1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
|
/* cdf/gauss.c
*
* Copyright (C) 2002, 2004 Jason H. Stover.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/*
* Computes the cumulative distribution function for the Gaussian
* distribution using a rational function approximation. The
* computation is for the standard Normal distribution, i.e., mean 0
* and standard deviation 1. If you want to compute Pr(X < t) for a
* Gaussian random variable X with non-zero mean m and standard
* deviation sd not equal to 1, find gsl_cdf_ugaussian ((t-m)/sd).
* This approximation is accurate to at least double precision. The
* accuracy was verified with a pari-gp script. The largest error
* found was about 1.4E-20. The coefficients were derived by Cody.
*
* References:
*
* W.J. Cody. "Rational Chebyshev Approximations for the Error
* Function," Mathematics of Computation, v23 n107 1969, 631-637.
*
* W. Fraser, J.F Hart. "On the Computation of Rational Approximations
* to Continuous Functions," Communications of the ACM, v5 1962.
*
* W.J. Kennedy Jr., J.E. Gentle. "Statistical Computing." Marcel Dekker. 1980.
*
*
*/
//#include <config.h>
#include <math.h>
//#include <gsl/gsl_math.h>
//#include <gsl/gsl_cdf.h>
#define GSL_DBL_EPSILON 2.2204460492503131e-16
#ifndef M_2_SQRTPI
#define M_2_SQRTPI 1.12837916709551257389615890312154517 /* 2/sqrt(pi) */
#endif
#ifndef M_SQRT2
#define M_SQRT2 1.41421356237309504880168872420969808 /* sqrt(2) */
#endif
#ifndef M_SQRT1_2
#define M_SQRT1_2 0.707106781186547524400844362104849039 /* 1/sqrt(2) */
#endif
#ifndef M_1_SQRT2PI
#define M_1_SQRT2PI (M_2_SQRTPI * M_SQRT1_2 / 2.0)
#endif
#define SQRT32 (4.0 * M_SQRT2)
/*
* IEEE double precision dependent constants.
*
* GAUSS_EPSILON: Smallest positive value such that
* gsl_cdf_gaussian(x) > 0.5.
* GAUSS_XUPPER: Largest value x such that gsl_cdf_gaussian(x) < 1.0.
* GAUSS_XLOWER: Smallest value x such that gsl_cdf_gaussian(x) > 0.0.
*/
#define GAUSS_EPSILON (GSL_DBL_EPSILON / 2)
#define GAUSS_XUPPER (8.572)
#define GAUSS_XLOWER (-37.519)
#define GAUSS_SCALE (16.0)
static double
get_del (double x, double rational)
{
double xsq = 0.0;
double del = 0.0;
double result = 0.0;
xsq = floor (x * GAUSS_SCALE) / GAUSS_SCALE;
del = (x - xsq) * (x + xsq);
del *= 0.5;
result = exp (-0.5 * xsq * xsq) * exp (-1.0 * del) * rational;
return result;
}
/*
* Normal cdf for fabs(x) < 0.66291
*/
static double
gauss_small (const double x)
{
unsigned int i;
double result = 0.0;
double xsq;
double xnum;
double xden;
const double a[5] = {
2.2352520354606839287,
161.02823106855587881,
1067.6894854603709582,
18154.981253343561249,
0.065682337918207449113
};
const double b[4] = {
47.20258190468824187,
976.09855173777669322,
10260.932208618978205,
45507.789335026729956
};
xsq = x * x;
xnum = a[4] * xsq;
xden = xsq;
for (i = 0; i < 3; i++)
{
xnum = (xnum + a[i]) * xsq;
xden = (xden + b[i]) * xsq;
}
result = x * (xnum + a[3]) / (xden + b[3]);
return result;
}
/*
* Normal cdf for 0.66291 < fabs(x) < sqrt(32).
*/
static double
gauss_medium (const double x)
{
unsigned int i;
double temp = 0.0;
double result = 0.0;
double xnum;
double xden;
double absx;
const double c[9] = {
0.39894151208813466764,
8.8831497943883759412,
93.506656132177855979,
597.27027639480026226,
2494.5375852903726711,
6848.1904505362823326,
11602.651437647350124,
9842.7148383839780218,
1.0765576773720192317e-8
};
const double d[8] = {
22.266688044328115691,
235.38790178262499861,
1519.377599407554805,
6485.558298266760755,
18615.571640885098091,
34900.952721145977266,
38912.003286093271411,
19685.429676859990727
};
absx = fabs (x);
xnum = c[8] * absx;
xden = absx;
for (i = 0; i < 7; i++)
{
xnum = (xnum + c[i]) * absx;
xden = (xden + d[i]) * absx;
}
temp = (xnum + c[7]) / (xden + d[7]);
result = get_del (x, temp);
return result;
}
/*
* Normal cdf for
* {sqrt(32) < x < GAUSS_XUPPER} union { GAUSS_XLOWER < x < -sqrt(32) }.
*/
static double
gauss_large (const double x)
{
int i;
double result;
double xsq;
double temp;
double xnum;
double xden;
double absx;
const double p[6] = {
0.21589853405795699,
0.1274011611602473639,
0.022235277870649807,
0.001421619193227893466,
2.9112874951168792e-5,
0.02307344176494017303
};
const double q[5] = {
1.28426009614491121,
0.468238212480865118,
0.0659881378689285515,
0.00378239633202758244,
7.29751555083966205e-5
};
absx = fabs (x);
xsq = 1.0 / (x * x);
xnum = p[5] * xsq;
xden = xsq;
for (i = 0; i < 4; i++)
{
xnum = (xnum + p[i]) * xsq;
xden = (xden + q[i]) * xsq;
}
temp = xsq * (xnum + p[4]) / (xden + q[4]);
temp = (M_1_SQRT2PI - temp) / absx;
result = get_del (x, temp);
return result;
}
double
gsl_cdf_ugaussian_P (const double x)
{
double result;
double absx = fabs (x);
if (absx < GAUSS_EPSILON)
{
result = 0.5;
return result;
}
else if (absx < 0.66291)
{
result = 0.5 + gauss_small (x);
return result;
}
else if (absx < SQRT32)
{
result = gauss_medium (x);
if (x > 0.0)
{
result = 1.0 - result;
}
return result;
}
else if (x > GAUSS_XUPPER)
{
result = 1.0;
return result;
}
else if (x < GAUSS_XLOWER)
{
result = 0.0;
return result;
}
else
{
result = gauss_large (x);
if (x > 0.0)
{
result = 1.0 - result;
}
}
return result;
}
double
gsl_cdf_ugaussian_Q (const double x)
{
double result;
double absx = fabs (x);
if (absx < GAUSS_EPSILON)
{
result = 0.5;
return result;
}
else if (absx < 0.66291)
{
result = gauss_small (x);
if (x < 0.0)
{
result = fabs (result) + 0.5;
}
else
{
result = 0.5 - result;
}
return result;
}
else if (absx < SQRT32)
{
result = gauss_medium (x);
if (x < 0.0)
{
result = 1.0 - result;
}
return result;
}
else if (x > -(GAUSS_XLOWER))
{
result = 0.0;
return result;
}
else if (x < -(GAUSS_XUPPER))
{
result = 1.0;
return result;
}
else
{
result = gauss_large (x);
if (x < 0.0)
{
result = 1.0 - result;
}
}
return result;
}
double
gsl_cdf_gaussian_P (const double x, const double sigma)
{
return gsl_cdf_ugaussian_P (x / sigma);
}
double
gsl_cdf_gaussian_Q (const double x, const double sigma)
{
return gsl_cdf_ugaussian_Q (x / sigma);
}
|