1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
|
/***************************************************************************
* Copyright (C) 2009 by BUI Quang Minh *
* minh.bui@univie.ac.at *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#include "alignmentpairwise.h"
#include "tree/phylosupertree.h"
AlignmentPairwise::AlignmentPairwise()
: Alignment(), Optimization()
{
pair_freq = NULL;
}
AlignmentPairwise::AlignmentPairwise(PhyloTree *atree, int seq1, int seq2) : Alignment(), Optimization() {
tree = atree;
seq_id1 = seq1;
seq_id2 = seq2;
num_states = tree->aln->num_states;
STATE_UNKNOWN = tree->aln->STATE_UNKNOWN;
pair_freq = NULL;
if (tree->getRate()->isSiteSpecificRate() || tree->getModel()->isSiteSpecificModel()) return;
// categorized rates
if (tree->getRate()->getPtnCat(0) >= 0) {
int size_sqr = num_states * num_states;
int total_size = size_sqr * tree->getRate()->getNDiscreteRate();
pair_freq = new double[total_size];
memset(pair_freq, 0, sizeof(double)*total_size);
int i = 0;
for (Alignment::iterator it = tree->aln->begin(); it != tree->aln->end(); it++, i++) {
int state1 = tree->aln->convertPomoState((*it)[seq_id1]);
int state2 = tree->aln->convertPomoState((*it)[seq_id2]);
addPattern(state1, state2, it->frequency, tree->getRate()->getPtnCat(i));
/*
if (state1 < num_states && state2 < num_states)
pair_freq[tree->getRate()->getPtnCat(i)*size_sqr + state1*num_states + state2] += it->frequency;*/
}
return;
}
pair_freq = new double[num_states * num_states];
memset(pair_freq, 0, sizeof(double) * num_states * num_states);
for (Alignment::iterator it = tree->aln->begin(); it != tree->aln->end(); it++) {
int state1 = tree->aln->convertPomoState((*it)[seq_id1]);
int state2 = tree->aln->convertPomoState((*it)[seq_id2]);
addPattern(state1, state2, it->frequency);
/* if (state1 < num_states && state2 < num_states)
pair_freq[state1 * num_states + state2] += it->frequency;*/
}
}
bool AlignmentPairwise::addPattern(int state1, int state2, int freq, int cat) {
int i;
if (state1 == STATE_UNKNOWN || state2 == STATE_UNKNOWN) return true;
double *pair_pos = pair_freq + (cat*num_states*num_states);
// unambiguous case
if (state1 < num_states && state2 < num_states) {
pair_pos[state1*num_states + state2] += freq;
return false;
}
return true;
if (state1 < num_states) {
// ambiguous character, for DNA, RNA
state2 = state2 - (num_states - 1);
for (i = 0; i < num_states; i++)
if (state2 & (1 << i))
pair_pos[state1*num_states + i] += freq;
return false;
}
if (state2 < num_states) {
// ambiguous character, for DNA, RNA
state1 = state1 - (num_states - 1);
for (i = 0; i < num_states; i++)
if (state1 & (1 << i))
pair_pos[i*num_states + state2] += freq;
return false;
}
return true;
}
double AlignmentPairwise::computeFunction(double value) {
RateHeterogeneity *site_rate = tree->getRate();
int ncat = site_rate->getNDiscreteRate();
ModelSubst *model = tree->getModel();
int trans_size = tree->getModel()->getTransMatrixSize();
int cat, i;
int nptn = tree->aln->getNPattern();
double lh = 0.0;
// site-specific rates
if (site_rate->isSiteSpecificRate()) {
for (i = 0; i < nptn; i++) {
int state1 = tree->aln->at(i)[seq_id1];
int state2 = tree->aln->at(i)[seq_id2];
if (state1 >= num_states || state2 >= num_states) continue;
double trans = tree->getModelFactory()->computeTrans(value * site_rate->getPtnRate(i), state1, state2);
lh -= log(trans) * tree->aln->at(i).frequency;
}
return lh;
}
if (tree->getModel()->isSiteSpecificModel()) {
for (i = 0; i < nptn; i++) {
int state1 = tree->aln->at(i)[seq_id1];
int state2 = tree->aln->at(i)[seq_id2];
if (state1 >= num_states || state2 >= num_states) continue;
double trans = tree->getModel()->computeTrans(value, model->getPtnModelID(i), state1, state2);
lh -= log(trans) * tree->aln->at(i).frequency;
}
return lh;
}
double *trans_mat = new double[trans_size];
// categorized rates
if (site_rate->getPtnCat(0) >= 0) {
for (cat = 0; cat < ncat; cat++) {
tree->getModelFactory()->computeTransMatrix(value*site_rate->getRate(cat), trans_mat);
double *pair_pos = pair_freq + cat*trans_size;
for (i = 0; i < trans_size; i++) if (pair_pos[i] > Params::getInstance().min_branch_length) {
if (trans_mat[i] <= 0) throw "Negative transition probability";
lh -= pair_pos[i] * log(trans_mat[i]);
}
}
delete [] trans_mat;
return lh;
}
double *sum_trans_mat = new double[trans_size];
if (tree->getModelFactory()->site_rate->getGammaShape() == 0.0)
tree->getModelFactory()->computeTransMatrix(value, sum_trans_mat);
else {
tree->getModelFactory()->computeTransMatrix(value * site_rate->getRate(0), sum_trans_mat);
for (cat = 1; cat < ncat; cat++) {
tree->getModelFactory()->computeTransMatrix(value * site_rate->getRate(cat), trans_mat);
for (i = 0; i < trans_size; i++)
sum_trans_mat[i] += trans_mat[i];
}
}
for (i = 0; i < trans_size; i++) {
lh -= pair_freq[i] * log(sum_trans_mat[i]);
}
delete [] sum_trans_mat;
delete [] trans_mat;
// negative log-likelihood (for minimization)
return lh;
}
void AlignmentPairwise::computeFuncDerv(double value, double &df, double &ddf) {
RateHeterogeneity *site_rate = tree->getRate();
int ncat = site_rate->getNDiscreteRate();
ModelSubst *model = tree->getModel();
int trans_size = tree->getModel()->getTransMatrixSize();
int cat, i;
int nptn = tree->aln->getNPattern();
// double lh = 0.0;
df = 0.0;
ddf = 0.0;
if (site_rate->isSiteSpecificRate()) {
for (i = 0; i < nptn; i++) {
int state1 = tree->aln->at(i)[seq_id1];
int state2 = tree->aln->at(i)[seq_id2];
if (state1 >= num_states || state2 >= num_states) continue;
double rate_val = site_rate->getPtnRate(i);
double rate_sqr = rate_val * rate_val;
double derv1, derv2;
double trans = tree->getModelFactory()->computeTrans(value * rate_val, state1, state2, derv1, derv2);
// lh -= log(trans) * tree->aln->at(i).frequency;
double d1 = derv1 / trans;
df -= rate_val * d1 * tree->aln->at(i).frequency;
ddf -= rate_sqr * (derv2/trans - d1*d1) * tree->aln->at(i).frequency;
}
// return lh;
return;
}
if (tree->getModel()->isSiteSpecificModel()) {
for (i = 0; i < nptn; i++) {
int state1 = tree->aln->at(i)[seq_id1];
int state2 = tree->aln->at(i)[seq_id2];
if (state1 >= num_states || state2 >= num_states) continue;
double rate_val = site_rate->getPtnRate(i);
double rate_sqr = rate_val * rate_val;
double derv1, derv2;
double trans = tree->getModel()->computeTrans(value * rate_val,model->getPtnModelID(i), state1, state2, derv1, derv2);
// lh -= log(trans) * tree->aln->at(i).frequency;
double d1 = derv1 / trans;
df -= rate_val * d1 * tree->aln->at(i).frequency;
ddf -= rate_sqr * (derv2/trans - d1*d1) * tree->aln->at(i).frequency;
}
// return lh;
return;
}
double *trans_mat = new double[trans_size];
double *trans_derv1 = new double[trans_size];
double *trans_derv2 = new double[trans_size];
// categorized rates
if (site_rate->getPtnCat(0) >= 0) {
for (cat = 0; cat < ncat; cat++) {
double rate_val = site_rate->getRate(cat);
double derv1 = 0.0, derv2 = 0.0;
tree->getModelFactory()->computeTransDerv(value*rate_val, trans_mat, trans_derv1, trans_derv2);
double *pair_pos = pair_freq + cat*trans_size;
for (i = 0; i < trans_size; i++) if (pair_pos[i] > 0) {
if (trans_mat[i] <= 0) throw "Negative transition probability";
double d1 = trans_derv1[i] / trans_mat[i];
derv1 += pair_pos[i] * d1;
derv2 += pair_pos[i] * (trans_derv2[i]/trans_mat[i] - d1 * d1);
// lh -= pair_pos[i] * log(trans_mat[i]);
}
df -= derv1 * rate_val;
ddf -= derv2 * rate_val * rate_val;
}
delete [] trans_derv2;
delete [] trans_derv1;
delete [] trans_mat;
// return lh;
return;
}
double *sum_trans = new double[trans_size];
double *sum_derv1 = new double[trans_size];
double *sum_derv2 = new double[trans_size];
memset(sum_trans, 0, sizeof(double) * trans_size);
memset(sum_derv1, 0, sizeof(double) * trans_size);
memset(sum_derv2, 0, sizeof(double) * trans_size);
for (cat = 0; cat < ncat; cat++) {
double rate_val = site_rate->getRate(cat);
double prop_val = site_rate->getProp(cat);
if (tree->getModelFactory()->site_rate->getGammaShape() == 0.0)
rate_val = 1.0;
double coeff1 = rate_val * prop_val;
double coeff2 = rate_val * coeff1;
tree->getModelFactory()->computeTransDerv(value * rate_val, trans_mat, trans_derv1, trans_derv2);
for (i = 0; i < trans_size; i++) {
sum_trans[i] += trans_mat[i] * prop_val;
sum_derv1[i] += trans_derv1[i] * coeff1;
sum_derv2[i] += trans_derv2[i] * coeff2;
}
}
// 2019-07-03: incorporate p_invar
double p_invar = site_rate->getPInvar();
if (p_invar > 0.0)
for (i = 0; i < num_states; i++)
sum_trans[i*num_states+i] += p_invar;
for (i = 0; i < trans_size; i++)
if (pair_freq[i] > Params::getInstance().min_branch_length && sum_trans[i] > 0.0) {
// lh -= pair_freq[i] * log(sum_trans[i]);
double d1 = sum_derv1[i] / sum_trans[i];
df -= pair_freq[i] * d1;
ddf -= pair_freq[i] * (sum_derv2[i]/sum_trans[i] - d1 * d1);
}
delete [] sum_derv2;
delete [] sum_derv1;
delete [] sum_trans;
delete [] trans_derv2;
delete [] trans_derv1;
delete [] trans_mat;
// negative log-likelihood (for minimization)
// return lh;
return;
}
double AlignmentPairwise::optimizeDist(double initial_dist, double &d2l) {
// initial guess of the distance using Juke-Cantor correction
double dist = initial_dist;
d2l = -1.0;
// if no model or rate is specified, return the JC distance and set variance to const
if (!tree->getModelFactory() || !tree->getRate()) return dist;
double negative_lh, ferror;
double max_genetic_dist = MAX_GENETIC_DIST;
if (tree->aln->seq_type == SEQ_POMO) {
int N = tree->aln->virtual_pop_size;
max_genetic_dist *= N*N;
}
if (tree->optimize_by_newton) // Newton-Raphson method
dist = minimizeNewton(Params::getInstance().min_branch_length, dist, max_genetic_dist, Params::getInstance().min_branch_length, d2l);
else // Brent method
dist = minimizeOneDimen(Params::getInstance().min_branch_length, dist, max_genetic_dist, Params::getInstance().min_branch_length, &negative_lh, &ferror);
return dist;
}
double AlignmentPairwise::optimizeDist(double initial_dist) {
double d2l;
return optimizeDist(initial_dist, d2l);
}
AlignmentPairwise::~AlignmentPairwise()
{
if (pair_freq) delete [] pair_freq;
}
|