1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647
|
//
// C++ Implementation: alignment
//
// Description:
//
//
// Author: BUI Quang Minh, Steffen Klaere, Arndt von Haeseler <minh.bui@univie.ac.at>, (C) 2008
//
// Copyright: See COPYING file that comes with this distribution
//
//
#include "utils/tools.h"
#include "alignment.h"
#include "nclextra/myreader.h"
#include <numeric>
#include <sstream>
#include "model/rategamma.h"
#include "gsl/mygsl.h"
#include "utils/gzstream.h"
using namespace std;
char symbols_protein[] = "ARNDCQEGHILKMFPSTWYVX"; // X for unknown AA
char symbols_dna[] = "ACGT";
char symbols_rna[] = "ACGU";
//char symbols_binary[] = "01";
char symbols_morph[] = "0123456789ABCDEFGHIJKLMNOPQRSTUV";
// genetic code from tri-nucleotides (AAA, AAC, AAG, AAT, ..., TTT) to amino-acids
// Source: http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi
// Base1: AAAAAAAAAAAAAAAACCCCCCCCCCCCCCCCGGGGGGGGGGGGGGGGTTTTTTTTTTTTTTTT
// Base2: AAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTT
// Base3: ACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGT
char genetic_code1[] = "KNKNTTTTRSRSIIMIQHQHPPPPRRRRLLLLEDEDAAAAGGGGVVVV*Y*YSSSS*CWCLFLF"; // Standard
char genetic_code2[] = "KNKNTTTT*S*SMIMIQHQHPPPPRRRRLLLLEDEDAAAAGGGGVVVV*Y*YSSSSWCWCLFLF"; // Vertebrate Mitochondrial
char genetic_code3[] = "KNKNTTTTRSRSMIMIQHQHPPPPRRRRTTTTEDEDAAAAGGGGVVVV*Y*YSSSSWCWCLFLF"; // Yeast Mitochondrial
char genetic_code4[] = "KNKNTTTTRSRSIIMIQHQHPPPPRRRRLLLLEDEDAAAAGGGGVVVV*Y*YSSSSWCWCLFLF"; // Mold, Protozoan, etc.
char genetic_code5[] = "KNKNTTTTSSSSMIMIQHQHPPPPRRRRLLLLEDEDAAAAGGGGVVVV*Y*YSSSSWCWCLFLF"; // Invertebrate Mitochondrial
char genetic_code6[] = "KNKNTTTTRSRSIIMIQHQHPPPPRRRRLLLLEDEDAAAAGGGGVVVVQYQYSSSS*CWCLFLF"; // Ciliate, Dasycladacean and Hexamita Nuclear
// note: tables 7 and 8 are not available in NCBI
char genetic_code9[] = "NNKNTTTTSSSSIIMIQHQHPPPPRRRRLLLLEDEDAAAAGGGGVVVV*Y*YSSSSWCWCLFLF"; // Echinoderm and Flatworm Mitochondrial
char genetic_code10[] = "KNKNTTTTRSRSIIMIQHQHPPPPRRRRLLLLEDEDAAAAGGGGVVVV*Y*YSSSSCCWCLFLF"; // Euplotid Nuclear
char genetic_code11[] = "KNKNTTTTRSRSIIMIQHQHPPPPRRRRLLLLEDEDAAAAGGGGVVVV*Y*YSSSS*CWCLFLF"; // Bacterial, Archaeal and Plant Plastid
char genetic_code12[] = "KNKNTTTTRSRSIIMIQHQHPPPPRRRRLLSLEDEDAAAAGGGGVVVV*Y*YSSSS*CWCLFLF"; // Alternative Yeast Nuclear
char genetic_code13[] = "KNKNTTTTGSGSMIMIQHQHPPPPRRRRLLLLEDEDAAAAGGGGVVVV*Y*YSSSSWCWCLFLF"; // Ascidian Mitochondrial
char genetic_code14[] = "NNKNTTTTSSSSIIMIQHQHPPPPRRRRLLLLEDEDAAAAGGGGVVVVYY*YSSSSWCWCLFLF"; // Alternative Flatworm Mitochondrial
char genetic_code15[] = "KNKNTTTTRSRSIIMIQHQHPPPPRRRRLLLLEDEDAAAAGGGGVVVV*YQYSSSS*CWCLFLF"; // Blepharisma Nuclear
char genetic_code16[] = "KNKNTTTTRSRSIIMIQHQHPPPPRRRRLLLLEDEDAAAAGGGGVVVV*YLYSSSS*CWCLFLF"; // Chlorophycean Mitochondrial
// note: tables 17-20 are not available in NCBI
char genetic_code21[] = "NNKNTTTTSSSSMIMIQHQHPPPPRRRRLLLLEDEDAAAAGGGGVVVV*Y*YSSSSWCWCLFLF"; // Trematode Mitochondrial
char genetic_code22[] = "KNKNTTTTRSRSIIMIQHQHPPPPRRRRLLLLEDEDAAAAGGGGVVVV*YLY*SSS*CWCLFLF"; // Scenedesmus obliquus mitochondrial
char genetic_code23[] = "KNKNTTTTRSRSIIMIQHQHPPPPRRRRLLLLEDEDAAAAGGGGVVVV*Y*YSSSS*CWC*FLF"; // Thraustochytrium Mitochondrial
char genetic_code24[] = "KNKNTTTTSSKSIIMIQHQHPPPPRRRRLLLLEDEDAAAAGGGGVVVV*Y*YSSSSWCWCLFLF"; // Pterobranchia mitochondrial
char genetic_code25[] = "KNKNTTTTRSRSIIMIQHQHPPPPRRRRLLLLEDEDAAAAGGGGVVVV*Y*YSSSSGCWCLFLF"; // Candidate Division SR1 and Gracilibacteria
Alignment::Alignment()
: vector<Pattern>()
{
num_states = 0;
frac_const_sites = 0.0;
frac_invariant_sites = 0.0;
codon_table = NULL;
genetic_code = NULL;
non_stop_codon = NULL;
seq_type = SEQ_UNKNOWN;
STATE_UNKNOWN = 126;
pars_lower_bound = NULL;
}
string &Alignment::getSeqName(int i) {
ASSERT(i >= 0 && i < (int)seq_names.size());
return seq_names[i];
}
vector<string>& Alignment::getSeqNames() {
return seq_names;
}
int Alignment::getSeqID(string &seq_name) {
for (int i = 0; i < getNSeq(); i++)
if (seq_name == getSeqName(i)) return i;
return -1;
}
int Alignment::getMaxSeqNameLength() {
int len = 0;
for (int i = 0; i < getNSeq(); i++)
if (getSeqName(i).length() > len)
len = getSeqName(i).length();
return len;
}
/**
probability that the observed chi-square exceeds chi2 even if model is correct
@param deg degree of freedom
@param chi2 chi-square value
@return p-value
*/
double chi2prob (int deg, double chi2)
{
double a = 0.5*deg;
double x = 0.5*chi2;
return 1.0-RateGamma::cmpIncompleteGamma (x, a, RateGamma::cmpLnGamma(a));
// return IncompleteGammaQ (0.5*deg, 0.5*chi2);
} /* chi2prob */
int Alignment::checkAbsentStates(string msg) {
double *state_freq = new double[num_states];
computeStateFreq(state_freq);
string absent_states, rare_states;
int count = 0;
// Skip check for PoMo.
if (seq_type == SEQ_POMO)
return 0;
for (int i = 0; i < num_states; i++)
if (state_freq[i] == 0.0) {
if (!absent_states.empty())
absent_states += ", ";
absent_states += convertStateBackStr(i);
count++;
} else if (state_freq[i] <= MIN_FREQUENCY) {
if (!rare_states.empty())
rare_states += ", ";
rare_states += convertStateBackStr(i);
}
if (count >= num_states-1 && Params::getInstance().fixed_branch_length != BRLEN_FIX)
outError("Only one state is observed in " + msg);
if (!absent_states.empty())
cout << "NOTE: State(s) " << absent_states << " not present in " << msg << " and thus removed from Markov process to prevent numerical problems" << endl;
if (!rare_states.empty())
cout << "WARNING: States(s) " << rare_states << " rarely appear in " << msg << " and may cause numerical problems" << endl;
delete[] state_freq;
return count;
}
void Alignment::checkSeqName() {
ostringstream warn_str;
StrVector::iterator it;
for (it = seq_names.begin(); it != seq_names.end(); it++) {
string orig_name = (*it);
if (renameString(*it))
warn_str << orig_name << " -> " << (*it) << endl;
}
if (warn_str.str() != "") {
string str = "Some sequence names are changed as follows:\n";
outWarning(str + warn_str.str());
}
// now check that sequence names are different
StrVector names;
names.insert(names.begin(), seq_names.begin(), seq_names.end());
sort(names.begin(), names.end());
bool ok = true;
for (it = names.begin(); it != names.end(); it++) {
if (it+1==names.end()) break;
if (*it == *(it+1)) {
cout << "ERROR: Duplicated sequence name " << *it << endl;
ok = false;
}
}
if (!ok) outError("Please rename sequences listed above!");
double *state_freq = new double[num_states];
// double *freq_per_sequence = new double[num_states*getNSeq()];
double *freq_per_sequence = new double[num_states];
unsigned *count_per_seq = new unsigned[num_states*getNSeq()];
computeStateFreq(state_freq);
// computeStateFreqPerSequence(freq_per_sequence);
countStatePerSequence(count_per_seq);
int i, df = -1;
for (i = 0; i < num_states; i++)
if (state_freq[i] > 0.0) df++;
if (seq_type == SEQ_POMO)
cout << "NOTE: The composition test for PoMo only tests the proportion of fixed states!" << endl;
int max_len = getMaxSeqNameLength()+1;
cout.width(max_len+14);
cout << right << "Gap/Ambiguity" << " Composition p-value"<< endl;
int num_problem_seq = 0;
int total_gaps = 0;
cout.precision(2);
int num_failed = 0;
for (i = 0; i < seq_names.size(); i++) {
int j;
int num_gaps = getNSite() - countProperChar(i);
total_gaps += num_gaps;
double percent_gaps = ((double)num_gaps / getNSite())*100.0;
cout.width(4);
cout << right << i+1 << " ";
cout.width(max_len);
cout << left << seq_names[i] << " ";
cout.width(6);
cout << right << percent_gaps << "%";
if (percent_gaps > 50) {
num_problem_seq++;
}
double chi2 = 0.0;
unsigned sum_count = 0;
if (seq_type == SEQ_POMO) {
// FIXME: Number of nucleotides hardcoded here.
int nnuc = 4;
df = nnuc-1;
// Have to normalize allele frequencies.
double state_freq_norm[nnuc];
double sum_freq = 0.0;
for (j = 0; j < nnuc; j++) {
sum_freq += state_freq[j];
state_freq_norm[j] = state_freq[j];
}
for (j = 0; j < nnuc; j++) {
state_freq_norm[j] /= sum_freq;
}
for (j = 0; j < nnuc; j++)
sum_count += count_per_seq[i*num_states+j];
double sum_inv = 1.0/sum_count;
for (j = 0; j < nnuc; j++)
freq_per_sequence[j] = count_per_seq[i*num_states+j]*sum_inv;
for (j = 0; j < nnuc; j++)
chi2 += (state_freq_norm[j] - freq_per_sequence[j]) * (state_freq_norm[j] - freq_per_sequence[j]) / state_freq_norm[j];
// chi2 *= getNSite();
chi2 *= sum_count;
double pvalue = chi2prob(nnuc-1, chi2);
if (pvalue < 0.05) {
cout << " failed ";
num_failed++;
} else
cout << " passed ";
cout.width(9);
cout << right << pvalue*100 << "%";
} else {
for (j = 0; j < num_states; j++)
sum_count += count_per_seq[i*num_states+j];
double sum_inv = 1.0/sum_count;
for (j = 0; j < num_states; j++)
freq_per_sequence[j] = count_per_seq[i*num_states+j]*sum_inv;
for (j = 0; j < num_states; j++)
if (state_freq[j] > 0.0)
chi2 += (state_freq[j] - freq_per_sequence[j]) * (state_freq[j] - freq_per_sequence[j]) / state_freq[j];
chi2 *= sum_count;
double pvalue = chi2prob(df, chi2);
if (pvalue < 0.05) {
cout << " failed ";
num_failed++;
} else
cout << " passed ";
cout.width(9);
cout << right << pvalue*100 << "%";
}
cout << endl;
}
if (num_problem_seq) cout << "WARNING: " << num_problem_seq << " sequences contain more than 50% gaps/ambiguity" << endl;
cout << "**** ";
cout.width(max_len+2);
cout << left << " TOTAL ";
cout.width(6);
cout << right << ((double)total_gaps/getNSite())/getNSeq()*100 << "% ";
cout << " " << num_failed << " sequences failed composition chi2 test (p-value<5%; df=" << df << ")" << endl;
cout.precision(3);
delete [] count_per_seq;
delete [] freq_per_sequence;
delete [] state_freq;
}
int Alignment::checkIdenticalSeq()
{
int num_identical = 0;
IntVector checked;
checked.resize(getNSeq(), 0);
for (int seq1 = 0; seq1 < getNSeq(); seq1++) {
if (checked[seq1]) continue;
bool first = true;
for (int seq2 = seq1+1; seq2 < getNSeq(); seq2++) {
bool equal_seq = true;
for (iterator it = begin(); it != end(); it++)
if ((*it)[seq1] != (*it)[seq2]) {
equal_seq = false;
break;
}
if (equal_seq) {
if (first)
cout << "WARNING: Identical sequences " << getSeqName(seq1);
cout << ", " << getSeqName(seq2);
num_identical++;
checked[seq2] = 1;
first = false;
}
}
checked[seq1] = 1;
if (!first) cout << endl;
}
if (num_identical)
outWarning("Some identical sequences found that should be discarded before the analysis");
return num_identical;
}
Alignment *Alignment::removeIdenticalSeq(string not_remove, bool keep_two, StrVector &removed_seqs, StrVector &target_seqs)
{
IntVector checked;
vector<bool> removed;
checked.resize(getNSeq(), 0);
removed.resize(getNSeq(), false);
int seq1;
for (seq1 = 0; seq1 < getNSeq(); seq1++) {
if (checked[seq1]) continue;
bool first_ident_seq = true;
for (int seq2 = seq1+1; seq2 < getNSeq(); seq2++) {
if (getSeqName(seq2) == not_remove || removed[seq2]) continue;
bool equal_seq = true;
for (iterator it = begin(); it != end(); it++)
if ((*it)[seq1] != (*it)[seq2]) {
equal_seq = false;
break;
}
if (equal_seq) {
if (removed_seqs.size() < getNSeq()-3 && (!keep_two || !first_ident_seq)) {
removed_seqs.push_back(getSeqName(seq2));
target_seqs.push_back(getSeqName(seq1));
removed[seq2] = true;
} else {
cout << "NOTE: " << getSeqName(seq2) << " is identical to " << getSeqName(seq1) << " but kept for subsequent analysis" << endl;
}
checked[seq2] = 1;
first_ident_seq = false;
}
}
checked[seq1] = 1;
}
if (removed_seqs.size() > 0) {
if (removed_seqs.size() >= getNSeq()-3)
outWarning("Your alignment contains too many identical sequences!");
IntVector keep_seqs;
for (seq1 = 0; seq1 < getNSeq(); seq1++)
if (!removed[seq1]) keep_seqs.push_back(seq1);
Alignment *aln = new Alignment;
aln->extractSubAlignment(this, keep_seqs, 0);
return aln;
} else return this;
}
bool Alignment::isGapOnlySeq(int seq_id) {
ASSERT(seq_id < getNSeq());
for (iterator it = begin(); it != end(); it++)
if ((*it)[seq_id] != STATE_UNKNOWN) {
return false;
}
return true;
}
Alignment *Alignment::removeGappySeq() {
IntVector keep_seqs;
int i, nseq = getNSeq();
for (i = 0; i < nseq; i++)
if (! isGapOnlySeq(i)) {
keep_seqs.push_back(i);
}
if (keep_seqs.size() == nseq)
return this;
// 2015-12-03: if resulting alignment has too few seqs, try to add some back
if (keep_seqs.size() < 3 && getNSeq() >= 3) {
for (i = 0; i < nseq && keep_seqs.size() < 3; i++)
if (isGapOnlySeq(i))
keep_seqs.push_back(i);
}
Alignment *aln = new Alignment;
aln->extractSubAlignment(this, keep_seqs, 0);
return aln;
}
void Alignment::checkGappySeq(bool force_error) {
int nseq = getNSeq(), i;
int wrong_seq = 0;
for (i = 0; i < nseq; i++)
if (isGapOnlySeq(i)) {
outWarning("Sequence " + getSeqName(i) + " contains only gaps or missing data");
wrong_seq++;
}
if (wrong_seq && force_error) {
outError("Some sequences (see above) are problematic, please check your alignment again");
}
}
Alignment::Alignment(char *filename, char *sequence_type, InputType &intype, string model) : vector<Pattern>() {
name = "Noname";
this->model_name = model;
if (sequence_type)
this->sequence_type = sequence_type;
aln_file = filename;
num_states = 0;
frac_const_sites = 0.0;
frac_invariant_sites = 0.0;
codon_table = NULL;
genetic_code = NULL;
non_stop_codon = NULL;
seq_type = SEQ_UNKNOWN;
STATE_UNKNOWN = 126;
pars_lower_bound = NULL;
cout << "Reading alignment file " << filename << " ... ";
intype = detectInputFile(filename);
try {
if (intype == IN_NEXUS) {
cout << "Nexus format detected" << endl;
readNexus(filename);
} else if (intype == IN_FASTA) {
cout << "Fasta format detected" << endl;
readFasta(filename, sequence_type);
} else if (intype == IN_PHYLIP) {
cout << "Phylip format detected" << endl;
if (Params::getInstance().phylip_sequential_format)
readPhylipSequential(filename, sequence_type);
else
readPhylip(filename, sequence_type);
} else if (intype == IN_COUNTS) {
cout << "Counts format (PoMo) detected" << endl;
readCountsFormat(filename, sequence_type);
} else if (intype == IN_CLUSTAL) {
cout << "Clustal format detected" << endl;
readClustal(filename, sequence_type);
} else if (intype == IN_MSF) {
cout << "MSF format detected" << endl;
readMSF(filename, sequence_type);
} else {
outError("Unknown sequence format, please use PHYLIP, FASTA, CLUSTAL, MSF, or NEXUS format");
}
} catch (ios::failure) {
outError(ERR_READ_INPUT);
} catch (const char *str) {
outError(str);
} catch (string str) {
outError(str);
}
if (getNSeq() < 3)
outError("Alignment must have at least 3 sequences");
countConstSite();
cout << "Alignment has " << getNSeq() << " sequences with " << getNSite()
<< " columns, " << getNPattern() << " distinct patterns" << endl
<< num_informative_sites << " parsimony-informative, "
<< num_variant_sites-num_informative_sites << " singleton sites, "
<< (int)(frac_const_sites*getNSite()) << " constant sites" << endl;
buildSeqStates();
checkSeqName();
// OBSOLETE: identical sequences are handled later
// checkIdenticalSeq();
//cout << "Number of character states is " << num_states << endl;
//cout << "Number of patterns = " << size() << endl;
//cout << "Fraction of constant sites: " << frac_const_sites << endl;
}
bool Alignment::isStopCodon(int state) {
// 2017-05-27: all stop codon removed from Markov process
return false;
if (seq_type != SEQ_CODON || state >= num_states) return false;
ASSERT(genetic_code);
return (genetic_code[state] == '*');
}
int Alignment::getNumNonstopCodons() {
if (seq_type != SEQ_CODON) return num_states;
ASSERT(genetic_code);
int c = 0;
for (char *ch = genetic_code; *ch != 0; ch++)
if (*ch != '*') c++;
return c;
}
bool Alignment::isStandardGeneticCode() {
if (seq_type != SEQ_CODON) return false;
return (genetic_code == genetic_code1 || genetic_code == genetic_code11);
}
void Alignment::buildSeqStates(bool add_unobs_const) {
string unobs_const;
if (add_unobs_const) unobs_const = getUnobservedConstPatterns();
seq_states.clear();
seq_states.resize(getNSeq());
for (int seq = 0; seq < getNSeq(); seq++) {
vector<bool> has_state;
has_state.resize(STATE_UNKNOWN+1, false);
for (int site = 0; site < getNPattern(); site++)
has_state[at(site)[seq]] = true;
for (string::iterator it = unobs_const.begin(); it != unobs_const.end(); it++)
has_state[*it] = true;
seq_states[seq].clear();
for (int state = 0; state < STATE_UNKNOWN; state++)
if (has_state[state])
seq_states[seq].push_back(state);
}
}
int Alignment::readNexus(char *filename) {
NxsTaxaBlock *taxa_block;
NxsAssumptionsBlock *assumptions_block;
NxsDataBlock *data_block = NULL;
NxsTreesBlock *trees_block = NULL;
NxsCharactersBlock *char_block = NULL;
taxa_block = new NxsTaxaBlock();
assumptions_block = new NxsAssumptionsBlock(taxa_block);
data_block = new NxsDataBlock(taxa_block, assumptions_block);
char_block = new NxsCharactersBlock(taxa_block, assumptions_block);
trees_block = new TreesBlock(taxa_block);
MyReader nexus(filename);
nexus.Add(taxa_block);
nexus.Add(assumptions_block);
nexus.Add(data_block);
nexus.Add(char_block);
nexus.Add(trees_block);
MyToken token(nexus.inf);
nexus.Execute(token);
if (data_block->GetNTax() && char_block->GetNTax()) {
outError("I am confused since both DATA and CHARACTERS blocks were specified");
return 0;
}
if (data_block->GetNTax() == 0 && char_block->GetNTax() == 0) {
outError("No DATA or CHARACTERS blocks found");
return 0;
}
if (char_block->GetNTax() > 0) {
extractDataBlock(char_block);
if (verbose_mode >= VB_DEBUG)
char_block->Report(cout);
} else {
extractDataBlock(data_block);
if (verbose_mode >= VB_DEBUG)
data_block->Report(cout);
}
delete trees_block;
delete char_block;
delete data_block;
delete assumptions_block;
delete taxa_block;
return 1;
}
void Alignment::computeUnknownState() {
switch (seq_type) {
case SEQ_DNA: STATE_UNKNOWN = 18; break;
case SEQ_PROTEIN: STATE_UNKNOWN = 23; break;
case SEQ_POMO: {
if (pomo_sampling_method == SAMPLING_SAMPLED) STATE_UNKNOWN = num_states;
else STATE_UNKNOWN = 0xffffffff;
break;
}
default: STATE_UNKNOWN = num_states; break;
}
}
int getDataBlockMorphStates(NxsCharactersBlock *data_block) {
int nseq = data_block->GetNTax();
int nsite = data_block->GetNCharTotal();
int seq, site;
char ch;
int nstates = 0;
for (seq = 0; seq < nseq; seq++)
for (site = 0; site < nsite; site++) {
int nstate = data_block->GetNumStates(seq, site);
if (nstate == 0)
continue;
if (nstate == 1) {
ch = data_block->GetState(seq, site, 0);
if (!isalnum(ch)) continue;
if (ch >= '0' && ch <= '9')
ch = ch - '0' + 1;
else if (ch >= 'A' && ch <= 'Z')
ch = ch - 'A' + 11;
else
outError(data_block->GetTaxonLabel(seq) + " has invalid single state " + ch + " at site " + convertIntToString(site+1));
if (ch > nstates) nstates = ch;
continue;
}
//cout << "NOTE: " << data_block->GetTaxonLabel(seq) << " has ambiguous state at site " << site+1 << " which is treated as unknown" << endl;
}
return nstates;
}
void Alignment::extractDataBlock(NxsCharactersBlock *data_block) {
int nseq = data_block->GetNTax();
int nsite = data_block->GetNCharTotal();
char *symbols = NULL;
//num_states = strlen(symbols);
char char_to_state[NUM_CHAR];
char state_to_char[NUM_CHAR];
if (!data_block->GetMatrix())
outError("MATRIX command undeclared or invalid");
NxsCharactersBlock::DataTypesEnum data_type = (NxsCharactersBlock::DataTypesEnum)data_block->GetDataType();
if (data_type == NxsCharactersBlock::continuous) {
outError("Continuous characters not supported");
} else if (data_type == NxsCharactersBlock::dna || data_type == NxsCharactersBlock::rna ||
data_type == NxsCharactersBlock::nucleotide)
{
num_states = 4;
if (data_type == NxsCharactersBlock::rna)
symbols = symbols_rna;
else
symbols = symbols_dna;
seq_type = SEQ_DNA;
} else if (data_type == NxsCharactersBlock::protein) {
num_states = 20;
symbols = symbols_protein;
seq_type = SEQ_PROTEIN;
} else {
// standard morphological character
// num_states = data_block->GetMaxObsNumStates();
num_states = getDataBlockMorphStates(data_block);
if (num_states > 32)
outError("Number of states can not exceed 32");
if (num_states < 2)
outError("Number of states can not be below 2");
if (num_states == 2)
seq_type = SEQ_BINARY;
else
seq_type = SEQ_MORPH;
symbols = symbols_morph;
}
computeUnknownState();
memset(char_to_state, STATE_UNKNOWN, NUM_CHAR);
memset(state_to_char, '?', NUM_CHAR);
for (int i = 0; i < strlen(symbols); i++) {
char_to_state[(int)symbols[i]] = i;
state_to_char[i] = symbols[i];
}
state_to_char[(int)STATE_UNKNOWN] = '-';
int seq, site;
if (data_block->taxa->GetNumTaxonLabels() == 0)
outError("MATRIX not found, make sure nexus command before MATRIX ends with semi-colon (;)");
if (data_block->taxa->GetNumTaxonLabels() != nseq)
outError("ntax is different from number of matrix rows");
for (seq = 0; seq < nseq; seq++) {
seq_names.push_back(data_block->GetTaxonLabel(seq));
}
site_pattern.resize(nsite, -1);
int num_gaps_only = 0;
for (site = 0; site < nsite; site++) {
Pattern pat;
for (seq = 0; seq < nseq; seq++) {
int nstate = data_block->GetNumStates(seq, site);
if (nstate == 0)
pat.push_back(STATE_UNKNOWN);
else if (nstate == 1) {
pat.push_back(char_to_state[(int)data_block->GetState(seq, site, 0)]);
} else if (data_type == NxsCharactersBlock::dna || data_type == NxsCharactersBlock::rna || data_type == NxsCharactersBlock::nucleotide) {
// 2018-06-07: correctly interpret ambiguous nucleotide
char pat_ch = 0;
for (int state = 0; state < nstate; state++) {
pat_ch |= (1 << char_to_state[(int)data_block->GetState(seq, site, state)]);
}
pat_ch += 3;
pat.push_back(pat_ch);
} else {
// other ambiguous characters are treated as unknown
stringstream str;
str << "Sequence " << seq_names[seq] << " site " << site+1 << ": {";
for (int state = 0; state < nstate; state++) {
str << data_block->GetState(seq, site, state);
}
str << "} treated as unknown character";
outWarning(str.str());
pat.push_back(STATE_UNKNOWN);
}
}
num_gaps_only += addPattern(pat, site);
}
if (num_gaps_only)
cout << "WARNING: " << num_gaps_only << " sites contain only gaps or ambiguous characters." << endl;
if (verbose_mode >= VB_MAX)
for (site = 0; site < size(); site++) {
for (seq = 0; seq < nseq; seq++)
cout << state_to_char[(int)(*this)[site][seq]];
cout << " " << (*this)[site].frequency << endl;
}
}
/**
determine if the pattern is constant. update the is_const variable.
*/
void Alignment::computeConst(Pattern &pat) {
bool is_const = true;
bool is_invariant = false;
bool is_informative = false;
// critical fix: const_char was set wrongly to num_states in some data type (binary, codon),
// causing wrong log-likelihood computation for +I or +I+G model
pat.const_char = STATE_UNKNOWN+1;
// if (STATE_UNKNOWN == num_states)
// pat.const_char = STATE_UNKNOWN+1;
// else
// pat.const_char = STATE_UNKNOWN;
StateBitset state_app;
state_app.reset();
int j;
for (j = 0; j < num_states; j++)
state_app[j] = 1;
// number of appearance for each state, to compute is_informative
size_t num_app[num_states];
memset(num_app, 0, num_states*sizeof(size_t));
for (Pattern::iterator i = pat.begin(); i != pat.end(); i++) {
StateBitset this_app;
getAppearance(*i, this_app);
state_app &= this_app;
if (*i < num_states) {
num_app[(int)(*i)]++;
}
// else if (*i != STATE_UNKNOWN) {
// // ambiguous characters
// is_const = false;
// }
}
int count = 0; // number of states with >= 2 appearances
pat.num_chars = 0; // number of states with >= 1 appearance
for (j = 0; j < num_states; j++) if (num_app[j]) {
pat.num_chars++;
if (num_app[j] >= 2) {
count++;
}
}
// at least 2 states, each appearing at least twice
is_informative = (count >= 2);
// compute is_const
/*
is_const = is_const && (pat.num_chars <= 1);
if (is_const) {
if (pat.num_chars == 0) // all-gap pattern
pat.const_char = num_states;
else {
// pat.num_chars is 1
for (j = 0; j < num_states; j++)
if (num_app[j]) {
pat.const_char = j;
break;
}
}
}
*/
is_const = (state_app.count() >= 1);
if (is_const) {
if (state_app.count() == num_states) {
pat.const_char = STATE_UNKNOWN;
} else if (state_app.count() == 1) {
for (j = 0; j < num_states; j++)
if (state_app[j]) {
pat.const_char = j;
break;
}
} else if (seq_type == SEQ_DNA) {
pat.const_char = num_states-1;
for (j = 0; j < num_states; j++)
if (state_app[j])
pat.const_char += (1<<j);
} else if (seq_type == SEQ_PROTEIN) {
if (state_app[2] && state_app[3]) //4+8, // B = N or D
pat.const_char = num_states;
else if (state_app[5] && state_app[6]) //32+64, // Z = Q or E
pat.const_char = num_states+1;
else if (state_app[9] && state_app[10]) // 512+1024 // U = I or L
pat.const_char = num_states+2;
else ASSERT(0);
} else {
ASSERT(0);
}
}
// delete [] num_app;
// compute is_invariant
is_invariant = (state_app.count() >= 1);
ASSERT(is_invariant >= is_const);
// Wed Jun 28 16:01:30 BST 2017. The calculation of these properties seems
// to be OKish. They are only used for reports and to calculate the
// parsimony tree in the beginning anyways.
// if (seq_type == SEQ_POMO) {
// // For PoMo most sites are informative (ambiguous map from data to state space)
// is_informative = true;
// // For PoMo there are hardly any constant sites
// is_const = false;
// is_invariant = false;
// }
pat.flag = 0;
if (is_const) pat.flag |= PAT_CONST;
if (is_invariant) pat.flag |= PAT_INVARIANT;
if (is_informative) pat.flag |= PAT_INFORMATIVE;
}
void Alignment::printSiteInfo(ostream &out, int part_id) {
int nsite = getNSite();
for (int site = 0; site != nsite; site++) {
Pattern ptn = getPattern(site);
if (part_id >= 0)
out << part_id << "\t";
out << site+1 << "\t";
if (ptn.isInformative())
out << "I";
else if (ptn.isConst()) {
if (ptn.const_char == STATE_UNKNOWN)
out << "-";
else if (ptn.const_char < num_states)
out << "C";
else
out << "c";
} else
out << "U";
out << endl;
}
}
void Alignment::printSiteInfoHeader(ostream &out, const char* filename, bool partition) {
out << "# Alignment site statistics" << endl
<< "# This file can be read in MS Excel or in R with command:" << endl
<< "# tab=read.table('" << filename << "',header=TRUE)" << endl
<< "# Columns are tab-separated with following meaning:" << endl;
if (partition)
out << "# Part: Partition ID" << endl
<< "# Site: Site ID within partition (starting from 1 for each partition)" << endl;
else
out << "# Site: Site ID" << endl;
out << "# Stat: Statistic, I=informative, C=constant, c=constant+ambiguous," << endl
<< "# U=Uninformative but not constant, -=all-gaps" << endl;
if (partition)
out << "Part\t";
out << "Site\tStat" << endl;
}
void Alignment::printSiteInfo(const char* filename) {
try {
ofstream out(filename);
printSiteInfoHeader(out, filename);
printSiteInfo(out, -1);
out.close();
} catch (...) {
outError(ERR_WRITE_OUTPUT, filename);
}
}
bool Alignment::addPattern(Pattern &pat, int site, int freq) {
// check if pattern contains only gaps
bool gaps_only = true;
for (Pattern::iterator it = pat.begin(); it != pat.end(); it++)
if ((*it) != STATE_UNKNOWN) {
gaps_only = false;
break;
}
if (gaps_only) {
if (verbose_mode >= VB_DEBUG)
cout << "Site " << site << " contains only gaps or ambiguous characters" << endl;
//return true;
}
PatternIntMap::iterator pat_it = pattern_index.find(pat);
if (pat_it == pattern_index.end()) { // not found
pat.frequency = freq;
computeConst(pat);
push_back(pat);
pattern_index[back()] = size()-1;
site_pattern[site] = size()-1;
} else {
int index = pat_it->second;
at(index).frequency += freq;
site_pattern[site] = index;
}
return gaps_only;
}
void Alignment::addConstPatterns(char *freq_const_patterns) {
IntVector vec;
convert_int_vec(freq_const_patterns, vec);
if (vec.size() != num_states)
outError("Const pattern frequency vector has different number of states: ", freq_const_patterns);
int nsite = getNSite(), orig_nsite = getNSite();
int i;
for (i = 0; i < vec.size(); i++) {
nsite += vec[i];
if (vec[i] < 0)
outError("Const pattern frequency must be non-negative");
}
site_pattern.resize(nsite, -1);
int nseq = getNSeq();
nsite = orig_nsite;
for (i = 0; i < vec.size(); i++) if (vec[i] > 0) {
Pattern pat;
pat.resize(nseq, i);
// if (pattern_index.find(pat) != pattern_index.end()) {
// outWarning("Constant pattern of all " + convertStateBackStr(i) + " already exists");
// }
for (int j = 0; j < vec[i]; j++)
addPattern(pat, nsite++, 1);
}
countConstSite();
buildSeqStates();
}
void Alignment::orderPatternByNumChars(int pat_type) {
int nptn = getNPattern();
int ptn, site, i = 0;
int *num_chars = new int[nptn];
int *ptn_order = new int[nptn];
const int UINT_BITS = sizeof(UINT)*8;
if (pat_type == PAT_INFORMATIVE)
num_parsimony_sites = num_informative_sites;
else
num_parsimony_sites = num_variant_sites;
int maxi = (num_parsimony_sites+UINT_BITS-1)/UINT_BITS;
pars_lower_bound = new UINT[maxi+1];
UINT sum = 0;
memset(pars_lower_bound, 0, (maxi+1)*sizeof(UINT));
for (ptn = 0; ptn < nptn; ptn++) {
num_chars[ptn] = -at(ptn).num_chars + (at(ptn).isInvariant())*1024;
ptn_order[ptn] = ptn;
}
quicksort(num_chars, 0, nptn-1, ptn_order);
ordered_pattern.clear();
for (ptn = 0, site = 0, i = 0; ptn < nptn; ptn++) {
if (pat_type == PAT_INFORMATIVE) {
if (!at(ptn_order[ptn]).isInformative())
break;
} else {
if (at(ptn_order[ptn]).isInvariant())
break;
}
ordered_pattern.push_back(at(ptn_order[ptn]));
int freq = ordered_pattern.back().frequency;
UINT num = ordered_pattern.back().num_chars - 1;
for (int j = 0; j < freq; j++, site++) {
if (site == UINT_BITS) {
sum += pars_lower_bound[i];
i++;
site = 0;
}
pars_lower_bound[i] += num;
}
}
sum += pars_lower_bound[i];
// now transform lower_bound
// assert(i == maxi-1);
for (int j = 0; j <= i; j++) {
UINT newsum = sum - pars_lower_bound[j];
pars_lower_bound[j] = sum;
sum = newsum;
}
if (verbose_mode >= VB_MAX) {
// for (ptn = 0; ptn < nptn; ptn++)
// cout << at(ptn_order[ptn]).num_chars << " ";
for (int j = 0; j <= i; j++) {
cout << pars_lower_bound[j] << " ";
}
cout << endl << sum << endl;
}
delete [] ptn_order;
delete [] num_chars;
// cout << ordered_pattern.size() << " ordered_pattern" << endl;
}
void Alignment::ungroupSitePattern()
{
vector<Pattern> stored_pat = (*this);
clear();
for (int i = 0; i < getNSite(); i++) {
Pattern pat = stored_pat[getPatternID(i)];
pat.frequency = 1;
push_back(pat);
site_pattern[i] = i;
}
pattern_index.clear();
}
void Alignment::regroupSitePattern(int groups, IntVector& site_group)
{
vector<Pattern> stored_pat = (*this);
IntVector stored_site_pattern = site_pattern;
clear();
site_pattern.clear();
site_pattern.resize(stored_site_pattern.size(), -1);
int count = 0;
for (int g = 0; g < groups; g++) {
pattern_index.clear();
for (int i = 0; i < site_group.size(); i++)
if (site_group[i] == g) {
count++;
Pattern pat = stored_pat[stored_site_pattern[i]];
addPattern(pat, i);
}
}
ASSERT(count == stored_site_pattern.size());
count = 0;
for (iterator it = begin(); it != end(); it++)
count += it->frequency;
ASSERT(count == getNSite());
pattern_index.clear();
//printPhylip("/dev/stdout");
}
/**
detect the data type of the input sequences
@param sequences vector of strings
@return the data type of the input sequences
*/
SeqType Alignment::detectSequenceType(StrVector &sequences) {
int num_nuc = 0;
int num_ungap = 0;
int num_bin = 0;
int num_alpha = 0;
int num_digit = 0;
for (StrVector::iterator it = sequences.begin(); it != sequences.end(); it++)
for (string::iterator i = it->begin(); i != it->end(); i++) {
if ((*i) != '?' && (*i) != '-' && (*i) != '.' && *i != 'N' && *i != 'X' && (*i) != '~') num_ungap++;
if ((*i) == 'A' || (*i) == 'C' || (*i) == 'G' || (*i) == 'T' || (*i) == 'U')
num_nuc++;
if ((*i) == '0' || (*i) == '1')
num_bin++;
if (isalpha(*i)) num_alpha++;
if (isdigit(*i)) num_digit++;
}
if (((double)num_nuc) / num_ungap > 0.9)
return SEQ_DNA;
if (((double)num_bin) / num_ungap > 0.9)
return SEQ_BINARY;
if (((double)num_alpha) / num_ungap > 0.9)
return SEQ_PROTEIN;
if (((double)(num_alpha+num_digit)) / num_ungap > 0.9)
return SEQ_MORPH;
return SEQ_UNKNOWN;
}
void Alignment::buildStateMap(char *map, SeqType seq_type) {
memset(map, STATE_INVALID, NUM_CHAR);
ASSERT(STATE_UNKNOWN < 126);
map[(unsigned char)'?'] = STATE_UNKNOWN;
map[(unsigned char)'-'] = STATE_UNKNOWN;
map[(unsigned char)'~'] = STATE_UNKNOWN;
map[(unsigned char)'.'] = STATE_UNKNOWN;
int len;
switch (seq_type) {
case SEQ_BINARY:
map[(unsigned char)'0'] = 0;
map[(unsigned char)'1'] = 1;
return;
case SEQ_DNA: // DNA
case SEQ_CODON:
map[(unsigned char)'A'] = 0;
map[(unsigned char)'C'] = 1;
map[(unsigned char)'G'] = 2;
map[(unsigned char)'T'] = 3;
map[(unsigned char)'U'] = 3;
map[(unsigned char)'R'] = 1+4+3; // A or G, Purine
map[(unsigned char)'Y'] = 2+8+3; // C or T, Pyrimidine
map[(unsigned char)'N'] = STATE_UNKNOWN;
map[(unsigned char)'X'] = STATE_UNKNOWN;
map[(unsigned char)'W'] = 1+8+3; // A or T, Weak
map[(unsigned char)'S'] = 2+4+3; // G or C, Strong
map[(unsigned char)'M'] = 1+2+3; // A or C, Amino
map[(unsigned char)'K'] = 4+8+3; // G or T, Keto
map[(unsigned char)'B'] = 2+4+8+3; // C or G or T
map[(unsigned char)'H'] = 1+2+8+3; // A or C or T
map[(unsigned char)'D'] = 1+4+8+3; // A or G or T
map[(unsigned char)'V'] = 1+2+4+3; // A or G or C
return;
case SEQ_PROTEIN: // Protein
for (int i = 0; i < 20; i++)
map[(int)symbols_protein[i]] = i;
map[(int)symbols_protein[20]] = STATE_UNKNOWN;
// map[(unsigned char)'B'] = 4+8+19; // N or D
// map[(unsigned char)'Z'] = 32+64+19; // Q or E
map[(unsigned char)'B'] = 20; // N or D
map[(unsigned char)'Z'] = 21; // Q or E
map[(unsigned char)'J'] = 22; // I or L
map[(unsigned char)'*'] = STATE_UNKNOWN; // stop codon
map[(unsigned char)'U'] = STATE_UNKNOWN; // 21st amino acid
map[(unsigned char)'O'] = STATE_UNKNOWN; // 22nd amino acid
return;
case SEQ_MULTISTATE:
for (int i = 0; i <= STATE_UNKNOWN; i++)
map[i] = i;
return;
case SEQ_MORPH: // Protein
len = strlen(symbols_morph);
for (int i = 0; i < len; i++)
map[(int)symbols_morph[i]] = i;
return;
default:
return;
}
}
/**
convert a raw characer state into ID, indexed from 0
@param state input raw state
@param seq_type data type (SEQ_DNA, etc.)
@return state ID
*/
char Alignment::convertState(char state, SeqType seq_type) {
if (state == '?' || state == '-' || state == '.' || state == '~')
return STATE_UNKNOWN;
char *loc;
switch (seq_type) {
case SEQ_BINARY:
switch (state) {
case '0':
return 0;
case '1':
return 1;
default:
return STATE_INVALID;
}
break;
case SEQ_DNA: // DNA
switch (state) {
case 'A':
return 0;
case 'C':
return 1;
case 'G':
return 2;
case 'T':
return 3;
case 'U':
return 3;
case 'R':
return 1+4+3; // A or G, Purine
case 'Y':
return 2+8+3; // C or T, Pyrimidine
case 'O':
case 'N':
case 'X':
return STATE_UNKNOWN;
case 'W':
return 1+8+3; // A or T, Weak
case 'S':
return 2+4+3; // G or C, Strong
case 'M':
return 1+2+3; // A or C, Amino
case 'K':
return 4+8+3; // G or T, Keto
case 'B':
return 2+4+8+3; // C or G or T
case 'H':
return 1+2+8+3; // A or C or T
case 'D':
return 1+4+8+3; // A or G or T
case 'V':
return 1+2+4+3; // A or G or C
default:
return STATE_INVALID; // unrecognize character
}
return state;
case SEQ_PROTEIN: // Protein
// if (state == 'B') return 4+8+19;
// if (state == 'Z') return 32+64+19;
if (state == 'B') return 20;
if (state == 'Z') return 21;
if (state == 'J') return 22;
if (state == '*') return STATE_UNKNOWN; // stop codon
if (state == 'U') return STATE_UNKNOWN; // 21st amino-acid
if (state == 'O') return STATE_UNKNOWN; // 22nd amino-acid
loc = strchr(symbols_protein, state);
if (!loc) return STATE_INVALID; // unrecognize character
state = loc - symbols_protein;
if (state < 20)
return state;
else
return STATE_UNKNOWN;
case SEQ_MORPH: // Standard morphological character
loc = strchr(symbols_morph, state);
if (!loc) return STATE_INVALID; // unrecognize character
state = loc - symbols_morph;
return state;
default:
return STATE_INVALID;
}
}
// TODO: state should int
char Alignment::convertState(char state) {
return convertState(state, seq_type);
}
// TODO: state should int
char Alignment::convertStateBack(char state) {
if (state == STATE_UNKNOWN) return '-';
if (state == STATE_INVALID) return '?';
switch (seq_type) {
case SEQ_BINARY:
switch (state) {
case 0:
return '0';
case 1:
return '1';
default:
return STATE_INVALID;
}
case SEQ_DNA: // DNA
switch (state) {
case 0:
return 'A';
case 1:
return 'C';
case 2:
return 'G';
case 3:
return 'T';
case 1+4+3:
return 'R'; // A or G, Purine
case 2+8+3:
return 'Y'; // C or T, Pyrimidine
case 1+8+3:
return 'W'; // A or T, Weak
case 2+4+3:
return 'S'; // G or C, Strong
case 1+2+3:
return 'M'; // A or C, Amino
case 4+8+3:
return 'K'; // G or T, Keto
case 2+4+8+3:
return 'B'; // C or G or T
case 1+2+8+3:
return 'H'; // A or C or T
case 1+4+8+3:
return 'D'; // A or G or T
case 1+2+4+3:
return 'V'; // A or G or C
default:
return '?'; // unrecognize character
}
return state;
case SEQ_PROTEIN: // Protein
if (state < 20)
return symbols_protein[(int)state];
else if (state == 20) return 'B';
else if (state == 21) return 'Z';
else if (state == 22) return 'J';
// else if (state == 4+8+19) return 'B';
// else if (state == 32+64+19) return 'Z';
else
return '-';
case SEQ_MORPH:
// morphological state
if (state < strlen(symbols_morph))
return symbols_morph[(int)state];
else
return '-';
default:
// unknown
return '*';
}
}
string Alignment::convertStateBackStr(StateType state) {
string str;
if (seq_type == SEQ_POMO)
return string("POMO")+convertIntToString(state);
if (seq_type == SEQ_MULTISTATE)
return " " + convertIntToString(state);
if (seq_type == SEQ_CODON) {
// codon data
if (state >= num_states) return "???";
assert(codon_table);
state = codon_table[(int)state];
str = symbols_dna[state/16];
str += symbols_dna[(state%16)/4];
str += symbols_dna[state%4];
return str;
}
// all other data types
str = convertStateBack(state);
return str;
}
void Alignment::convertStateStr(string &str, SeqType seq_type) {
for (string::iterator it = str.begin(); it != str.end(); it++)
(*it) = convertState(*it, seq_type);
}
void Alignment::initCodon(char *gene_code_id) {
// build index from 64 codons to non-stop codons
int transl_table = 1;
if (strlen(gene_code_id) > 0) {
try {
transl_table = convert_int(gene_code_id);
} catch (string &str) {
outError("Wrong genetic code ", gene_code_id);
}
switch (transl_table) {
case 1: genetic_code = genetic_code1; break;
case 2: genetic_code = genetic_code2; break;
case 3: genetic_code = genetic_code3; break;
case 4: genetic_code = genetic_code4; break;
case 5: genetic_code = genetic_code5; break;
case 6: genetic_code = genetic_code6; break;
case 9: genetic_code = genetic_code9; break;
case 10: genetic_code = genetic_code10; break;
case 11: genetic_code = genetic_code11; break;
case 12: genetic_code = genetic_code12; break;
case 13: genetic_code = genetic_code13; break;
case 14: genetic_code = genetic_code14; break;
case 15: genetic_code = genetic_code15; break;
case 16: genetic_code = genetic_code16; break;
case 21: genetic_code = genetic_code21; break;
case 22: genetic_code = genetic_code22; break;
case 23: genetic_code = genetic_code23; break;
case 24: genetic_code = genetic_code24; break;
case 25: genetic_code = genetic_code25; break;
default:
outError("Wrong genetic code ", gene_code_id);
break;
}
} else {
genetic_code = genetic_code1;
}
ASSERT(strlen(genetic_code) == 64);
int codon;
num_states = 0;
for (codon = 0; codon < strlen(genetic_code); codon++)
if (genetic_code[codon] != '*')
num_states++; // only count non-stop codons
codon_table = new char[num_states];
non_stop_codon = new char[strlen(genetic_code)];
int state = 0;
for (int codon = 0; codon < strlen(genetic_code); codon++) {
if (genetic_code[codon] != '*') {
non_stop_codon[codon] = state++;
codon_table[(int)non_stop_codon[codon]] = codon;
} else {
non_stop_codon[codon] = STATE_INVALID;
}
}
// num_states = strlen(genetic_code);
// codon_table = new char[num_states];
// non_stop_codon = new char[strlen(genetic_code)];
// int state = 0;
// for (int codon = 0; codon < strlen(genetic_code); codon++) {
// non_stop_codon[codon] = state++;
// codon_table[(int)non_stop_codon[codon]] = codon;
// }
// cout << "num_states = " << num_states << endl;
}
int getMorphStates(StrVector &sequences) {
char maxstate = 0;
for (StrVector::iterator it = sequences.begin(); it != sequences.end(); it++)
for (string::iterator pos = it->begin(); pos != it->end(); pos++)
if ((*pos) > maxstate && isalnum(*pos)) maxstate = *pos;
if (maxstate >= '0' && maxstate <= '9') return (maxstate - '0' + 1);
if (maxstate >= 'A' && maxstate <= 'V') return (maxstate - 'A' + 11);
return 0;
}
SeqType Alignment::getSeqType(const char *sequence_type) {
SeqType user_seq_type = SEQ_UNKNOWN;
if (strcmp(sequence_type, "BIN") == 0) {
user_seq_type = SEQ_BINARY;
} else if (strcmp(sequence_type, "NT") == 0 || strcmp(sequence_type, "DNA") == 0) {
user_seq_type = SEQ_DNA;
} else if (strcmp(sequence_type, "AA") == 0 || strcmp(sequence_type, "PROT") == 0) {
user_seq_type = SEQ_PROTEIN;
} else if (strncmp(sequence_type, "NT2AA", 5) == 0) {
user_seq_type = SEQ_PROTEIN;
} else if (strcmp(sequence_type, "NUM") == 0 || strcmp(sequence_type, "MORPH") == 0) {
user_seq_type = SEQ_MORPH;
} else if (strcmp(sequence_type, "TINA") == 0 || strcmp(sequence_type, "MULTI") == 0) {
user_seq_type = SEQ_MULTISTATE;
} else if (strncmp(sequence_type, "CODON", 5) == 0) {
user_seq_type = SEQ_CODON;
}
return user_seq_type;
}
int Alignment::buildPattern(StrVector &sequences, char *sequence_type, int nseq, int nsite) {
int seq_id;
ostringstream err_str;
codon_table = NULL;
genetic_code = NULL;
non_stop_codon = NULL;
if (nseq != seq_names.size()) throw "Different number of sequences than specified";
/* now check that all sequence names are correct */
for (seq_id = 0; seq_id < nseq; seq_id ++) {
ostringstream err_str;
if (seq_names[seq_id] == "")
err_str << "Sequence number " << seq_id+1 << " has no names\n";
// check that all the names are different
for (int i = 0; i < seq_id; i++)
if (seq_names[i] == seq_names[seq_id])
err_str << "The sequence name " << seq_names[seq_id] << " is dupplicated\n";
}
if (err_str.str() != "")
throw err_str.str();
/* now check that all sequences have the same length */
for (seq_id = 0; seq_id < nseq; seq_id ++) {
if (sequences[seq_id].length() != nsite) {
err_str << "Sequence " << seq_names[seq_id] << " contains ";
if (sequences[seq_id].length() < nsite)
err_str << "not enough";
else
err_str << "too many";
err_str << " characters (" << sequences[seq_id].length() << ")\n";
}
}
if (err_str.str() != "")
throw err_str.str();
/* now check data type */
seq_type = detectSequenceType(sequences);
switch (seq_type) {
case SEQ_BINARY:
num_states = 2;
cout << "Alignment most likely contains binary sequences" << endl;
break;
case SEQ_DNA:
num_states = 4;
cout << "Alignment most likely contains DNA/RNA sequences" << endl;
break;
case SEQ_PROTEIN:
num_states = 20;
cout << "Alignment most likely contains protein sequences" << endl;
break;
case SEQ_MORPH:
num_states = getMorphStates(sequences);
if (num_states < 2 || num_states > 32) throw "Invalid number of states.";
cout << "Alignment most likely contains " << num_states << "-state morphological data" << endl;
break;
case SEQ_POMO:
throw "Counts Format pattern is built in Alignment::readCountsFormat().";
break;
default:
if (!sequence_type)
throw "Unknown sequence type.";
}
bool nt2aa = false;
if (sequence_type && strcmp(sequence_type,"") != 0) {
SeqType user_seq_type;
if (strcmp(sequence_type, "BIN") == 0) {
num_states = 2;
user_seq_type = SEQ_BINARY;
} else if (strcmp(sequence_type, "NT") == 0 || strcmp(sequence_type, "DNA") == 0) {
num_states = 4;
user_seq_type = SEQ_DNA;
} else if (strcmp(sequence_type, "AA") == 0 || strcmp(sequence_type, "PROT") == 0) {
num_states = 20;
user_seq_type = SEQ_PROTEIN;
} else if (strncmp(sequence_type, "NT2AA", 5) == 0) {
if (seq_type != SEQ_DNA)
outWarning("Sequence type detected as non DNA!");
initCodon(&sequence_type[5]);
seq_type = user_seq_type = SEQ_PROTEIN;
num_states = 20;
nt2aa = true;
cout << "Translating to amino-acid sequences with genetic code " << &sequence_type[5] << " ..." << endl;
} else if (strcmp(sequence_type, "NUM") == 0 || strcmp(sequence_type, "MORPH") == 0) {
num_states = getMorphStates(sequences);
if (num_states < 2 || num_states > 32) throw "Invalid number of states";
user_seq_type = SEQ_MORPH;
} else if (strcmp(sequence_type, "TINA") == 0 || strcmp(sequence_type, "MULTI") == 0) {
cout << "Multi-state data with " << num_states << " alphabets" << endl;
user_seq_type = SEQ_MULTISTATE;
} else if (strncmp(sequence_type, "CODON", 5) == 0) {
if (seq_type != SEQ_DNA)
outWarning("You want to use codon models but the sequences were not detected as DNA");
seq_type = user_seq_type = SEQ_CODON;
initCodon(&sequence_type[5]);
cout << "Converting to codon sequences with genetic code " << &sequence_type[5] << " ..." << endl;
} else
throw "Invalid sequence type.";
if (user_seq_type != seq_type && seq_type != SEQ_UNKNOWN)
outWarning("Your specified sequence type is different from the detected one");
seq_type = user_seq_type;
}
// now convert to patterns
int site, seq, num_gaps_only = 0;
char char_to_state[NUM_CHAR];
char AA_to_state[NUM_CHAR];
computeUnknownState();
if (nt2aa) {
buildStateMap(char_to_state, SEQ_DNA);
buildStateMap(AA_to_state, SEQ_PROTEIN);
} else
buildStateMap(char_to_state, seq_type);
Pattern pat;
pat.resize(nseq);
int step = ((seq_type == SEQ_CODON || nt2aa) ? 3 : 1);
if (nsite % step != 0)
outError("Number of sites is not multiple of 3");
site_pattern.resize(nsite/step, -1);
clear();
pattern_index.clear();
int num_error = 0;
for (site = 0; site < nsite; site+=step) {
for (seq = 0; seq < nseq; seq++) {
//char state = convertState(sequences[seq][site], seq_type);
char state = char_to_state[(int)(sequences[seq][site])];
if (seq_type == SEQ_CODON || nt2aa) {
// special treatment for codon
char state2 = char_to_state[(int)(sequences[seq][site+1])];
char state3 = char_to_state[(int)(sequences[seq][site+2])];
if (state < 4 && state2 < 4 && state3 < 4) {
// state = non_stop_codon[state*16 + state2*4 + state3];
state = state*16 + state2*4 + state3;
if (genetic_code[(int)state] == '*') {
err_str << "Sequence " << seq_names[seq] << " has stop codon " <<
sequences[seq][site] << sequences[seq][site+1] << sequences[seq][site+2] <<
" at site " << site+1 << endl;
num_error++;
state = STATE_UNKNOWN;
} else if (nt2aa) {
state = AA_to_state[(int)genetic_code[(int)state]];
} else {
state = non_stop_codon[(int)state];
}
} else if (state == STATE_INVALID || state2 == STATE_INVALID || state3 == STATE_INVALID) {
state = STATE_INVALID;
} else {
if (state != STATE_UNKNOWN || state2 != STATE_UNKNOWN || state3 != STATE_UNKNOWN) {
ostringstream warn_str;
warn_str << "Sequence " << seq_names[seq] << " has ambiguous character " <<
sequences[seq][site] << sequences[seq][site+1] << sequences[seq][site+2] <<
" at site " << site+1;
outWarning(warn_str.str());
}
state = STATE_UNKNOWN;
}
}
if (state == STATE_INVALID) {
if (num_error < 100) {
err_str << "Sequence " << seq_names[seq] << " has invalid character " << sequences[seq][site];
if (seq_type == SEQ_CODON)
err_str << sequences[seq][site+1] << sequences[seq][site+2];
err_str << " at site " << site+1 << endl;
} else if (num_error == 100)
err_str << "...many more..." << endl;
num_error++;
}
pat[seq] = state;
}
if (!num_error)
num_gaps_only += addPattern(pat, site/step);
}
if (num_gaps_only)
cout << "WARNING: " << num_gaps_only << " sites contain only gaps or ambiguous characters." << endl;
if (err_str.str() != "")
throw err_str.str();
return 1;
}
void processSeq(string &sequence, string &line, int line_num) {
for (string::iterator it = line.begin(); it != line.end(); it++) {
if ((*it) <= ' ') continue;
if (isalnum(*it) || (*it) == '-' || (*it) == '?'|| (*it) == '.' || (*it) == '*' || (*it) == '~')
sequence.append(1, toupper(*it));
else if (*it == '(' || *it == '{') {
auto start_it = it;
while (*it != ')' && *it != '}' && it != line.end())
it++;
if (it == line.end())
throw "Line " + convertIntToString(line_num) + ": No matching close-bracket ) or } found";
sequence.append(1, '?');
cout << "NOTE: Line " << line_num << ": " << line.substr(start_it-line.begin(), (it-start_it)+1) << " is treated as unknown character" << endl;
} else {
throw "Line " + convertIntToString(line_num) + ": Unrecognized character " + *it;
}
}
}
int Alignment::readPhylip(char *filename, char *sequence_type) {
StrVector sequences;
ostringstream err_str;
igzstream in;
int line_num = 1;
// set the failbit and badbit
in.exceptions(ios::failbit | ios::badbit);
in.open(filename);
int nseq = 0, nsite = 0;
int seq_id = 0;
string line;
// remove the failbit
in.exceptions(ios::badbit);
bool tina_state = (sequence_type && (strcmp(sequence_type,"TINA") == 0 || strcmp(sequence_type,"MULTI") == 0));
num_states = 0;
for (; !in.eof(); line_num++) {
safeGetline(in, line);
line = line.substr(0, line.find_first_of("\n\r"));
if (line == "") continue;
//cout << line << endl;
if (nseq == 0) { // read number of sequences and sites
istringstream line_in(line);
if (!(line_in >> nseq >> nsite))
throw "Invalid PHYLIP format. First line must contain number of sequences and sites";
//cout << "nseq: " << nseq << " nsite: " << nsite << endl;
if (nseq < 3)
throw "There must be at least 3 sequences";
if (nsite < 1)
throw "No alignment columns";
seq_names.resize(nseq, "");
sequences.resize(nseq, "");
} else { // read sequence contents
if (seq_names[seq_id] == "") { // cut out the sequence name
string::size_type pos = line.find_first_of(" \t");
if (pos == string::npos) pos = 10; // assume standard phylip
seq_names[seq_id] = line.substr(0, pos);
line.erase(0, pos);
}
int old_len = sequences[seq_id].length();
if (tina_state) {
stringstream linestr(line);
int state;
while (!linestr.eof() ) {
state = -1;
linestr >> state;
if (state < 0) break;
sequences[seq_id].append(1, state);
if (num_states < state+1) num_states = state+1;
}
} else processSeq(sequences[seq_id], line, line_num);
if (sequences[seq_id].length() != sequences[0].length()) {
err_str << "Line " << line_num << ": Sequence " << seq_names[seq_id] << " has wrong sequence length " << sequences[seq_id].length() << endl;
throw err_str.str();
}
if (sequences[seq_id].length() > old_len)
seq_id++;
if (seq_id == nseq) {
seq_id = 0;
// make sure that all sequences have the same length at this moment
}
}
//sequences.
}
in.clear();
// set the failbit again
in.exceptions(ios::failbit | ios::badbit);
in.close();
return buildPattern(sequences, sequence_type, nseq, nsite);
}
int Alignment::readPhylipSequential(char *filename, char *sequence_type) {
StrVector sequences;
ostringstream err_str;
igzstream in;
int line_num = 1;
// set the failbit and badbit
in.exceptions(ios::failbit | ios::badbit);
in.open(filename);
int nseq = 0, nsite = 0;
int seq_id = 0;
string line;
// remove the failbit
in.exceptions(ios::badbit);
num_states = 0;
for (; !in.eof(); line_num++) {
safeGetline(in, line);
line = line.substr(0, line.find_first_of("\n\r"));
if (line == "") continue;
//cout << line << endl;
if (nseq == 0) { // read number of sequences and sites
istringstream line_in(line);
if (!(line_in >> nseq >> nsite))
throw "Invalid PHYLIP format. First line must contain number of sequences and sites";
//cout << "nseq: " << nseq << " nsite: " << nsite << endl;
if (nseq < 3)
throw "There must be at least 3 sequences";
if (nsite < 1)
throw "No alignment columns";
seq_names.resize(nseq, "");
sequences.resize(nseq, "");
} else { // read sequence contents
if (seq_id >= nseq)
throw "Line " + convertIntToString(line_num) + ": Too many sequences detected";
if (seq_names[seq_id] == "") { // cut out the sequence name
string::size_type pos = line.find_first_of(" \t");
if (pos == string::npos) pos = 10; // assume standard phylip
seq_names[seq_id] = line.substr(0, pos);
line.erase(0, pos);
}
processSeq(sequences[seq_id], line, line_num);
if (sequences[seq_id].length() > nsite)
throw ("Line " + convertIntToString(line_num) + ": Sequence " + seq_names[seq_id] + " is too long (" + convertIntToString(sequences[seq_id].length()) + ")");
if (sequences[seq_id].length() == nsite) {
seq_id++;
}
}
//sequences.
}
in.clear();
// set the failbit again
in.exceptions(ios::failbit | ios::badbit);
in.close();
return buildPattern(sequences, sequence_type, nseq, nsite);
}
int Alignment::readFasta(char *filename, char *sequence_type) {
StrVector sequences;
ostringstream err_str;
igzstream in;
// ifstream in;
int line_num = 1;
string line;
// PoMo with Fasta files is not supported yet.
// if (sequence_type) {
// string st (sequence_type);
// if (st.substr(0,2) != "CF")
// throw "PoMo does not support reading fasta files yet, please use a Counts File.";
// }
// set the failbit and badbit
in.exceptions(ios::failbit | ios::badbit);
in.open(filename);
// remove the failbit
in.exceptions(ios::badbit);
for (; !in.eof(); line_num++) {
safeGetline(in, line);
if (line == "") continue;
//cout << line << endl;
if (line[0] == '>') { // next sequence
string::size_type pos = line.find_first_of("\n\r");
seq_names.push_back(line.substr(1, pos-1));
trimString(seq_names.back());
sequences.push_back("");
continue;
}
// read sequence contents
if (sequences.empty()) throw "First line must begin with '>' to define sequence name";
processSeq(sequences.back(), line, line_num);
}
in.clear();
// set the failbit again
in.exceptions(ios::failbit | ios::badbit);
in.close();
// now try to cut down sequence name if possible
int i, j, step = 0;
StrVector new_seq_names, remain_seq_names;
new_seq_names.resize(seq_names.size());
remain_seq_names = seq_names;
for (step = 0; step < 4; step++) {
bool duplicated = false;
for (i = 0; i < seq_names.size(); i++) {
if (remain_seq_names[i].empty()) continue;
size_t pos = remain_seq_names[i].find_first_of(" \t");
if (pos == string::npos) {
new_seq_names[i] += remain_seq_names[i];
remain_seq_names[i] = "";
} else {
new_seq_names[i] += remain_seq_names[i].substr(0, pos);
remain_seq_names[i] = "_" + remain_seq_names[i].substr(pos+1);
}
// now check for duplication
if (!duplicated)
for (j = 0; j < i-1; j++)
if (new_seq_names[j] == new_seq_names[i]) {
duplicated = true;
break;
}
}
if (!duplicated) break;
}
if (step > 0) {
for (i = 0; i < seq_names.size(); i++)
if (seq_names[i] != new_seq_names[i]) {
cout << "NOTE: Change sequence name '" << seq_names[i] << "' -> " << new_seq_names[i] << endl;
}
}
seq_names = new_seq_names;
return buildPattern(sequences, sequence_type, seq_names.size(), sequences.front().length());
}
int Alignment::readClustal(char *filename, char *sequence_type) {
StrVector sequences;
igzstream in;
int line_num = 1;
string line;
num_states = 0;
// set the failbit and badbit
in.exceptions(ios::failbit | ios::badbit);
in.open(filename);
// remove the failbit
in.exceptions(ios::badbit);
safeGetline(in, line);
if (line.substr(0, 7) != "CLUSTAL") {
throw "ClustalW file does not start with 'CLUSTAL'";
}
int seq_count = 0;
for (line_num = 2; !in.eof(); line_num++) {
safeGetline(in, line);
trimString(line);
if (line == "") {
seq_count = 0;
continue;
}
if (line[0] == '*' || line[0] == ':' || line[0] == '.') continue; // ignore conservation line
size_t pos = line.find_first_of(" \t");
if (pos == string::npos) {
throw "Line " + convertIntToString(line_num) + ": whitespace not found between sequence name and content";
}
string seq_name = line.substr(0, pos);
if (seq_count == seq_names.size()) {
seq_names.push_back(seq_name);
sequences.push_back("");
} else if (seq_count > seq_names.size()){
throw "Line " + convertIntToString(line_num) + ": New sequence name is not allowed here";
} else if (seq_name != seq_names[seq_count]) {
throw "Line " + convertIntToString(line_num) + ": Sequence name " + seq_name + " does not match previously declared " +seq_names[seq_count];
}
line = line.substr(pos+1);
trimString(line);
pos = line.find_first_of(" \t");
line = line.substr(0, pos);
// read sequence contents
processSeq(sequences[seq_count], line, line_num);
seq_count++;
}
in.clear();
// set the failbit again
in.exceptions(ios::failbit | ios::badbit);
in.close();
if (sequences.empty())
throw "No sequences found. Please check input (e.g. newline character)";
return buildPattern(sequences, sequence_type, seq_names.size(), sequences.front().length());
}
int Alignment::readMSF(char *filename, char *sequence_type) {
StrVector sequences;
igzstream in;
int line_num = 1;
string line;
num_states = 0;
// set the failbit and badbit
in.exceptions(ios::failbit | ios::badbit);
in.open(filename);
// remove the failbit
in.exceptions(ios::badbit);
safeGetline(in, line);
if (line.find("MULTIPLE_ALIGNMENT") == string::npos) {
throw "MSF file must start with header line MULTIPLE_ALIGNMENT";
}
int seq_len = 0, seq_count = 0;
bool seq_started = false;
for (line_num = 2; !in.eof(); line_num++) {
safeGetline(in, line);
trimString(line);
if (line == "") {
continue;
}
size_t pos;
if (line.substr(0, 2) == "//") {
seq_started = true;
continue;
}
if (line.substr(0,5) == "Name:") {
if (seq_started)
throw "Line " + convertIntToString(line_num) + ": Cannot declare sequence name here";
line = line.substr(5);
trimString(line);
pos = line.find_first_of(" \t");
if (pos == string::npos)
throw "Line " + convertIntToString(line_num) + ": No whitespace found after sequence name";
string seq_name = line.substr(0,pos);
seq_names.push_back(seq_name);
sequences.push_back("");
pos = line.find("Len:");
if (pos == string::npos)
throw "Line " + convertIntToString(line_num) + ": Sequence description does not contain 'Len:'";
line = line.substr(pos+4);
trimString(line);
pos = line.find_first_of(" \t");
if (pos == string::npos)
throw "Line " + convertIntToString(line_num) + ": No whitespace found after sequence length";
int len;
line = line.substr(0, pos);
try {
len = convert_int(line.c_str());
} catch (string &str) {
throw "Line " + convertIntToString(line_num) + ": " + str;
}
if (len <= 0)
throw "Line " + convertIntToString(line_num) + ": Non-positive sequence length not allowed";
if (seq_len == 0)
seq_len = len;
else if (seq_len != len)
throw "Line " + convertIntToString(line_num) + ": Sequence length " + convertIntToString(len) + " is different from previously defined " + convertIntToString(seq_len);
continue;
}
if (!seq_started) continue;
if (seq_names.empty())
throw "No sequence name declared in header";
if (isdigit(line[0])) continue;
pos = line.find_first_of(" \t");
if (pos == string::npos)
throw "Line " + convertIntToString(line_num) + ": whitespace not found between sequence name and content - " + line;
string seq_name = line.substr(0, pos);
if (seq_name != seq_names[seq_count])
throw "Line " + convertIntToString(line_num) + ": Sequence name " + seq_name + " does not match previously declared " +seq_names[seq_count];
line = line.substr(pos+1);
// read sequence contents
processSeq(sequences[seq_count], line, line_num);
seq_count++;
if (seq_count == seq_names.size())
seq_count = 0;
}
in.clear();
// set the failbit again
in.exceptions(ios::failbit | ios::badbit);
in.close();
return buildPattern(sequences, sequence_type, seq_names.size(), sequences.front().length());
}
// TODO: Use outWarning to print warnings.
int Alignment::readCountsFormat(char* filename, char* sequence_type) {
int npop = 0; // Number of populations.
int nsites = 0; // Number of sites.
int N = 9; // Virtual population size; defaults
// to 9. If `-st CFXX` is given, it
// will be set to XX below.
int nnuc = 4; // Number of nucleotides (base states).
ostringstream err_str;
igzstream in;
// Variables to stream the data.
string line;
string field;
string val_str; // String of counts value.
int value; // Actual int value.
int line_num = 0; // Line number counter.
int field_num; // Field number counter.
int site_count = 0; // Site / base counter.
// Delimiters
// char const field_delim = '\t';
char const value_delim = ',';
// Vector of nucleotide base counts in order A, C, G, T.
IntVector values;
// Sampled vector of nucleotide base counts (N individuals are
// sampled out of =values=).
IntVector sampled_values;
// Iterator to loop over bases.
IntVector::iterator i;
// Variables to convert sampled_values to a state in the pattern.
int sum;
int count;
int id1, id2;
int r_int;
// Index of polymorphism type; ranges from 0 to 5: [AC], [AG],
// [AT], [CG], [CT], [GT].
int j;
// String with states. Each character represents an integer state
// value ranging from 0 to 4+(4 choose 2)*(N-1)-1. E.g., 0 to 57
// if N is 10.
Pattern pattern;
// The state a population is in at a specific site.
// 0 ... 3 = fixed A,C,G,T
// 4 + j*(N-2)+j ... 4 + (j+1)*(N-2)+j = polymorphism of type j
// E.g., 4 = [1A,9C]; 5 = [2A,8C]; 12 = [9A,1C]; 13 = [1A,9G]
int state;
// Strings to check counts-file identification line.
string ftype, npop_str, nsites_str;
bool everything_ok = true;
int fails = 0;
// Access model_name in global parameters; needed to get N and
// sampling method.
Params params = Params::getInstance();
// TODO DS: Do not temper with params; use another way to set PoMo
// flag.
params.pomo = true;
// Initialize sampling method.
pomo_sampling_method = SAMPLING_WEIGHTED_BINOM;
// Check for custom virtual population size or sampling method.
size_t n_pos_start = params.model_name.find("+N");
size_t n_pos_end = params.model_name.find_first_of("+", n_pos_start+1);
if (n_pos_start != string::npos) {
int length;
if (n_pos_end != string::npos)
length = n_pos_end - n_pos_start - 2;
else
length = params.model_name.length() - n_pos_start - 2;
try {
N = convert_int(params.model_name.substr(n_pos_start+2,length).c_str());
}
catch (string str) {
cout << "The model string is faulty." << endl;
cout << "The virtual population size N is not clear when reading in data." << endl;
cout << "Use, e.g., \"+N7\"." << endl;
cout << "For each run, N can only be set once." << endl;
outError(str);
}
if (((N != 10) && (N != 2) && (N % 2 == 0)) || (N < 2) || (N > 19))
outError("Custom virtual population size of PoMo not 2, 10 or any other odd number between 3 and 19.");
}
// TODO: probably remove virtual_pop_size and use N only.
params.pomo_pop_size = N;
virtual_pop_size = N;
size_t w_pos = params.model_name.find("+WB");
size_t h_pos = params.model_name.find("+WH");
size_t s_pos = params.model_name.find("+S");
int count_sampling_methods = 0;
if (w_pos != string::npos) {
pomo_sampling_method = SAMPLING_WEIGHTED_BINOM;
count_sampling_methods += 1;
}
if (h_pos != string::npos) {
pomo_sampling_method = SAMPLING_WEIGHTED_HYPER;
count_sampling_methods += 1;
}
if (s_pos != string::npos) {
pomo_sampling_method = SAMPLING_SAMPLED;
count_sampling_methods += 1;
}
if (count_sampling_methods > 1)
outError("Multiple sampling methods specified.");
// Print error if sequence type is given (not supported anymore).
if (sequence_type) {
cout << "Counts files are auto detected." << endl;
cout << "PoMo does not support -st flag." << endl;
cout << "Please use model string to specifcy virtual population size and sampling method." << endl;
outError("Abort.");
}
// if (sequence_type) {
// string st (sequence_type);
// if (st.substr(0,2) == "CR")
// pomo_random_sampling = true;
// else if (st.substr(0,2) == "CF")
// pomo_random_sampling = false;
// else
// throw "Counts File detected but sequence type (-st) is neither 'CF' nor 'CR'.";
// string virt_pop_size_str = st.substr(2);
// if (virt_pop_size_str != "") {
// int virt_pop_size = atoi(virt_pop_size_str.c_str());
// N = virt_pop_size;
// }
// }
// Set the number of states. If nnuc=4:
// 4 + (4 choose 2)*(N-1) = 58.
num_states = nnuc + nnuc*(nnuc-1)/2*(N-1);
seq_type = SEQ_POMO;
// Set UNKNOWN_STATE. This state is set if no information is in
// the alignment. If we use partial likelihood we do not know the
// number of different patterns in the alignment yet and hence,
// cannot set the variable STATE_UNKNOWN yet (see
// `state_unknown_buffer`).
computeUnknownState();
// Use a buffer for STATE_UNKNOWN. I.e., if an unknown state is
// encountered, the pattern is added to this buffer. Only after
// all sites have been read in, the patterns from this temporal
// buffer are added to the normal alignment because then, the
// value of STATE_UNKNOWN is known.
vector<Pattern> su_buffer;
// The site numbers of the patterns that include unknown states.
IntVector su_site_counts;
int su_number = 0;
// BQM: not neccessary, su_site_count will be equal to su_site_counts.size()
// int su_site_count = 0;
bool includes_state_unknown = false;
// Variables to calculate mean number of samples per population.
// If N is way above the average number of samples, PoMo has been
// ovserved to be unstable and a big warning is printed.
int n_samples_sum = 0;
int n_sites_sum = 0;
// Average number of samples.
double n_samples_bar = 0;
// Open counts file.
// Set the failbit and badbit.
in.exceptions(ios::failbit | ios::badbit);
in.open(filename);
// Remove the failbit.
in.exceptions(ios::badbit);
// Skip comments.
do {
getline(in, line);
line_num++;
}
while (line[0] == '#');
// Read in npop and nsites;
istringstream ss1(line);
// Read and check counts file headerline.
if (!(ss1 >> ftype >> npop_str >> npop >> nsites_str >> nsites)) {
err_str << "Counts-File identification line could not be read.";
throw err_str.str();
}
if ((ftype.compare("COUNTSFILE") ||
npop_str.compare("NPOP") ||
nsites_str.compare("NSITES")) != 0) {
err_str << "Counts-File identification line could not be read.";
throw err_str.str();
}
cout << endl;
cout << "----------------------------------------------------------------------" << endl;
cout << "Number of populations: " << npop << endl;
cout << "Number of sites: " << nsites << endl;
if (nsites > 0)
site_pattern.resize(nsites);
else {
err_str << "Number of sites is 0.";
throw err_str.str();
}
// Skip comments.
do {
getline(in, line);
line_num++;
}
while (line[0] == '#');
// Headerline.
istringstream ss2(line);
for (field_num = 0; (ss2 >> field); field_num++) {
if (field_num == 0) {
if ((field.compare("Chrom") != 0) && (field.compare("CHROM") != 0)) {
err_str << "Unrecognized header field " << field << ".";
throw err_str.str();
}
}
else if (field_num == 1) {
if ((field.compare("Pos") != 0) && (field.compare("POS") != 0)) {
err_str << "Unrecognized header field " << field << ".";
throw err_str.str();
}
}
else {
//Read in sequence names.
seq_names.push_back(field);
}
}
if ((int) seq_names.size() != npop) {
err_str << "Number of populations in headerline doesn't match NPOP.";
throw err_str.str();
}
// Data.
// Loop over sites.
for ( ; getline(in, line); ) {
line_num++;
field_num = 0;
pattern.clear();
everything_ok = true;
includes_state_unknown = false;
istringstream fieldstream(line);
// Loop over populations / individuals.
for ( ; (fieldstream >> field); ) {
// Skip Chrom and Pos columns.
if ( (field_num == 0) || (field_num == 1)) {
field_num++;
continue;
}
// Clear value vectors.
values.clear();
sampled_values.clear();
sampled_values.resize(nnuc,0);
istringstream valuestream(field);
// Loop over bases within one population.
for (; getline(valuestream, val_str, value_delim);) {
try {
value = convert_int(val_str.c_str());
} catch(string &str) {
err_str << "Could not read value " << val_str << " on line " << line_num << ".";
throw err_str.str();
}
values.push_back(value);
}
if (values.size() != nnuc) {
err_str << "Number of bases does not match on line " << line_num << ".";
throw err_str.str();
}
// Read in the data.
sum = 0;
count = 0;
id1 = -1;
id2 = -1;
// Sum over elements and count non-zero elements.
for(i = values.begin(); i != values.end(); ++i) {
// `i` is an iterator object that points to some
// element of `value`.
if (*i != 0) {
// `i - values.begin()` ranges from 0 to 3 and
// determines the nucleotide or allele type.
if (id1 == -1) id1 = i - values.begin();
else id2 = i - values.begin();
count++;
sum += *i;
}
}
// Determine state (cf. above).
if (count == 1) {
n_samples_sum += values[id1];
n_sites_sum++;
if (pomo_sampling_method == SAMPLING_SAMPLED) {
// Fixed state, state ID is just id1.
state = id1;
} else {
if (values[id1] >= 16384) {
cout << "WARNING: Pattern on line " <<
line_num << " exceeds count limit of 16384." << endl;
everything_ok = false;
}
uint32_t pomo_state = (id1 | (values[id1]) << 2);
IntIntMap::iterator pit = pomo_sampled_states_index.find(pomo_state);
if (pit == pomo_sampled_states_index.end()) { // not found
state = pomo_sampled_states_index[pomo_state] = pomo_sampled_states.size();
pomo_sampled_states.push_back(pomo_state);
} else {
state = pit->second;
}
state += num_states; // make the state larger than num_states
}
}
else if (count == 0) {
state = STATE_UNKNOWN;
su_number++;
includes_state_unknown = true;
}
else if (count > 2) {
if (verbose_mode >= VB_MAX) {
std::cout << "WARNING: More than two bases are present on line ";
std::cout << line_num << "." << std::endl;
}
everything_ok = false;
// err_str << "More than 2 bases are present on line " << line_num << ".";
// throw err_str.str();
}
// Now we deal with the important polymorphic states with two alleles.
else if (count == 2) {
n_samples_sum += values[id1];
n_samples_sum += values[id2];
n_sites_sum++;
if (pomo_sampling_method == SAMPLING_SAMPLED) {
// Binomial sampling. 2 bases are present.
for(int k = 0; k < N; k++) {
r_int = random_int(sum);
if (r_int < values[id1]) sampled_values[id1]++;
else sampled_values[id2]++;
}
if (sampled_values[id1] == 0) state = id2;
else if (sampled_values[id2] == 0) state = id1;
else {
if (id1 == 0) j = id2 - 1;
else j = id1 + id2;
state = nnuc + j*(N-2) + j + sampled_values[id1] - 1;
}
} else {
/* BQM 2015-07: store both states now */
if (values[id1] >= 16384 || values[id2] >= 16384)
// Cannot add sites where more than 16384
// individuals have the same base within one
// population.
everything_ok = false;
uint32_t pomo_state = (id1 | (values[id1]) << 2) | ((id2 | (values[id2]<<2))<<16);
IntIntMap::iterator pit = pomo_sampled_states_index.find(pomo_state);
if (pit == pomo_sampled_states_index.end()) { // not found
state = pomo_sampled_states_index[pomo_state] = pomo_sampled_states.size();
pomo_sampled_states.push_back(pomo_state);
} else {
state = pit->second;
}
state += num_states; // make the state larger than num_states
}
}
else {
err_str << "Unexpected error on line number " << line_num << ".";
throw err_str.str();
}
// Now we have the state to build a pattern ;-).
pattern.push_back(state);
}
if ((int) pattern.size() != npop) {
err_str << "Number of species does not match on line " << line_num << ".";
throw err_str.str();
}
// Pattern has been built and is now added to the vector of
// patterns.
if (everything_ok == true) {
if (includes_state_unknown) {
// su_site_count++;
if (pomo_sampling_method == SAMPLING_WEIGHTED_BINOM ||
pomo_sampling_method == SAMPLING_WEIGHTED_HYPER) {
su_buffer.push_back(pattern);
su_site_counts.push_back(site_count);
}
// Add pattern if we use random sampling because then,
// STATE_UNKNOWN = num_states is well defined already at
// this stage.
else
addPattern(pattern, site_count);
// BQM: it is neccessary to always increase site_count
site_count++;
}
else {
addPattern(pattern, site_count);
site_count++;
}
}
else {
fails++;
if (verbose_mode >= VB_MAX) {
cout << "WARNING: Pattern on line " <<
line_num << " was not added." << endl;
}
}
}
if (site_count + fails != nsites) {
err_str << "Number of sites does not match NSITES.";
throw err_str.str();
}
if (pomo_sampling_method == SAMPLING_WEIGHTED_BINOM ||
pomo_sampling_method == SAMPLING_WEIGHTED_HYPER) {
// Now we can correctly set STATE_UNKNOWN.
STATE_UNKNOWN = pomo_sampled_states.size() + num_states;
// Process sites that include an unknown state.
for (vector<Pattern>::iterator pat_it = su_buffer.begin();
pat_it != su_buffer.end(); pat_it++) {
for (Pattern::iterator sp_it = pat_it->begin(); sp_it != pat_it->end(); sp_it++)
if (*sp_it == 0xffffffff) *sp_it = STATE_UNKNOWN;
}
for (unsigned int i = 0; i < su_buffer.size(); i++)
addPattern(su_buffer[i], su_site_counts[i]);
}
cout << "---" << endl;
cout << "Normal sites: " << site_count - su_site_counts.size() << endl;
cout << "Sites with unknown states: " << su_site_counts.size() << endl;
cout << "Total sites read: " << site_count << endl;
cout << "Fails: " << fails << endl;
if (pomo_sampling_method == SAMPLING_WEIGHTED_BINOM ||
pomo_sampling_method == SAMPLING_WEIGHTED_HYPER) {
cout << "---" << endl;
cout << "Compound states: " << pomo_sampled_states.size() << endl;
}
cout << "----------------------------------------------------------------------" << endl << endl;
// Check if N is not too large.
n_samples_bar = n_samples_sum / (double) n_sites_sum;
cout << "The average number of samples is " << n_samples_bar << endl;
if ((pomo_sampling_method == SAMPLING_WEIGHTED_BINOM) &&
(n_samples_bar * 3.0 <= N)) {
cout << "----------------------------------------------------------------------" << endl;
cout << "WARNING: The virtual population size N is much larger ";
cout << "than the average number of samples." << endl;
cout << "WARNING: This setting together with /weighted binomial/ sampling ";
cout << "may be numerically unstable." << endl << endl;
cout << "----------------------------------------------------------------------" << endl;
}
site_pattern.resize(site_count);
in.clear();
// set the failbit again
in.exceptions(ios::failbit | ios::badbit);
in.close();
return 1;
}
bool Alignment::getSiteFromResidue(int seq_id, int &residue_left, int &residue_right) {
int i, j;
int site_left = -1, site_right = -1;
for (i = 0, j = -1; i < getNSite(); i++) {
if (at(site_pattern[i])[seq_id] != STATE_UNKNOWN) j++;
if (j == residue_left) site_left = i;
if (j == residue_right-1) site_right = i+1;
}
if (site_left < 0 || site_right < 0)
cout << "Out of range: Maxmimal residue number is " << j+1 << endl;
if (site_left == -1) outError("Left residue range is too high");
if (site_right == -1) {
outWarning("Right residue range is set to alignment length");
site_right = getNSite();
}
residue_left = site_left;
residue_right = site_right;
return true;
}
int Alignment::buildRetainingSites(const char *aln_site_list, IntVector &kept_sites,
bool exclude_gaps, bool exclude_const_sites, const char *ref_seq_name)
{
if (aln_site_list) {
int seq_id = -1;
if (ref_seq_name) {
string ref_seq = ref_seq_name;
seq_id = getSeqID(ref_seq);
if (seq_id < 0) outError("Reference sequence name not found: ", ref_seq_name);
}
cout << "Reading site position list " << aln_site_list << " ..." << endl;
kept_sites.resize(getNSite(), 0);
try {
ifstream in;
in.exceptions(ios::failbit | ios::badbit);
in.open(aln_site_list);
in.exceptions(ios::badbit);
while (!in.eof()) {
int left, right;
left = right = 0;
in >> left;
if (in.eof()) break;
in >> right;
cout << left << "-" << right << endl;
if (left <= 0 || right <= 0) throw "Range must be positive";
if (left > right) throw "Left range is bigger than right range";
left--;
if (right > getNSite()) throw "Right range is bigger than alignment size";
if (seq_id >= 0) getSiteFromResidue(seq_id, left, right);
for (int i = left; i < right; i++)
kept_sites[i] = 1;
}
in.close();
} catch (ios::failure) {
outError(ERR_READ_INPUT, aln_site_list);
} catch (const char* str) {
outError(str);
}
} else {
kept_sites.resize(getNSite(), 1);
}
int j;
if (exclude_gaps) {
for (j = 0; j < kept_sites.size(); j++)
if (kept_sites[j] && at(site_pattern[j]).computeAmbiguousChar(num_states) > 0) {
kept_sites[j] = 0;
}
}
if (exclude_const_sites) {
for (j = 0; j < kept_sites.size(); j++)
if (at(site_pattern[j]).isInvariant())
kept_sites[j] = 0;
}
int final_length = 0;
for (j = 0; j < kept_sites.size(); j++)
if (kept_sites[j]) final_length++;
return final_length;
}
void Alignment::printPhylip(ostream &out, bool append, const char *aln_site_list,
bool exclude_gaps, bool exclude_const_sites, const char *ref_seq_name, bool print_taxid) {
IntVector kept_sites;
int final_length = buildRetainingSites(aln_site_list, kept_sites, exclude_gaps, exclude_const_sites, ref_seq_name);
if (seq_type == SEQ_CODON)
final_length *= 3;
out << getNSeq() << " " << final_length << endl;
int max_len = getMaxSeqNameLength();
if (print_taxid) max_len = 10;
if (max_len < 10) max_len = 10;
int seq_id;
for (seq_id = 0; seq_id < seq_names.size(); seq_id++) {
out.width(max_len);
if (print_taxid)
out << left << seq_id << " ";
else
out << left << seq_names[seq_id] << " ";
int j = 0;
for (IntVector::iterator i = site_pattern.begin(); i != site_pattern.end(); i++, j++)
if (kept_sites[j])
out << convertStateBackStr(at(*i)[seq_id]);
out << endl;
}
}
void Alignment::printPhylip(const char *file_name, bool append, const char *aln_site_list,
bool exclude_gaps, bool exclude_const_sites, const char *ref_seq_name) {
try {
ofstream out;
out.exceptions(ios::failbit | ios::badbit);
if (append)
out.open(file_name, ios_base::out | ios_base::app);
else
out.open(file_name);
printPhylip(out, append, aln_site_list, exclude_gaps, exclude_const_sites, ref_seq_name);
out.close();
if (verbose_mode >= VB_MED)
cout << "Alignment was printed to " << file_name << endl;
} catch (ios::failure) {
outError(ERR_WRITE_OUTPUT, file_name);
}
}
void Alignment::printFasta(const char *file_name, bool append, const char *aln_site_list
, bool exclude_gaps, bool exclude_const_sites, const char *ref_seq_name)
{
IntVector kept_sites;
buildRetainingSites(aln_site_list, kept_sites, exclude_gaps, exclude_const_sites, ref_seq_name);
try {
ofstream out;
out.exceptions(ios::failbit | ios::badbit);
if (append)
out.open(file_name, ios_base::out | ios_base::app);
else
out.open(file_name);
StrVector::iterator it;
int seq_id = 0;
for (it = seq_names.begin(); it != seq_names.end(); it++, seq_id++) {
out << ">" << (*it) << endl;
int j = 0;
for (IntVector::iterator i = site_pattern.begin(); i != site_pattern.end(); i++, j++)
if (kept_sites[j])
out << convertStateBackStr(at(*i)[seq_id]);
out << endl;
}
out.close();
cout << "Alignment was printed to " << file_name << endl;
} catch (ios::failure) {
outError(ERR_WRITE_OUTPUT, file_name);
}
}
void Alignment::extractSubAlignment(Alignment *aln, IntVector &seq_id, int min_true_char, int min_taxa, IntVector *kept_partitions) {
IntVector::iterator it;
for (it = seq_id.begin(); it != seq_id.end(); it++) {
ASSERT(*it >= 0 && *it < aln->getNSeq());
seq_names.push_back(aln->getSeqName(*it));
}
name = aln->name;
model_name = aln->model_name;
sequence_type = aln->sequence_type;
position_spec = aln->position_spec;
aln_file = aln->aln_file;
num_states = aln->num_states;
seq_type = aln->seq_type;
STATE_UNKNOWN = aln->STATE_UNKNOWN;
genetic_code = aln->genetic_code;
if (seq_type == SEQ_CODON) {
codon_table = new char[num_states];
memcpy(codon_table, aln->codon_table, num_states);
non_stop_codon = new char[strlen(genetic_code)];
memcpy(non_stop_codon, aln->non_stop_codon, strlen(genetic_code));
}
site_pattern.resize(aln->getNSite(), -1);
clear();
pattern_index.clear();
int site = 0, removed_sites = 0;
VerboseMode save_mode = verbose_mode;
verbose_mode = min(verbose_mode, VB_MIN); // to avoid printing gappy sites in addPattern
// for (iterator pit = aln->begin(); pit != aln->end(); pit++) {
for (site = 0; site < aln->getNSite(); site++) {
iterator pit = aln->begin() + (aln->getPatternID(site));
Pattern pat;
int true_char = 0;
for (it = seq_id.begin(); it != seq_id.end(); it++) {
char ch = (*pit)[*it];
if (ch != STATE_UNKNOWN) true_char++;
pat.push_back(ch);
}
if (true_char < min_true_char)
removed_sites++;
else
addPattern(pat, site-removed_sites);
// for (int i = 0; i < (*pit).frequency; i++)
// site_pattern[site++] = size()-1;
}
site_pattern.resize(aln->getNSite() - removed_sites);
verbose_mode = save_mode;
countConstSite();
buildSeqStates();
ASSERT(size() <= aln->size());
if (kept_partitions)
kept_partitions->push_back(0);
}
void Alignment::extractPatterns(Alignment *aln, IntVector &ptn_id) {
int i;
for (i = 0; i < aln->getNSeq(); i++) {
seq_names.push_back(aln->getSeqName(i));
}
name = aln->name;
model_name = aln->model_name;
sequence_type = aln->sequence_type;
position_spec = aln->position_spec;
aln_file = aln->aln_file;
num_states = aln->num_states;
seq_type = aln->seq_type;
STATE_UNKNOWN = aln->STATE_UNKNOWN;
genetic_code = aln->genetic_code;
if (seq_type == SEQ_CODON) {
codon_table = new char[num_states];
memcpy(codon_table, aln->codon_table, num_states);
non_stop_codon = new char[strlen(genetic_code)];
memcpy(non_stop_codon, aln->non_stop_codon, strlen(genetic_code));
}
site_pattern.resize(aln->getNSite(), -1);
clear();
pattern_index.clear();
int site = 0;
VerboseMode save_mode = verbose_mode;
verbose_mode = min(verbose_mode, VB_MIN); // to avoid printing gappy sites in addPattern
for (i = 0; i != ptn_id.size(); i++) {
ASSERT(ptn_id[i] >= 0 && ptn_id[i] < aln->getNPattern());
Pattern pat = aln->at(ptn_id[i]);
addPattern(pat, site, aln->at(ptn_id[i]).frequency);
for (int j = 0; j < aln->at(ptn_id[i]).frequency; j++)
site_pattern[site++] = size()-1;
}
site_pattern.resize(site);
verbose_mode = save_mode;
countConstSite();
buildSeqStates();
ASSERT(size() <= aln->size());
}
void Alignment::extractPatternFreqs(Alignment *aln, IntVector &ptn_freq) {
int i;
ASSERT(ptn_freq.size() <= aln->getNPattern());
for (i = 0; i < aln->getNSeq(); i++) {
seq_names.push_back(aln->getSeqName(i));
}
name = aln->name;
model_name = aln->model_name;
sequence_type = aln->sequence_type;
position_spec = aln->position_spec;
aln_file = aln->aln_file;
num_states = aln->num_states;
seq_type = aln->seq_type;
genetic_code = aln->genetic_code;
if (seq_type == SEQ_CODON) {
codon_table = new char[num_states];
memcpy(codon_table, aln->codon_table, num_states);
non_stop_codon = new char[strlen(genetic_code)];
memcpy(non_stop_codon, aln->non_stop_codon, strlen(genetic_code));
}
STATE_UNKNOWN = aln->STATE_UNKNOWN;
site_pattern.resize(accumulate(ptn_freq.begin(), ptn_freq.end(), 0), -1);
clear();
pattern_index.clear();
int site = 0;
VerboseMode save_mode = verbose_mode;
verbose_mode = min(verbose_mode, VB_MIN); // to avoid printing gappy sites in addPattern
for (i = 0; i != ptn_freq.size(); i++)
if (ptn_freq[i]) {
ASSERT(ptn_freq[i] > 0);
Pattern pat = aln->at(i);
addPattern(pat, site, ptn_freq[i]);
for (int j = 0; j < ptn_freq[i]; j++)
site_pattern[site++] = size()-1;
}
site_pattern.resize(site);
verbose_mode = save_mode;
countConstSite();
buildSeqStates();
ASSERT(size() <= aln->size());
}
void Alignment::extractSites(Alignment *aln, IntVector &site_id) {
int i;
for (i = 0; i < aln->getNSeq(); i++) {
seq_names.push_back(aln->getSeqName(i));
}
name = aln->name;
model_name = aln->model_name;
sequence_type = aln->sequence_type;
position_spec = aln->position_spec;
aln_file = aln->aln_file;
num_states = aln->num_states;
seq_type = aln->seq_type;
STATE_UNKNOWN = aln->STATE_UNKNOWN;
genetic_code = aln->genetic_code;
if (seq_type == SEQ_CODON) {
codon_table = new char[num_states];
memcpy(codon_table, aln->codon_table, num_states);
non_stop_codon = new char[strlen(genetic_code)];
memcpy(non_stop_codon, aln->non_stop_codon, strlen(genetic_code));
}
site_pattern.resize(site_id.size(), -1);
clear();
pattern_index.clear();
VerboseMode save_mode = verbose_mode;
verbose_mode = min(verbose_mode, VB_MIN); // to avoid printing gappy sites in addPattern
for (i = 0; i != site_id.size(); i++) {
Pattern pat = aln->getPattern(site_id[i]);
addPattern(pat, i);
}
verbose_mode = save_mode;
countConstSite();
buildSeqStates();
// sanity check
for (iterator it = begin(); it != end(); it++)
if (it->at(0) == -1)
ASSERT(0);
//cout << getNSite() << " positions were extracted" << endl;
//cout << __func__ << " " << num_states << endl;
}
void Alignment::convertToCodonOrAA(Alignment *aln, char *gene_code_id, bool nt2aa) {
if (aln->seq_type != SEQ_DNA)
outError("Cannot convert non-DNA alignment into codon alignment");
if (aln->getNSite() % 3 != 0)
outError("Sequence length is not divisible by 3 when converting to codon sequences");
int i, site;
char AA_to_state[NUM_CHAR];
for (i = 0; i < aln->getNSeq(); i++) {
seq_names.push_back(aln->getSeqName(i));
}
name = aln->name;
model_name = aln->model_name;
sequence_type = aln->sequence_type;
position_spec = aln->position_spec;
aln_file = aln->aln_file;
// num_states = aln->num_states;
seq_type = SEQ_CODON;
initCodon(gene_code_id);
if (nt2aa) {
seq_type = SEQ_PROTEIN;
num_states = 20;
}
computeUnknownState();
if (nt2aa) {
buildStateMap(AA_to_state, SEQ_PROTEIN);
}
site_pattern.resize(aln->getNSite()/3, -1);
clear();
pattern_index.clear();
int step = ((seq_type == SEQ_CODON || nt2aa) ? 3 : 1);
VerboseMode save_mode = verbose_mode;
verbose_mode = min(verbose_mode, VB_MIN); // to avoid printing gappy sites in addPattern
int nsite = aln->getNSite();
int nseq = aln->getNSeq();
Pattern pat;
pat.resize(nseq);
int num_error = 0;
ostringstream err_str;
for (site = 0; site < nsite; site+=step) {
for (int seq = 0; seq < nseq; seq++) {
//char state = convertState(sequences[seq][site], seq_type);
char state = aln->at(aln->getPatternID(site))[seq];
// special treatment for codon
char state2 = aln->at(aln->getPatternID(site+1))[seq];
char state3 = aln->at(aln->getPatternID(site+2))[seq];
if (state < 4 && state2 < 4 && state3 < 4) {
// state = non_stop_codon[state*16 + state2*4 + state3];
state = state*16 + state2*4 + state3;
if (genetic_code[(int)state] == '*') {
err_str << "Sequence " << seq_names[seq] << " has stop codon "
<< " at site " << site+1 << endl;
num_error++;
state = STATE_UNKNOWN;
} else if (nt2aa) {
state = AA_to_state[(int)genetic_code[(int)state]];
} else {
state = non_stop_codon[(int)state];
}
} else if (state == STATE_INVALID || state2 == STATE_INVALID || state3 == STATE_INVALID) {
state = STATE_INVALID;
} else {
if (state != STATE_UNKNOWN || state2 != STATE_UNKNOWN || state3 != STATE_UNKNOWN) {
ostringstream warn_str;
warn_str << "Sequence " << seq_names[seq] << " has ambiguous character " <<
" at site " << site+1;
outWarning(warn_str.str());
}
state = STATE_UNKNOWN;
}
if (state == STATE_INVALID) {
if (num_error < 100) {
err_str << "Sequence " << seq_names[seq] << " has invalid character ";
err_str << " at site " << site+1 << endl;
} else if (num_error == 100)
err_str << "...many more..." << endl;
num_error++;
}
pat[seq] = state;
}
if (!num_error)
addPattern(pat, site/step);
}
if (num_error)
outError(err_str.str());
verbose_mode = save_mode;
countConstSite();
buildSeqStates();
// sanity check
for (iterator it = begin(); it != end(); it++)
if (it->at(0) == -1)
ASSERT(0);
}
void convert_range(const char *str, int &lower, int &upper, int &step_size, char* &endptr) throw (string) {
//char *endptr;
char *beginptr = (char*) str;
// parse the lower bound of the range
int d = strtol(str, &endptr, 10);
if ((d == 0 && endptr == str) || abs(d) == HUGE_VALL) {
string err = "Expecting integer, but found \"";
err += str;
err += "\" instead";
throw err;
}
lower = d;
//int d_save = d;
upper = d;
step_size = 1;
// skip blank chars
for (; *endptr == ' '; endptr++) {}
if (*endptr != '-') return;
// parse the upper bound of the range
endptr++;
// skip blank chars
for (; *endptr == ' '; endptr++) {}
str = endptr;
d = strtol(str, &endptr, 10);
if ((d == 0 && endptr == str) || abs(d) == HUGE_VALL) {
if (str[0] == '.') {
// 2019-06-03: special character '.' for whatever ending position
d = lower-1;
endptr++;
} else {
string err = "Expecting integer, but found \"";
err += str;
err += "\" instead";
throw err;
}
}
//lower = d_save;
upper = d;
// skip blank chars
for (; *endptr == ' '; endptr++) {}
if (*endptr != '\\') return;
// parse the step size of the range
str = endptr+1;
d = strtol(str, &endptr, 10);
if ((d == 0 && endptr == str) || abs(d) == HUGE_VALL) {
string err = "Expecting integer, but found \"";
err += str;
err += "\" instead";
throw err;
}
step_size = d;
str = beginptr;
}
void extractSiteID(Alignment *aln, const char* spec, IntVector &site_id) {
int i;
char *str = (char*)spec;
int nchars = 0;
try {
for (; *str != 0; ) {
int lower, upper, step;
convert_range(str, lower, upper, step, str);
// 2019-06-03: special '.' character
if (upper == lower-1)
upper = aln->getNSite();
lower--;
upper--;
nchars += (upper-lower+1)/step;
if (aln->seq_type == SEQ_CODON) {
lower /= 3;
upper /= 3;
}
if (upper >= aln->getNSite()) throw "Too large site ID";
if (lower < 0) throw "Negative site ID";
if (lower > upper) throw "Wrong range";
if (step < 1) throw "Wrong step size";
for (i = lower; i <= upper; i+=step)
site_id.push_back(i);
if (*str == ',' || *str == ' ') str++;
//else break;
}
if (aln->seq_type == SEQ_CODON && nchars % 3 != 0)
throw (string)"Range " + spec + " length is not multiple of 3 (necessary for codon data)";
} catch (const char* err) {
outError(err);
} catch (string err) {
outError(err);
}
}
void Alignment::extractSites(Alignment *aln, const char* spec) {
IntVector site_id;
extractSiteID(aln, spec, site_id);
extractSites(aln, site_id);
}
void Alignment::createBootstrapAlignment(Alignment *aln, IntVector* pattern_freq, const char *spec) {
if (aln->isSuperAlignment()) outError("Internal error: ", __func__);
name = aln->name;
model_name = aln->model_name;
sequence_type = aln->sequence_type;
position_spec = aln->position_spec;
aln_file = aln->aln_file;
int site, nsite = aln->getNSite();
seq_names.insert(seq_names.begin(), aln->seq_names.begin(), aln->seq_names.end());
num_states = aln->num_states;
seq_type = aln->seq_type;
genetic_code = aln->genetic_code;
if (seq_type == SEQ_CODON) {
codon_table = new char[num_states];
memcpy(codon_table, aln->codon_table, num_states);
non_stop_codon = new char[strlen(genetic_code)];
memcpy(non_stop_codon, aln->non_stop_codon, strlen(genetic_code));
}
STATE_UNKNOWN = aln->STATE_UNKNOWN;
site_pattern.resize(nsite, -1);
clear();
pattern_index.clear();
// 2016-07-05: copy variables for PoMo
pomo_sampled_states = aln->pomo_sampled_states;
pomo_sampled_states_index = aln->pomo_sampled_states_index;
pomo_sampling_method = aln->pomo_sampling_method;
virtual_pop_size = aln->virtual_pop_size;
VerboseMode save_mode = verbose_mode;
verbose_mode = min(verbose_mode, VB_MIN); // to avoid printing gappy sites in addPattern
if (pattern_freq) {
pattern_freq->resize(0);
pattern_freq->resize(aln->getNPattern(), 0);
}
if (!aln->site_state_freq.empty()) {
// resampling also the per-site state frequency vector
if (aln->site_state_freq.size() != aln->getNPattern() || spec)
outError("Unsupported bootstrap feature, pls contact the developers");
}
if (Params::getInstance().jackknife_prop > 0.0 && spec) {
outError((string)"Unsupported jackknife with sampling " + spec);
}
IntVector site_vec;
if (!spec) {
// standard bootstrap
int added_sites = 0;
IntVector sample;
random_resampling(nsite, sample);
for (site = 0; site < nsite; site++)
for (int rep = 0; rep < sample[site]; rep++) {
int ptn_id = aln->getPatternID(site);
Pattern pat = aln->at(ptn_id);
int nptn = getNPattern();
addPattern(pat, added_sites);
if (!aln->site_state_freq.empty() && getNPattern() > nptn) {
// a new pattern is added, copy state frequency vector
double *state_freq = new double[num_states];
memcpy(state_freq, aln->site_state_freq[ptn_id], num_states*sizeof(double));
site_state_freq.push_back(state_freq);
}
if (pattern_freq) ((*pattern_freq)[ptn_id])++;
added_sites++;
}
if (added_sites < nsite)
site_pattern.resize(added_sites);
} else if (strncmp(spec, "GENESITE,", 9) == 0) {
// resampling genes, then resampling sites within resampled genes
convert_int_vec(spec+9, site_vec);
int i;
IntVector begin_site;
for (i = 0, site = 0; i < site_vec.size(); i++) {
begin_site.push_back(site);
site += site_vec[i];
//cout << "site = " << site_vec[i] << endl;
}
if (site > getNSite())
outError("Sum of lengths exceeded alignment length");
for (i = 0; i < site_vec.size(); i++) {
int part = random_int(site_vec.size());
for (int j = 0; j < site_vec[part]; j++) {
site = random_int(site_vec[part]) + begin_site[part];
int ptn = aln->getPatternID(site);
Pattern pat = aln->at(ptn);
addPattern(pat, site);
if (pattern_freq) ((*pattern_freq)[ptn])++;
}
}
} else if (strncmp(spec, "GENE,", 5) == 0) {
// resampling genes instead of sites
convert_int_vec(spec+5, site_vec);
int i;
IntVector begin_site;
for (i = 0, site = 0; i < site_vec.size(); i++) {
begin_site.push_back(site);
site += site_vec[i];
//cout << "site = " << site_vec[i] << endl;
}
if (site > getNSite())
outError("Sum of lengths exceeded alignment length");
for (i = 0; i < site_vec.size(); i++) {
int part = random_int(site_vec.size());
for (site = begin_site[part]; site < begin_site[part] + site_vec[part]; site++) {
int ptn = aln->getPatternID(site);
Pattern pat = aln->at(ptn);
addPattern(pat, site);
if (pattern_freq) ((*pattern_freq)[ptn])++;
}
}
} else {
// special bootstrap
convert_int_vec(spec, site_vec);
if (site_vec.size() % 2 != 0)
outError("Bootstrap specification length is not divisible by 2");
nsite = 0;
int part, begin_site = 0, out_site = 0;
for (part = 0; part < site_vec.size(); part+=2)
nsite += site_vec[part+1];
site_pattern.resize(nsite, -1);
for (part = 0; part < site_vec.size(); part += 2) {
if (begin_site + site_vec[part] > aln->getNSite())
outError("Sum of lengths exceeded alignment length");
for (site = 0; site < site_vec[part+1]; site++) {
int site_id = random_int(site_vec[part]) + begin_site;
int ptn_id = aln->getPatternID(site_id);
Pattern pat = aln->at(ptn_id);
addPattern(pat, site + out_site);
if (pattern_freq) ((*pattern_freq)[ptn_id])++;
}
begin_site += site_vec[part];
out_site += site_vec[part+1];
}
}
if (!aln->site_state_freq.empty()) {
site_model = site_pattern;
ASSERT(site_state_freq.size() == getNPattern());
}
verbose_mode = save_mode;
countConstSite();
buildSeqStates();
}
void Alignment::createBootstrapAlignment(IntVector &pattern_freq, const char *spec) {
int nptn = getNPattern();
pattern_freq.resize(nptn, 0);
int *internal_freq = new int [nptn];
createBootstrapAlignment(internal_freq, spec);
for (int i = 0; i < nptn; i++)
pattern_freq[i] = internal_freq[i];
delete [] internal_freq;
}
void Alignment::createBootstrapAlignment(int *pattern_freq, const char *spec, int *rstream) {
int site, nsite = getNSite();
memset(pattern_freq, 0, getNPattern()*sizeof(int));
IntVector site_vec;
if (Params::getInstance().jackknife_prop > 0.0 && spec)
outError((string)"Unsupported jackknife with " + spec);
if (spec && strncmp(spec, "SCALE=", 6) == 0) {
// multi-scale bootstrapping called by AU test
int orig_nsite = nsite;
double scale = convert_double(spec+6);
nsite = (int)round(scale * nsite);
for (site = 0; site < nsite; site++) {
int site_id = random_int(orig_nsite, rstream);
int ptn_id = getPatternID(site_id);
pattern_freq[ptn_id]++;
}
} else if (!spec) {
int nptn = getNPattern();
if (nsite/8 < nptn || Params::getInstance().jackknife_prop > 0.0) {
IntVector sample;
random_resampling(nsite, sample, rstream);
for (site = 0; site < nsite; site++)
for (int rep = 0; rep < sample[site]; rep++) {
int ptn_id = getPatternID(site);
pattern_freq[ptn_id]++;
}
} else {
// BQM 2015-12-27: use multinomial sampling for faster generation if #sites is much larger than #patterns
int ptn;
double *prob = new double[nptn];
for (ptn = 0; ptn < nptn; ptn++)
prob[ptn] = at(ptn).frequency;
gsl_ran_multinomial(nptn, nsite, prob, (unsigned int*)pattern_freq, rstream);
int sum = 0;
for (ptn = 0; ptn < nptn; ptn++)
sum += pattern_freq[ptn];
ASSERT(sum == nsite);
delete [] prob;
}
} else if (strncmp(spec, "GENESITE,", 9) == 0) {
// resampling genes, then resampling sites within resampled genes
convert_int_vec(spec+9, site_vec);
int i;
IntVector begin_site;
for (i = 0, site = 0; i < site_vec.size(); i++) {
begin_site.push_back(site);
site += site_vec[i];
//cout << "site = " << site_vec[i] << endl;
}
if (site > getNSite())
outError("Sum of lengths exceeded alignment length");
for (i = 0; i < site_vec.size(); i++) {
int part = random_int(site_vec.size(), rstream);
for (int j = 0; j < site_vec[part]; j++) {
site = random_int(site_vec[part], rstream) + begin_site[part];
int ptn = getPatternID(site);
pattern_freq[ptn]++;
}
}
} else if (strncmp(spec, "GENE,", 5) == 0) {
// resampling genes instead of sites
convert_int_vec(spec+5, site_vec);
int i;
IntVector begin_site;
for (i = 0, site = 0; i < site_vec.size(); i++) {
begin_site.push_back(site);
site += site_vec[i];
//cout << "site = " << site_vec[i] << endl;
}
if (site > getNSite())
outError("Sum of lengths exceeded alignment length");
for (i = 0; i < site_vec.size(); i++) {
int part = random_int(site_vec.size(), rstream);
for (site = begin_site[part]; site < begin_site[part] + site_vec[part]; site++) {
int ptn = getPatternID(site);
pattern_freq[ptn]++;
}
}
} else {
// resampling sites within genes
try {
convert_int_vec(spec, site_vec);
} catch (...) {
outError("-bsam not allowed for non-partition model");
}
if (site_vec.size() % 2 != 0)
outError("Bootstrap specification length is not divisible by 2");
int part, begin_site = 0, out_site = 0;
for (part = 0; part < site_vec.size(); part += 2) {
if (begin_site + site_vec[part] > getNSite())
outError("Sum of lengths exceeded alignment length");
for (site = 0; site < site_vec[part+1]; site++) {
int site_id = random_int(site_vec[part], rstream) + begin_site;
int ptn_id = getPatternID(site_id);
pattern_freq[ptn_id]++;
}
begin_site += site_vec[part];
out_site += site_vec[part+1];
}
}
}
void Alignment::buildFromPatternFreq(Alignment & aln, IntVector new_pattern_freqs){
int nsite = aln.getNSite();
seq_names.insert(seq_names.begin(), aln.seq_names.begin(), aln.seq_names.end());
name = aln.name;
model_name = aln.model_name;
sequence_type = aln.sequence_type;
position_spec = aln.position_spec;
aln_file = aln.aln_file;
num_states = aln.num_states;
seq_type = aln.seq_type;
genetic_code = aln.genetic_code;
STATE_UNKNOWN = aln.STATE_UNKNOWN;
site_pattern.resize(nsite, -1);
clear();
pattern_index.clear();
int site = 0;
std::vector<Pattern>::iterator it;
int p;
for(it = aln.begin(), p = 0; it != aln.end(); ++it, ++p) {
if(new_pattern_freqs[p] > 0){
Pattern pat = *it;
addPattern(pat, site, new_pattern_freqs[p]);
for (int j = 0; j < new_pattern_freqs[p]; j++)
site_pattern[site++] = size()-1;
}
}
if (!aln.site_state_freq.empty()) {
site_model = site_pattern;
ASSERT(site_state_freq.size() == getNPattern());
}
countConstSite();
buildSeqStates();
// checkSeqName();
}
void Alignment::createGapMaskedAlignment(Alignment *masked_aln, Alignment *aln) {
if (masked_aln->getNSeq() != aln->getNSeq()) outError("Different number of sequences in masked alignment");
if (masked_aln->getNSite() != aln->getNSite()) outError("Different number of sites in masked alignment");
int site, nsite = aln->getNSite(), nseq = aln->getNSeq();
seq_names.insert(seq_names.begin(), aln->seq_names.begin(), aln->seq_names.end());
name = aln->name;
model_name = aln->model_name;
sequence_type = aln->sequence_type;
position_spec = aln->position_spec;
aln_file = aln->aln_file;
num_states = aln->num_states;
seq_type = aln->seq_type;
genetic_code = aln->genetic_code;
if (seq_type == SEQ_CODON) {
codon_table = new char[num_states];
memcpy(codon_table, aln->codon_table, num_states);
non_stop_codon = new char[strlen(genetic_code)];
memcpy(non_stop_codon, aln->non_stop_codon, strlen(genetic_code));
}
STATE_UNKNOWN = aln->STATE_UNKNOWN;
site_pattern.resize(nsite, -1);
clear();
pattern_index.clear();
IntVector name_map;
for (StrVector::iterator it = seq_names.begin(); it != seq_names.end(); it++) {
int seq_id = masked_aln->getSeqID(*it);
if (seq_id < 0) outError("Masked alignment does not contain taxon ", *it);
name_map.push_back(seq_id);
}
VerboseMode save_mode = verbose_mode;
verbose_mode = min(verbose_mode, VB_MIN); // to avoid printing gappy sites in addPattern
for (site = 0; site < nsite; site++) {
int ptn_id = aln->getPatternID(site);
Pattern pat = aln->at(ptn_id);
Pattern masked_pat = masked_aln->at(masked_aln->getPatternID(site));
for (int seq = 0; seq < nseq; seq++)
if (masked_pat[name_map[seq]] == STATE_UNKNOWN) pat[seq] = STATE_UNKNOWN;
addPattern(pat, site);
}
verbose_mode = save_mode;
countConstSite();
buildSeqStates();
}
void Alignment::shuffleAlignment() {
if (isSuperAlignment()) outError("Internal error: ", __func__);
my_random_shuffle(site_pattern.begin(), site_pattern.end());
}
void Alignment::concatenateAlignment(Alignment *aln) {
if (getNSeq() != aln->getNSeq()) outError("Different number of sequences in two alignments");
if (num_states != aln->num_states) outError("Different number of states in two alignments");
if (seq_type != aln->seq_type) outError("Different data type in two alignments");
int site, nsite = aln->getNSite();
int cur_sites = getNSite();
site_pattern.resize(cur_sites + nsite , -1);
IntVector name_map;
for (StrVector::iterator it = seq_names.begin(); it != seq_names.end(); it++) {
int seq_id = aln->getSeqID(*it);
if (seq_id < 0) outError("The other alignment does not contain taxon ", *it);
name_map.push_back(seq_id);
}
VerboseMode save_mode = verbose_mode;
verbose_mode = min(verbose_mode, VB_MIN); // to avoid printing gappy sites in addPattern
for (site = 0; site < nsite; site++) {
Pattern pat = aln->at(aln->getPatternID(site));
Pattern new_pat = pat;
for (int i = 0; i < name_map.size(); i++) new_pat[i] = pat[name_map[i]];
addPattern(new_pat, site + cur_sites);
}
verbose_mode = save_mode;
countConstSite();
buildSeqStates();
}
void Alignment::copyAlignment(Alignment *aln) {
int site, nsite = aln->getNSite();
seq_names.insert(seq_names.begin(), aln->seq_names.begin(), aln->seq_names.end());
name = aln->name;
model_name = aln->model_name;
sequence_type = aln->sequence_type;
position_spec = aln->position_spec;
aln_file = aln->aln_file;
num_states = aln->num_states;
seq_type = aln->seq_type;
genetic_code = aln->genetic_code;
if (seq_type == SEQ_CODON) {
codon_table = new char[num_states];
memcpy(codon_table, aln->codon_table, num_states);
non_stop_codon = new char[strlen(genetic_code)];
memcpy(non_stop_codon, aln->non_stop_codon, strlen(genetic_code));
}
STATE_UNKNOWN = aln->STATE_UNKNOWN;
site_pattern.resize(nsite, -1);
clear();
pattern_index.clear();
VerboseMode save_mode = verbose_mode;
verbose_mode = min(verbose_mode, VB_MIN); // to avoid printing gappy sites in addPattern
for (site = 0; site < nsite; site++) {
int site_id = site;
int ptn_id = aln->getPatternID(site_id);
Pattern pat = aln->at(ptn_id);
addPattern(pat, site);
}
verbose_mode = save_mode;
countConstSite();
buildSeqStates();
}
void Alignment::countConstSite() {
int num_const_sites = 0;
num_informative_sites = 0;
num_variant_sites = 0;
int num_invariant_sites = 0;
num_parsimony_sites = 0;
for (iterator it = begin(); it != end(); it++) {
if ((*it).isConst())
num_const_sites += (*it).frequency;
if (it->isInformative())
num_informative_sites += it->frequency;
if (it->isInvariant())
num_invariant_sites += it->frequency;
else
num_variant_sites += it->frequency;
}
frac_const_sites = ((double)num_const_sites) / getNSite();
frac_invariant_sites = ((double)num_invariant_sites) / getNSite();
}
string Alignment::getUnobservedConstPatterns() {
string ret = "";
for (char state = 0; state < num_states; state++)
if (!isStopCodon(state))
{
Pattern pat;
pat.resize(getNSeq(), state);
if (pattern_index.find(pat) == pattern_index.end()) {
// constant pattern is unobserved
ret.push_back(state);
}
}
return ret;
}
int Alignment::countProperChar(int seq_id) {
int num_proper_chars = 0;
for (iterator it = begin(); it != end(); it++) {
if ((*it)[seq_id] < num_states + pomo_sampled_states.size()) num_proper_chars+=(*it).frequency;
}
return num_proper_chars;
}
Alignment::~Alignment()
{
if (codon_table) {
delete [] codon_table;
codon_table = NULL;
}
if (non_stop_codon) {
delete [] non_stop_codon;
non_stop_codon = NULL;
}
if (pars_lower_bound) {
delete [] pars_lower_bound;
pars_lower_bound = NULL;
}
for (vector<double*>::reverse_iterator it = site_state_freq.rbegin(); it != site_state_freq.rend(); it++)
if (*it) delete [] (*it);
site_state_freq.clear();
site_model.clear();
}
double Alignment::computeObsDist(int seq1, int seq2) {
int diff_pos = 0, total_pos = 0;
for (iterator it = begin(); it != end(); it++) {
int state1 = convertPomoState((*it)[seq1]);
int state2 = convertPomoState((*it)[seq2]);
if (state1 < num_states && state2 < num_states) {
//if ((*it)[seq1] != STATE_UNKNOWN && (*it)[seq2] != STATE_UNKNOWN) {
total_pos += (*it).frequency;
if ((*it)[seq1] != (*it)[seq2] )
diff_pos += (*it).frequency;
}
}
if (!total_pos) {
if (verbose_mode >= VB_MED)
outWarning("No overlapping characters between " + getSeqName(seq1) + " and " + getSeqName(seq2));
return MAX_GENETIC_DIST; // return +INF if no overlap between two sequences
}
return ((double)diff_pos) / total_pos;
}
double Alignment::computeJCDist(int seq1, int seq2) {
double obs_dist = computeObsDist(seq1, seq2);
double z = (double)num_states / (num_states-1);
double x = 1.0 - (z * obs_dist);
if (x <= 0) {
// string str = "Too long distance between two sequences ";
// str += getSeqName(seq1);
// str += " and ";
// str += getSeqName(seq2);
// outWarning(str);
return MAX_GENETIC_DIST;
}
return -log(x) / z;
}
void Alignment::printDist(ostream &out, double *dist_mat) {
int nseqs = getNSeq();
int max_len = getMaxSeqNameLength();
if (max_len < 10) max_len = 10;
out << nseqs << endl;
int pos = 0;
out.precision(max((int)ceil(-log10(Params::getInstance().min_branch_length))+1, 6));
out << fixed;
for (int seq1 = 0; seq1 < nseqs; seq1 ++) {
out.width(max_len);
out << left << getSeqName(seq1) << " ";
for (int seq2 = 0; seq2 < nseqs; seq2 ++) {
out << dist_mat[pos++];
/*if (seq2 % 7 == 6) {
out << endl;
out.width(max_len+1);
} */
out << " ";
}
out << endl;
}
}
void Alignment::printDist(const char *file_name, double *dist_mat) {
try {
ofstream out;
out.exceptions(ios::failbit | ios::badbit);
out.open(file_name);
printDist(out, dist_mat);
out.close();
//cout << "Distance matrix was printed to " << file_name << endl;
} catch (ios::failure) {
outError(ERR_WRITE_OUTPUT, file_name);
}
}
double Alignment::readDist(istream &in, double *dist_mat) {
double longest_dist = 0.0;
int nseqs;
in >> nseqs;
if (nseqs != getNSeq())
throw "Distance file has different number of taxa";
double *tmp_dist_mat = new double[nseqs * nseqs];
std::map< string, int > map_seqName_ID;
int pos = 0, seq1, seq2, id = 0;
// read in distances to a temporary array
for (seq1 = 0; seq1 < nseqs; seq1++) {
string seq_name;
in >> seq_name;
// assign taxa name to integer id
map_seqName_ID[seq_name] = id++;
/*
if (seq_name != getSeqName(seq1))
throw "Sequence name " + seq_name + " is different from " + getSeqName(seq1);
for (seq2 = 0; seq2 < nseqs; seq2++) {
in >> dist_mat[pos++];
if (dist_mat[pos-1] > longest_dist)
longest_dist = dist_mat[pos-1];
}
*/
for (seq2 = 0; seq2 < nseqs; seq2++) {
in >> tmp_dist_mat[pos++];
//cout << tmp_dist_mat[pos - 1] << " ";
if (tmp_dist_mat[pos - 1] > longest_dist)
longest_dist = tmp_dist_mat[pos - 1];
}
//cout << endl;
}
//cout << "Internal distance matrix: " << endl;
// Now initialize the internal distance matrix, in which the sequence order is the same
// as in the alignment
for (seq1 = 0; seq1 < nseqs; seq1++) {
for (seq2 = 0; seq2 < nseqs; seq2++) {
string seq1Name = getSeqName(seq1);
string seq2Name = getSeqName(seq2);
if (map_seqName_ID.count(seq1Name) == 0) {
throw "Could not find taxa name " + seq1Name;
}
if (map_seqName_ID.count(seq2Name) == 0) {
throw "Could not find taxa name " + seq2Name;
}
int seq1_tmp_id = map_seqName_ID[seq1Name];
int seq2_tmp_id = map_seqName_ID[seq2Name];
dist_mat[seq1 * nseqs + seq2] = tmp_dist_mat[seq1_tmp_id * nseqs + seq2_tmp_id];
//cout << dist_mat[seq1 * nseqs + seq2] << " ";
}
//cout << endl;
}
// check for symmetric matrix
for (seq1 = 0; seq1 < nseqs-1; seq1++) {
if (dist_mat[seq1*nseqs+seq1] != 0.0)
throw "Diagonal elements of distance matrix is not ZERO";
for (seq2 = seq1+1; seq2 < nseqs; seq2++)
if (dist_mat[seq1*nseqs+seq2] != dist_mat[seq2*nseqs+seq1])
throw "Distance between " + getSeqName(seq1) + " and " + getSeqName(seq2) + " is not symmetric";
}
/*
string dist_file = params.out_prefix;
dist_file += ".userdist";
printDist(dist_file.c_str(), dist_mat);*/
delete [] tmp_dist_mat;
return longest_dist;
}
double Alignment::readDist(const char *file_name, double *dist_mat) {
double longest_dist = 0.0;
try {
ifstream in;
in.exceptions(ios::failbit | ios::badbit);
in.open(file_name);
longest_dist = readDist(in, dist_mat);
in.close();
cout << "Distance matrix was read from " << file_name << endl;
} catch (const char *str) {
outError(str);
} catch (string str) {
outError(str);
} catch (ios::failure) {
outError(ERR_READ_INPUT, file_name);
}
return longest_dist;
}
// TODO DS: This only works when the sampling method is SAMPLING_SAMPLED or when
// the virtual population size is also the sample size (for every species and
// every site).
void Alignment::computeStateFreq (double *state_freq, size_t num_unknown_states) {
int i, j;
double *states_app = new double[num_states*(STATE_UNKNOWN+1)];
double *new_freq = new double[num_states];
unsigned *state_count = new unsigned[STATE_UNKNOWN+1];
double *new_state_freq = new double[num_states];
memset(state_count, 0, sizeof(unsigned)*(STATE_UNKNOWN+1));
state_count[(int)STATE_UNKNOWN] = num_unknown_states;
for (i = 0; i <= STATE_UNKNOWN; i++)
getAppearance(i, &states_app[i*num_states]);
size_t aln_len = 0;
for (iterator it = begin(); it != end(); it++) {
aln_len += it->frequency;
for (Pattern::iterator it2 = it->begin(); it2 != it->end(); it2++)
state_count[convertPomoState((int)*it2)] += it->frequency;
}
for (i = 0; i < num_states; i++)
state_freq[i] = 1.0/num_states;
const int NUM_TIME = 8;
if (aln_len > 0)
for (int k = 0; k < NUM_TIME; k++) {
memset(new_state_freq, 0, sizeof(double)*num_states);
for (i = 0; i <= STATE_UNKNOWN; i++) {
if (state_count[i] == 0) continue;
double sum_freq = 0.0;
for (j = 0; j < num_states; j++) {
new_freq[j] = state_freq[j] * states_app[i*num_states+j];
sum_freq += new_freq[j];
}
sum_freq = 1.0/sum_freq;
for (j = 0; j < num_states; j++) {
new_state_freq[j] += new_freq[j]*sum_freq*state_count[i];
}
}
double sum_freq = 0.0;
for (j = 0; j < num_states; j++)
sum_freq += new_state_freq[j];
sum_freq = 1.0/sum_freq;
for (j = 0; j < num_states; j++)
state_freq[j] = new_state_freq[j]*sum_freq;
}
convfreq(state_freq);
if (verbose_mode >= VB_MED) {
cout << "Empirical state frequencies: ";
cout << setprecision(10);
for (i = 0; i < num_states; i++)
cout << state_freq[i] << " ";
cout << endl;
}
delete [] new_state_freq;
delete [] state_count;
delete [] new_freq;
delete [] states_app;
}
int Alignment::convertPomoState(int state) {
// This map from an observed state to a PoMo state influences parsimony
// construction and the +I likelihood computation. It should not make too much
// of a difference though.
if (seq_type != SEQ_POMO) return state;
if (state < num_states) return state;
if (state == STATE_UNKNOWN) return state;
state -= num_states;
if (pomo_sampled_states.size() <= 0)
outError("Alignment file is too short.");
if (state >= pomo_sampled_states.size()) {
cout << "state: " << state << endl;
cout << "pomo_sampled_states.size(): " << pomo_sampled_states.size() << endl;
}
ASSERT(state < pomo_sampled_states.size());
int id1 = pomo_sampled_states[state] & 3;
int id2 = (pomo_sampled_states[state] >> 16) & 3;
int value1 = (pomo_sampled_states[state] >> 2) & 16383;
int value2 = pomo_sampled_states[state] >> 18;
int N = virtual_pop_size;
int M = value1 + value2;
// Mon Jun 13 13:24:55 CEST 2016. This is a stochastic way to assign PoMo
// states. This is important if the sample size is small.
// double stoch = (double) rand() / RAND_MAX - 0.5;
// stoch /= 2.0;
// int pick = (int)round(((double) value1*N/M) + stoch);
// Fri Aug 18 15:37:22 BST 2017 However, Minh prefers a deterministic way
// that, necessarily, introduces some systematic error.
// BQM: Prefer the state with highest likelihood.
// TODO: How to break tie? E.g., 4A4C but N=9? This way always prefers the
// first allele (which is equivalent to a bias towards A and C, kind of).
int pick = (int)round(((double) value1*N/M));
int real_state;
if (pick <= 0)
real_state = id2;
else if (pick >= N)
real_state = id1;
else {
int j;
if (id1 == 0) j = id2 - 1;
else j = id1 + id2;
real_state = 3 + j*(N-1) + pick;
}
state = real_state;
ASSERT(state < num_states);
return state;
}
void Alignment::computeAbsoluteStateFreq(unsigned int *abs_state_freq) {
memset(abs_state_freq, 0, num_states * sizeof(unsigned int));
if (seq_type == SEQ_POMO) {
for (iterator it = begin(); it != end(); it++)
for (Pattern::iterator it2 = it->begin(); it2 != it->end(); it2++)
abs_state_freq[convertPomoState((int)*it2)] += it->frequency;
} else {
for (iterator it = begin(); it != end(); it++)
for (Pattern::iterator it2 = it->begin(); it2 != it->end(); it2++)
abs_state_freq[(int)*it2] += it->frequency;
}
}
void Alignment::countStatePerSequence (unsigned *count_per_sequence) {
int i;
int nseqs = getNSeq();
memset(count_per_sequence, 0, sizeof(unsigned)*num_states*nseqs);
for (iterator it = begin(); it != end(); it++)
for (i = 0; i != nseqs; i++) {
int state = convertPomoState(it->at(i));
if (state < num_states) {
count_per_sequence[i*num_states + state] += it->frequency;
}
}
}
void Alignment::computeStateFreqPerSequence (double *freq_per_sequence) {
int i, j;
int nseqs = getNSeq();
double *states_app = new double[num_states*(STATE_UNKNOWN+1)];
double *new_freq = new double[num_states];
unsigned *state_count = new unsigned[(STATE_UNKNOWN+1)*nseqs];
double *new_state_freq = new double[num_states];
memset(state_count, 0, sizeof(unsigned)*(STATE_UNKNOWN+1)*nseqs);
for (i = 0; i <= STATE_UNKNOWN; i++)
getAppearance(i, &states_app[i*num_states]);
for (iterator it = begin(); it != end(); it++)
for (i = 0; i != nseqs; i++) {
state_count[i*(STATE_UNKNOWN+1) + it->at(i)] += it->frequency;
}
double equal_freq = 1.0/num_states;
for (i = 0; i < num_states*nseqs; i++)
freq_per_sequence[i] = equal_freq;
const int NUM_TIME = 8;
for (int k = 0; k < NUM_TIME; k++) {
for (int seq = 0; seq < nseqs; seq++) {
double *state_freq = &freq_per_sequence[seq*num_states];
memset(new_state_freq, 0, sizeof(double)*num_states);
for (i = 0; i <= STATE_UNKNOWN; i++) {
if (state_count[seq*(STATE_UNKNOWN+1)+i] == 0) continue;
double sum_freq = 0.0;
for (j = 0; j < num_states; j++) {
new_freq[j] = state_freq[j] * states_app[i*num_states+j];
sum_freq += new_freq[j];
}
sum_freq = 1.0/sum_freq;
for (j = 0; j < num_states; j++) {
new_state_freq[j] += new_freq[j]*sum_freq*state_count[seq*(STATE_UNKNOWN+1)+i];
}
}
double sum_freq = 0.0;
for (j = 0; j < num_states; j++)
sum_freq += new_state_freq[j];
sum_freq = 1.0/sum_freq;
for (j = 0; j < num_states; j++)
state_freq[j] = new_state_freq[j]*sum_freq;
}
}
// convfreq(state_freq);
//
// if (verbose_mode >= VB_MED) {
// cout << "Empirical state frequencies: ";
// for (i = 0; i < num_states; i++)
// cout << state_freq[i] << " ";
// cout << endl;
// }
delete [] new_state_freq;
delete [] state_count;
delete [] new_freq;
delete [] states_app;
}
//void Alignment::computeStateFreq (double *stateFrqArr) {
// int stateNo_;
// int nState_ = num_states;
// int nseqs = getNSeq();
// double *timeAppArr_ = new double[num_states];
// double *siteAppArr_ = new double[num_states]; //App = appearance
// double *newSiteAppArr_ = new double[num_states];
//
// for (stateNo_ = 0; stateNo_ < nState_; stateNo_ ++)
// stateFrqArr [ stateNo_ ] = 1.0 / nState_;
//
// int NUM_TIME = 8;
// //app = appeareance
// if (verbose_mode >= VB_MED)
// cout << "Computing state frequencies..." << endl;
// for (int time_ = 0; time_ < NUM_TIME; time_ ++)
// {
// for (stateNo_ = 0; stateNo_ < nState_; stateNo_ ++)
// timeAppArr_[stateNo_] = 0.0;
//
// for (iterator it = begin(); it != end(); it++)
// for (int i = 0; i < (*it).frequency; i++)
// {
// for (int seq = 0; seq < nseqs; seq++) {
// int stateNo_ = (*it)[seq];
//
// getAppearance (stateNo_, siteAppArr_);
//
// double totalSiteApp_ = 0.0;
// for (stateNo_ = 0; stateNo_ < nState_; stateNo_ ++) {
// newSiteAppArr_[stateNo_] = stateFrqArr[stateNo_] * siteAppArr_[stateNo_];
// totalSiteApp_ += newSiteAppArr_[stateNo_];
// }
// totalSiteApp_ = 1.0 / totalSiteApp_;
//
// for (stateNo_ = 0; stateNo_ < nState_; stateNo_ ++)
// timeAppArr_[stateNo_] += newSiteAppArr_[stateNo_] * totalSiteApp_;
// }
// }
//
// double totalTimeApp_ = 0.0;
// int stateNo_;
// for (stateNo_ = 0; stateNo_ < nState_; stateNo_ ++)
// totalTimeApp_ += timeAppArr_[stateNo_];
//
//
// for (stateNo_ = 0; stateNo_ < nState_; stateNo_ ++)
// stateFrqArr[stateNo_] = timeAppArr_[stateNo_] / totalTimeApp_;
//
// } //end of for time_
//
// // std::cout << "state frequency ..." << endl;
// // for (stateNo_ = 0; stateNo_ < nState_; stateNo_ ++)
// // std::cout << stateFrqArr[stateNo_] << endl;
//
// convfreq(stateFrqArr);
//
// if (verbose_mode >= VB_MED) {
// cout << "Empirical state frequencies: ";
// for (stateNo_ = 0; stateNo_ < nState_; stateNo_ ++)
// cout << stateFrqArr[stateNo_] << " ";
// cout << endl;
// }
// delete [] newSiteAppArr_;
// delete [] siteAppArr_;
// delete [] timeAppArr_;
//
//}
void Alignment::getAppearance(StateType state, double *state_app) {
int i;
if (state == STATE_UNKNOWN) {
for (i = 0; i < num_states; i++)
state_app[i] = 1.0;
return;
}
memset(state_app, 0, num_states * sizeof(double));
if (state < num_states) {
state_app[(int)state] = 1.0;
return;
}
// ambiguous characters
int ambi_aa[] = {4+8, 32+64, 512+1024};
switch (seq_type) {
case SEQ_DNA:
state -= (num_states-1);
for (i = 0; i < num_states; i++)
if (state & (1 << i)) {
state_app[i] = 1.0;
}
break;
case SEQ_PROTEIN:
ASSERT(state<23);
state -= 20;
for (i = 0; i < 11; i++)
if (ambi_aa[(int)state] & (1<<i)) {
state_app[i] = 1.0;
}
break;
case SEQ_POMO:
// state -= num_states;
// assert(state < pomo_sampled_states.size());
// // count the number of nucleotides
// state_app[pomo_sampled_states[state] & 3] = 1.0;
// state_app[(pomo_sampled_states[state] >> 16) & 3] = 1.0;
state_app[convertPomoState(state)] = 1.0;
break;
default: ASSERT(0); break;
}
}
void Alignment::getAppearance(StateType state, StateBitset &state_app) {
int i;
if (state == STATE_UNKNOWN) {
state_app.set();
return;
}
state_app.reset();
if (state < num_states) {
state_app[(int)state] = 1;
return;
}
// ambiguous characters
int ambi_aa[] = {4+8, 32+64, 512+1024};
switch (seq_type) {
case SEQ_DNA:
state -= (num_states-1);
for (i = 0; i < num_states; i++)
if (state & (1 << i)) {
state_app[i] = 1;
}
break;
case SEQ_PROTEIN:
if (state >= 23) return;
state -= 20;
for (i = 0; i < 11; i++)
if (ambi_aa[(int)state] & (1<<i)) {
state_app[i] = 1;
}
break;
case SEQ_POMO:
// state -= num_states;
// assert(state < pomo_sampled_states.size());
// // count the number of nucleotides
// state_app[pomo_sampled_states[state] & 3] = 1;
// state_app[(pomo_sampled_states[state] >> 16) & 3] = 1;
state_app[convertPomoState(state)] = 1;
break;
default: ASSERT(0); break;
}
}
void Alignment::computeCodonFreq(StateFreqType freq, double *state_freq, double *ntfreq) {
int nseqs = getNSeq();
int i, j;
if (freq == FREQ_CODON_1x4) {
memset(ntfreq, 0, sizeof(double)*4);
for (iterator it = begin(); it != end(); it++) {
for (int seq = 0; seq < nseqs; seq++) if ((*it)[seq] != STATE_UNKNOWN) {
int codon = codon_table[(int)(*it)[seq]];
// int codon = (int)(*it)[seq];
int nt1 = codon / 16;
int nt2 = (codon % 16) / 4;
int nt3 = codon % 4;
ntfreq[nt1] += (*it).frequency;
ntfreq[nt2] += (*it).frequency;
ntfreq[nt3] += (*it).frequency;
}
}
double sum = 0;
for (i = 0; i < 4; i++)
sum += ntfreq[i];
for (i = 0; i < 4; i++)
ntfreq[i] /= sum;
if (verbose_mode >= VB_MED) {
for (i = 0; i < 4; i++)
cout << " " << symbols_dna[i] << ": " << ntfreq[i];
cout << endl;
}
memcpy(ntfreq+4, ntfreq, sizeof(double)*4);
memcpy(ntfreq+8, ntfreq, sizeof(double)*4);
sum = 0.0;
for (i = 0; i < num_states; i++) {
int codon = codon_table[i];
state_freq[i] = ntfreq[codon/16] * ntfreq[(codon%16)/4] * ntfreq[codon%4];
if (isStopCodon(i)) {
// sum_stop += state_freq[i];
state_freq[i] = MIN_FREQUENCY;
} else {
sum += state_freq[i];
}
}
// sum = (1.0-sum)/(1.0-sum_stop);
sum = 1.0/sum;
for (i = 0; i < num_states; i++)
if (!isStopCodon(i))
state_freq[i] *= sum;
sum = 0.0;
for (i = 0; i < num_states; i++)
sum += state_freq[i];
ASSERT(fabs(sum-1.0)<1e-5);
} else if (freq == FREQ_CODON_3x4) {
// F3x4 frequency model
memset(ntfreq, 0, sizeof(double)*12);
for (iterator it = begin(); it != end(); it++) {
for (int seq = 0; seq < nseqs; seq++) if ((*it)[seq] != STATE_UNKNOWN) {
int codon = codon_table[(int)(*it)[seq]];
// int codon = (int)(*it)[seq];
int nt1 = codon / 16;
int nt2 = (codon % 16) / 4;
int nt3 = codon % 4;
ntfreq[nt1] += (*it).frequency;
ntfreq[4+nt2] += (*it).frequency;
ntfreq[8+nt3] += (*it).frequency;
}
}
for (j = 0; j < 12; j+=4) {
double sum = 0;
for (i = 0; i < 4; i++)
sum += ntfreq[i+j];
for (i = 0; i < 4; i++)
ntfreq[i+j] /= sum;
if (verbose_mode >= VB_MED) {
for (i = 0; i < 4; i++)
cout << " " << symbols_dna[i] << ": " << ntfreq[i+j];
cout << endl;
}
}
// double sum_stop=0.0;
double sum = 0.0;
for (i = 0; i < num_states; i++) {
int codon = codon_table[i];
state_freq[i] = ntfreq[codon/16] * ntfreq[4+(codon%16)/4] * ntfreq[8+codon%4];
if (isStopCodon(i)) {
// sum_stop += state_freq[i];
state_freq[i] = MIN_FREQUENCY;
} else {
sum += state_freq[i];
}
}
// sum = (1.0-sum)/(1.0-sum_stop);
sum = 1.0 / sum;
for (i = 0; i < num_states; i++)
if (!isStopCodon(i))
state_freq[i] *= sum;
sum = 0.0;
for (i = 0; i < num_states; i++)
sum += state_freq[i];
ASSERT(fabs(sum-1.0)<1e-5);
// double sum = 0;
// for (i = 0; i < num_states; i++)
// if (isStopCodon(i)) {
// state_freq[i] = 0.0;
// } else {
// //int codon = codon_table[i];
// int codon = i;
// state_freq[i] = ntfreq[codon/16] * ntfreq[4+(codon%16)/4] * ntfreq[8+codon%4];
// sum += state_freq[i];
// }
// for (i = 0; i < num_states; i++)
// state_freq[i] /= sum;
// now recompute ntfreq based on state_freq
// memset(ntfreq, 0, 12*sizeof(double));
// for (i = 0; i < num_states; i++)
// if (!isStopCodon(i)) {
// int nt1 = i / 16;
// int nt2 = (i % 16) / 4;
// int nt3 = i % 4;
// ntfreq[nt1] += state_freq[i];
// ntfreq[nt2+4] += state_freq[i];
// ntfreq[nt3+8] += state_freq[i];
// }
// for (j = 0; j < 12; j+=4) {
// double sum = 0;
// for (i = 0; i < 4; i++)
// sum += ntfreq[i+j];
// for (i = 0; i < 4; i++)
// ntfreq[i+j] /= sum;
// if (verbose_mode >= VB_MED) {
// for (i = 0; i < 4; i++)
// cout << " " << symbols_dna[i] << ": " << ntfreq[i+j];
// cout << endl;
// }
// }
} else if (freq == FREQ_CODON_3x4C) {
outError("F3X4C not yet implemented. Contact authors if you really need it.");
} else if (freq == FREQ_EMPIRICAL || freq == FREQ_ESTIMATE) {
memset(state_freq, 0, num_states*sizeof(double));
i = 0;
for (iterator it = begin(); it != end(); it++, i++)
for (int seq = 0; seq < nseqs; seq++) {
int state = it->at(seq);
if (state >= num_states) continue;
state_freq[state] += it->frequency;
}
double sum = 0.0;
for (i = 0; i < num_states; i++)
sum += state_freq[i];
for (i = 0; i < num_states; i++)
state_freq[i] /= sum;
} else {
outError("Unsupported codon frequency");
}
convfreq(state_freq);
}
void Alignment::computeDivergenceMatrix(double *rates) {
int i, j, k;
ASSERT(rates);
int nseqs = getNSeq();
unsigned *pair_rates = new unsigned[num_states*num_states];
memset(pair_rates, 0, sizeof(unsigned)*num_states*num_states);
// for (i = 0; i < num_states; i++) {
// pair_rates[i] = new double[num_states];
// memset(pair_rates[i], 0, sizeof(double)*num_states);
// }
unsigned *state_freq = new unsigned[STATE_UNKNOWN+1];
for (iterator it = begin(); it != end(); it++) {
memset(state_freq, 0, sizeof(unsigned)*(STATE_UNKNOWN+1));
for (i = 0; i < nseqs; i++) {
state_freq[(int)it->at(i)]++;
}
for (i = 0; i < num_states; i++) {
if (state_freq[i] == 0) continue;
pair_rates[i*num_states+i] += (state_freq[i]*(state_freq[i]-1)/2)*it->frequency;
for (j = i+1; j < num_states; j++)
pair_rates[i*num_states+j] += state_freq[i]*state_freq[j]*it->frequency;
}
// int state1 = it->at(i);
// if (state1 >= num_states) continue;
// int *this_pair = pair_rates + state1*num_states;
// for (j = i+1; j < nseqs; j++) {
// int state2 = it->at(j);
// if (state2 < num_states) this_pair[state2] += it->frequency;
// }
// }
}
k = 0;
double last_rate = pair_rates[(num_states-2)*num_states+num_states-1] + pair_rates[(num_states-1)*num_states+num_states-2];
if (last_rate == 0) last_rate = 1;
for (i = 0; i < num_states-1; i++)
for (j = i+1; j < num_states; j++) {
rates[k++] = (pair_rates[i*num_states+j] + pair_rates[j*num_states+i]) / last_rate;
// BIG WARNING: zero rates might cause numerical instability!
// if (rates[k-1] <= 0.0001) rates[k-1] = 0.01;
// if (rates[k-1] > 100.0) rates[k-1] = 50.0;
}
rates[k-1] = 1;
if (verbose_mode >= VB_MAX) {
cout << "Empirical rates: ";
for (k = 0; k < num_states*(num_states-1)/2; k++)
cout << rates[k] << " ";
cout << endl;
}
// for (i = num_states-1; i >= 0; i--) {
// delete [] pair_rates[i];
// }
delete [] state_freq;
delete [] pair_rates;
}
void Alignment::computeDivergenceMatrixNonRev (double *rates) {
double *rates_mat = new double[num_states*num_states];
int i, j, k;
computeDivergenceMatrix(rates);
for (i = 0, k = 0; i < num_states-1; i++)
for (j = i+1; j < num_states; j++)
rates_mat[i*num_states+j] = rates_mat[j*num_states+i] = rates[k++];
for (i = 0, k = 0; i < num_states; i++)
for (j = 0; j < num_states; j++)
if (j != i) rates[k++] = rates_mat[i*num_states+j];
delete [] rates_mat;
}
void Alignment::convfreq(double *stateFrqArr) {
if (Params::getInstance().keep_zero_freq)
return;
int i, maxi=0;
double freq, maxfreq, sum;
int zero_states = 0;
sum = 0.0;
maxfreq = 0.0;
for (i = 0; i < num_states; i++)
{
freq = stateFrqArr[i];
// Do not check for a minimum frequency with PoMo because very
// low frequencies are expected for polymorphic sites.
if ((freq < MIN_FREQUENCY) &&
(seq_type != SEQ_POMO)) {
stateFrqArr[i] = MIN_FREQUENCY;
}
if (freq > maxfreq) {
maxfreq = freq;
maxi = i;
}
sum += stateFrqArr[i];
}
stateFrqArr[maxi] += 1.0 - sum;
// make state frequencies a bit different from each other
// for (i = 0; i < num_states - 1; i++)
// if (!isStopCodon(i))
// for (j = i + 1; j < num_states; j++)
// if (!isStopCodon(j))
// if (stateFrqArr[i] == stateFrqArr[j]) {
// stateFrqArr[i] += MIN_FREQUENCY_DIFF;
// stateFrqArr[j] -= MIN_FREQUENCY_DIFF;
// }
if (zero_states) {
cout << "WARNING: " << zero_states << " states not present in alignment that might cause numerical instability" << endl;
}
} /* convfreq */
double Alignment::computeUnconstrainedLogL() {
int nptn = size();
double logl = 0.0;
int nsite = getNSite(), i;
double lognsite = log(nsite);
for (i = 0; i < nptn; i++)
logl += (log(at(i).frequency) - lognsite) * at(i).frequency;
return logl;
}
void Alignment::printSiteGaps(const char *filename) {
try {
ofstream out;
out.exceptions(ios::failbit | ios::badbit);
out.open(filename);
int nsite = getNSite();
out << nsite << endl << "Site_Gap ";
for (int site = 0; site < getNSite(); site++) {
out << " " << at(getPatternID(site)).computeGapChar(num_states, STATE_UNKNOWN);
}
out << endl << "Site_Ambi ";
for (int site = 0; site < getNSite(); site++) {
out << " " << at(getPatternID(site)).computeAmbiguousChar(num_states);
}
out << endl;
out.close();
cout << "Site gap-counts printed to " << filename << endl;
} catch (ios::failure) {
outError(ERR_WRITE_OUTPUT, filename);
}
}
void Alignment::getPatternFreq(IntVector &freq) {
freq.resize(getNPattern());
int cnt = 0;
for (iterator it = begin(); it < end(); it++, cnt++)
freq[cnt] = (*it).frequency;
}
void Alignment::getPatternFreq(int *freq) {
int cnt = 0;
for (iterator it = begin(); it < end(); it++, cnt++)
freq[cnt] = (*it).frequency;
}
//added by MA
void Alignment::multinomialProb(Alignment refAlign, double &prob)
{
// cout << "Computing the probability of this alignment given the multinomial distribution determined by a reference alignment ..." << endl;
//should we check for compatibility of sequence's names and sequence's order in THIS alignment and in the objectAlign??
//check alignment length
int nsite = getNSite();
ASSERT(nsite == refAlign.getNSite());
double sumFac = 0;
double sumProb = 0;
double fac = logFac(nsite);
int index;
for ( iterator it = begin(); it != end() ; it++)
{
PatternIntMap::iterator pat_it = refAlign.pattern_index.find((*it));
if ( pat_it == refAlign.pattern_index.end() ) //not found ==> error
outError("Pattern in the current alignment is not found in the reference alignment!");
sumFac += logFac((*it).frequency);
index = pat_it->second;
sumProb += (double)(*it).frequency*log((double)refAlign.at(index).frequency/(double)nsite);
}
prob = fac - sumFac + sumProb;
}
void Alignment::multinomialProb (DoubleVector logLL, double &prob)
{
//cout << "Function in Alignment: Compute probability of the expected alignment (determined by patterns log-likelihood under some tree and model) given THIS alignment." << endl;
//The expected normalized requencies
IntVector expectedNorFre;
if ( logLL.empty())
outError("Error: log likelihood of patterns are not given!");
int patNum = getNPattern();
ASSERT(logLL.size() == patNum);
int alignLen = getNSite();
//resize the expectedNorFre vector
expectedNorFre.resize(patNum,-1);
//Vector containing the 'relative' likelihood of the pattern p_i
DoubleVector LL(patNum,-1.0);
double sumLL = 0; //sum of the likelihood of the patterns in the alignment
double max_logl = *max_element(logLL.begin(), logLL.end()); // to rescale the log-likelihood
//Compute the `relative' (to the first pattern) likelihood from the logLL
for ( int i = 0; i < patNum; i++ )
{
LL[i] = exp(logLL[i]-max_logl);
//LL[i] = exp(logLL[i]);
sumLL += LL[i];
}
//Vector containing l_i = p_i*ell/sum_i(p_i)
DoubleVector ell(patNum, -1.0);
//Compute l_i
for ( int i = 0; i < patNum; i++ )
{
ell[i] = (double)alignLen * LL[i] / sumLL;
}
//Vector containing r_i where r_0 = ell_0; r_{i+1} = ell_{i+1} + r_i - ordinaryRounding(r_i)
DoubleVector r(patNum, -1.0);
//Compute r_i and the expected normalized frequencies
r[0] = ell[0];
expectedNorFre[0] = (int)floor(ell[0]+0.5); //note that floor(_number+0.5) returns the ordinary rounding of _number
//int sum = expectedNorFre[0];
for (int j = 1; j < patNum; j++ )
{
r[j] = ell[j] + r[j-1] - floor(r[j-1]+0.5);
expectedNorFre[j] = (int)floor(r[j]+0.5);
//sum += expectedNorFre[j];
}
//cout << "Number of patterns: " << patNum << ", sum of expected sites: " << sum << endl;
//return expectedNorFre;
//compute the probability of having expectedNorFre given the observed pattern frequencies of THIS alignment
double sumFac = 0;
double sumProb = 0;
double fac = logFac(alignLen);
for (int patID = 0; patID < patNum; patID++) {
int patFre = expectedNorFre[patID];
sumFac += logFac(patFre);
sumProb += (double)patFre*log((double)at(patID).frequency/(double)alignLen);
}
prob = fac - sumFac + sumProb;
}
void Alignment::multinomialProb (double *logLL, double &prob)
{
//cout << "Function in Alignment: Compute probability of the expected alignment (determined by patterns log-likelihood under some tree and model) given THIS alignment." << endl;
//The expected normalized requencies
IntVector expectedNorFre;
/* if ( logLL.empty())
outError("Error: log likelihood of patterns are not given!");*/
int patNum = getNPattern();
//assert(logLL.size() == patNum);
int alignLen = getNSite();
//resize the expectedNorFre vector
expectedNorFre.resize(patNum,-1);
//Vector containing the 'relative' likelihood of the pattern p_i
DoubleVector LL(patNum,-1.0);
double sumLL = 0; //sum of the likelihood of the patterns in the alignment
double max_logl = *max_element(logLL, logLL + patNum); // to rescale the log-likelihood
//Compute the `relative' (to the first pattern) likelihood from the logLL
for ( int i = 0; i < patNum; i++ )
{
LL[i] = exp(logLL[i]-max_logl);
//LL[i] = exp(logLL[i]);
sumLL += LL[i];
}
//Vector containing l_i = p_i*ell/sum_i(p_i)
DoubleVector ell(patNum, -1.0);
//Compute l_i
for ( int i = 0; i < patNum; i++ )
{
ell[i] = (double)alignLen * LL[i] / sumLL;
}
//Vector containing r_i where r_0 = ell_0; r_{i+1} = ell_{i+1} + r_i - ordinaryRounding(r_i)
DoubleVector r(patNum, -1.0);
//Compute r_i and the expected normalized frequencies
r[0] = ell[0];
expectedNorFre[0] = (int)floor(ell[0]+0.5); //note that floor(_number+0.5) returns the ordinary rounding of _number
//int sum = expectedNorFre[0];
for (int j = 1; j < patNum; j++ )
{
r[j] = ell[j] + r[j-1] - floor(r[j-1]+0.5);
expectedNorFre[j] = (int)floor(r[j]+0.5);
//sum += expectedNorFre[j];
}
//cout << "Number of patterns: " << patNum << ", sum of expected sites: " << sum << endl;
//return expectedNorFre;
//compute the probability of having expectedNorFre given the observed pattern frequencies of THIS alignment
double sumFac = 0;
double sumProb = 0;
double fac = logFac(alignLen);
for (int patID = 0; patID < patNum; patID++) {
int patFre = expectedNorFre[patID];
sumFac += logFac(patFre);
sumProb += (double)patFre*log((double)at(patID).frequency/(double)alignLen);
}
prob = fac - sumFac + sumProb;
}
double Alignment::multinomialProb (IntVector &pattern_freq)
{
//cout << "Function in Alignment: Compute probability of the expected alignment (determined by patterns log-likelihood under some tree and model) given THIS alignment." << endl;
//The expected normalized requencies
//cout << "Number of patterns: " << patNum << ", sum of expected sites: " << sum << endl;
//return expectedNorFre;
//compute the probability of having expectedNorFre given the observed pattern frequencies of THIS alignment
ASSERT(size() == pattern_freq.size());
int patNum = getNPattern();
int alignLen = getNSite();
double sumFac = 0;
double sumProb = 0;
double fac = logFac(alignLen);
for (int patID = 0; patID < patNum; patID++) {
int patFre = pattern_freq[patID];
sumFac += logFac(patFre);
sumProb += (double)patFre*log((double)at(patID).frequency/(double)alignLen);
}
return (fac - sumFac + sumProb);
}
bool Alignment::readSiteStateFreq(const char* site_freq_file)
{
cout << endl << "Reading site-specific state frequency file " << site_freq_file << " ..." << endl;
site_model.resize(getNSite(), -1);
int i;
IntVector pattern_to_site; // vector from pattern to the first site
pattern_to_site.resize(getNPattern(), -1);
for (i = 0; i < getNSite(); i++)
if (pattern_to_site[getPatternID(i)] == -1)
pattern_to_site[getPatternID(i)] = i;
bool aln_changed = false;
try {
ifstream in;
in.exceptions(ios::failbit | ios::badbit);
in.open(site_freq_file);
double freq;
string site_spec;
int specified_sites = 0;
in.exceptions(ios::badbit);
for (int model_id = 0; !in.eof(); model_id++) {
// remove the failbit
in >> site_spec;
if (in.eof()) break;
IntVector site_id;
extractSiteID(this, site_spec.c_str(), site_id);
specified_sites += site_id.size();
if (site_id.size() == 0) throw "No site ID specified";
for (IntVector::iterator it = site_id.begin(); it != site_id.end(); it++) {
if (site_model[*it] != -1) throw "Duplicated site ID";
site_model[*it] = site_state_freq.size();
}
double *site_freq_entry = new double[num_states];
double sum = 0;
for (i = 0; i < num_states; i++) {
in >> freq;
if (freq <= 0.0 || freq >= 1.0) throw "Frequencies must be strictly positive and smaller than 1";
site_freq_entry[i] = freq;
sum += freq;
}
if (fabs(sum-1.0) > 1e-4) {
if (fabs(sum-1.0) > 1e-3)
outWarning("Frequencies of site " + site_spec + " do not sum up to 1 and will be normalized");
sum = 1.0/sum;
for (i = 0; i < num_states; i++)
site_freq_entry[i] *= sum;
}
convfreq(site_freq_entry); // regularize frequencies (eg if some freq = 0)
// 2016-02-01: now check for equality of sites with same site-pattern and same freq
int prev_site = pattern_to_site[getPatternID(site_id[0])];
if (site_id.size() == 1 && prev_site < site_id[0] && site_model[prev_site] != -1) {
// compare freq with prev_site
bool matched_freq = true;
double *prev_freq = site_state_freq[site_model[prev_site]];
for (i = 0; i < num_states; i++) {
if (site_freq_entry[i] != prev_freq[i]) {
matched_freq = false;
break;
}
}
if (matched_freq) {
site_model[site_id[0]] = site_model[prev_site];
} else
aln_changed = true;
}
if (site_model[site_id[0]] == site_state_freq.size())
site_state_freq.push_back(site_freq_entry);
else
delete [] site_freq_entry;
}
if (specified_sites < site_model.size()) {
aln_changed = true;
// there are some unspecified sites
cout << site_model.size() - specified_sites << " unspecified sites will get default frequencies" << endl;
for (i = 0; i < site_model.size(); i++)
if (site_model[i] == -1)
site_model[i] = site_state_freq.size();
site_state_freq.push_back(NULL);
}
in.clear();
// set the failbit again
in.exceptions(ios::failbit | ios::badbit);
in.close();
} catch (const char* str) {
outError(str);
} catch (string str) {
outError(str);
} catch(ios::failure) {
outError(ERR_READ_INPUT);
}
if (aln_changed) {
cout << "Regrouping alignment sites..." << endl;
regroupSitePattern(site_state_freq.size(), site_model);
}
cout << site_state_freq.size() << " distinct per-site state frequency vectors detected" << endl;
return aln_changed;
}
|