids.size(); i++) {
int id = ids[i];
if (id < 0 || id >= partitions.size())
outError("Internal error ", __func__);
if (nstates == 0) nstates = partitions[id]->num_states;
if (sub_type == SEQ_UNKNOWN) sub_type = partitions[id]->seq_type;
if (sub_type != partitions[id]->seq_type)
outError("Cannot concatenate sub-alignments of different type");
if (nstates != partitions[id]->num_states)
outError("Cannot concatenate sub-alignments of different #states");
string taxa_set = getPattern(id);
nsites += partitions[id]->getNSite();
if (i == 0) union_taxa = taxa_set; else {
for (int j = 0; j < union_taxa.length(); j++)
if (taxa_set[j] == 1) union_taxa[j] = 1;
}
}
Alignment *aln = new Alignment;
for (i = 0; i < union_taxa.length(); i++)
if (union_taxa[i] == 1) {
aln->seq_names.push_back(getSeqName(i));
}
aln->num_states = nstates;
aln->seq_type = sub_type;
aln->site_pattern.resize(nsites, -1);
aln->clear();
aln->pattern_index.clear();
aln->STATE_UNKNOWN = partitions[ids[0]]->STATE_UNKNOWN;
aln->genetic_code = partitions[ids[0]]->genetic_code;
int site = 0;
for (i = 0; i < ids.size(); i++) {
int id = ids[i];
string taxa_set = getPattern(id);
for (Alignment::iterator it = partitions[id]->begin(); it != partitions[id]->end(); it++) {
Pattern pat;
int part_seq = 0;
for (int seq = 0; seq < union_taxa.size(); seq++)
if (union_taxa[seq] == 1) {
char ch = aln->STATE_UNKNOWN;
if (taxa_set[seq] == 1) {
ch = (*it)[part_seq++];
}
pat.push_back(ch);
}
assert(part_seq == partitions[id]->getNSeq());
aln->addPattern(pat, site, (*it).frequency);
// IMPORTANT BUG FIX FOLLOW
int ptnindex = aln->pattern_index[pat];
for (int j = 0; j < (*it).frequency; j++)
aln->site_pattern[site++] = ptnindex;
}
}
aln->countConstSite();
aln->buildSeqStates();
return aln;
}
void SuperAlignment::countConstSite() {
num_informative_sites = 0;
max_num_states = 0;
frac_const_sites = 0;
frac_invariant_sites = 0;
size_t nsites = 0;
for (vector<Alignment*>::iterator it = partitions.begin(); it != partitions.end(); it++) {
(*it)->countConstSite();
num_informative_sites += (*it)->num_informative_sites;
if ((*it)->num_states > max_num_states)
max_num_states = (*it)->num_states;
nsites += (*it)->getNSite();
frac_const_sites += (*it)->frac_const_sites * (*it)->getNSite();
frac_invariant_sites += (*it)->frac_invariant_sites * (*it)->getNSite();
}
frac_const_sites /= nsites;
frac_invariant_sites /= nsites;
}
void SuperAlignment::orderPatternByNumChars() {
const int UINT_BITS = sizeof(UINT)*8;
int maxi = (num_informative_sites+UINT_BITS-1)/UINT_BITS;
pars_lower_bound = new UINT[maxi+1];
memset(pars_lower_bound, 0, (maxi+1)*sizeof(UINT));
int part, nseq = getNSeq(), npart = partitions.size();
// compute ordered_pattern
ordered_pattern.clear();
UINT sum_scores[npart];
for (part = 0; part != partitions.size(); part++) {
partitions[part]->orderPatternByNumChars();
// partial_partition
for (vector<Pattern>::iterator pit = partitions[part]->ordered_pattern.begin(); pit != partitions[part]->ordered_pattern.end(); pit++) {
Pattern pattern(*pit);
pattern.resize(nseq); // maximal unknown states
for (int j = 0; j < nseq; j++)
if (taxa_index[j][part] >= 0)
pattern[j] = (*pit)[taxa_index[j][part]];
else
pattern[j] = partitions[part]->STATE_UNKNOWN;
ordered_pattern.push_back(pattern);
}
sum_scores[part] = partitions[part]->pars_lower_bound[0];
}
// TODO compute pars_lower_bound (lower bound of pars score for remaining patterns)
}
|