1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
|
/***************************************************************************
* Copyright (C) 2009 by BUI Quang Minh *
* minh.bui@univie.ac.at *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#include "modeldna.h"
#include "modelliemarkov.h"
ModelDNA::ModelDNA(PhyloTree *tree)
: ModelMarkov(tree)
{
}
ModelDNA::ModelDNA(const char *model_name, string model_params, StateFreqType freq, string freq_params, PhyloTree *tree)
: ModelMarkov(tree)
{
init(model_name, model_params, freq, freq_params);
}
string getDNAModelInfo(string model_name, string &full_name, string &rate_type, StateFreqType &def_freq) {
string name_upper = model_name;
for (string::iterator it = name_upper.begin(); it != name_upper.end(); it++)
(*it) = toupper(*it);
string name = model_name;
full_name = name;
rate_type = "";
def_freq = FREQ_UNKNOWN;
if (name_upper == "JC" || name_upper == "JC69") {
name = "JC";
rate_type = "000000";
def_freq = FREQ_EQUAL;
full_name = "JC (Juke and Cantor, 1969)";
} else if (name_upper == "F81") {
name = "F81";
rate_type = "000000";
def_freq = FREQ_ESTIMATE;
full_name = "F81 (Felsenstein, 1981)";
} else if (name_upper == "K2P" || name_upper == "K80") {
name = "K2P";
rate_type = "010010";
def_freq = FREQ_EQUAL;
full_name = "K2P (Kimura, 1980)";
} else if (name_upper == "HKY" || name_upper == "HKY85") {
name = "HKY";
rate_type = "010010";
def_freq = FREQ_ESTIMATE;
full_name = "HKY (Hasegawa, Kishino and Yano, 1985)";
} else if (name_upper == "K3P" || name_upper == "K81" || name_upper=="TPM1") {
name = "K3P";
rate_type = "012210";
def_freq = FREQ_EQUAL;
full_name = "K3P (Kimura, 1981)";
} else if (name_upper == "K81UF" || name_upper == "K81U" || name_upper == "K3PU" ||
name_upper == "K3PUF" || name_upper=="TPM1UF" || name_upper=="TPM1U") {
name = "K3Pu";
rate_type = "012210";
def_freq = FREQ_ESTIMATE;
full_name = "K3P unequal frequencies (Kimura, 1981)";
} else if (name_upper == "TN" || name_upper == "TRN" || name_upper == "TN93") {
name = "TN";
rate_type = "010020";
def_freq = FREQ_ESTIMATE;
full_name = "TN (Tamura and Nei, 1993)";
} else if (name_upper == "TNEF" || name_upper == "TRNEF" || name_upper == "TNE" || name_upper == "TRNE") {
name = "TNe";
rate_type = "010020";
def_freq = FREQ_EQUAL;
full_name = "TN equal frequencies (Tamura and Nei, 1993)";
} else if (name_upper == "TPM2") {
name = "TPM2";
rate_type = "121020";
def_freq = FREQ_ESTIMATE;
full_name = "TPM2 ()";
} else if (name_upper == "TPM2U" || name_upper == "TPM2UF") {
name = "TPM2u";
rate_type = "121020";
def_freq = FREQ_ESTIMATE;
full_name = "TPM2 unequal frequencies ()";
} else if (name_upper == "TPM3") {
name = "TPM3";
rate_type = "120120";
def_freq = FREQ_ESTIMATE;
full_name = "TPM3 ()";
} else if (name_upper == "TPM3U" || name_upper == "TPM3UF") {
name = "TPM3u";
rate_type = "120120";
def_freq = FREQ_ESTIMATE;
full_name = "TPM3 unequal frequencies ()";
} else if (name_upper == "TIM" || name_upper == "TIM1") {
name = "TIM";
rate_type = "012230";
def_freq = FREQ_ESTIMATE;
full_name = "TIM ()";
} else if (name_upper == "TIMEF" || name_upper == "TIME" || name_upper == "TIM1EF" || name_upper == "TIM1E") {
name = "TIMe";
rate_type = "012230";
def_freq = FREQ_EQUAL;
full_name = "TIM equal frequencies";
} else if (name_upper == "TIM2") {
name = "TIM2";
rate_type = "121030";
def_freq = FREQ_ESTIMATE;
full_name = "TIM2 ()";
} else if (name_upper == "TIM2EF" || name_upper == "TIM2E") {
name = "TIM2e";
rate_type = "121030";
def_freq = FREQ_EQUAL;
full_name = "TIM2 equal frequencies";
} else if (name_upper == "TIM3") {
name = "TIM3";
rate_type = "120130";
def_freq = FREQ_ESTIMATE;
full_name = "TIM3 ()";
} else if (name_upper == "TIM3EF" || name_upper == "TIM3E") {
name = "TIM3e";
rate_type = "120130";
def_freq = FREQ_EQUAL;
full_name = "TIM3 equal frequencies";
} else if (name_upper == "TVM") {
name = "TVM";
rate_type = "412310";
def_freq = FREQ_ESTIMATE;
full_name = "TVM";
} else if (name_upper == "TVMEF" || name_upper == "TVME") {
name = "TVMe";
rate_type = "412310";
def_freq = FREQ_EQUAL;
full_name = "TVM equal frequencies";
} else if (name_upper == "SYM") {
name = "SYM";
rate_type = "123450";
def_freq = FREQ_EQUAL;
full_name = "SYM (Zharkihk, 1994)";
} else if (name_upper == "GTR" || name_upper == "REV") {
name = "GTR";
rate_type = "123450";
def_freq = FREQ_ESTIMATE;
full_name = "GTR (Tavare, 1986)";
} else {
name = "";
rate_type = "";
full_name = "";
}
return name;
}
void ModelDNA::init(const char *model_name, string model_params, StateFreqType freq, string freq_params)
{
ASSERT(num_states == 4); // make sure that you create model for DNA
StateFreqType def_freq = FREQ_UNKNOWN;
string rate_type;
// First try: the time reversible models
name = getDNAModelInfo((string)model_name, full_name, rate_type, def_freq);
if (name == "") {
// Second try: Lie Markov models. (Note, we're still missing UNREST
// model. 12.12 is equivalent, but user may not realize that.)
int model_num, symmetry; // returned by getLieMarkovModelInfo, but not used here
ModelLieMarkov::getLieMarkovModelInfo((string)model_name, name, full_name, model_num, symmetry, def_freq);
}
if (name != "") {
setRateType(rate_type.c_str());
} else {
//cout << "User-specified model "<< model_name << endl;
if (setRateType(model_name)) {
// model was six digits (e.g. 010010 for K2P/HKY)
name = model_name;
full_name = "Time reversible ("+name+")";
} else {
readParameters(model_name);
name = full_name = model_name;
freq = FREQ_USER_DEFINED;
//name += " (user-defined)";
}
}
if (freq_params != "") {
readStateFreq(freq_params);
}
if (model_params != "") {
readRates(model_params);
}
if (freq == FREQ_UNKNOWN || def_freq == FREQ_EQUAL) freq = def_freq;
ModelMarkov::init(freq);
// model_parameters = new double [getNDim()+1]; // see setVariables for explaination of +1
// setVariables(model_parameters);
}
void ModelDNA::startCheckpoint() {
checkpoint->startStruct("ModelDNA");
}
void ModelDNA::saveCheckpoint() {
// construct model_parameters from rates and base freqs.
// This is one-indexed, so parameters are in model_parameters[1]
// up to model_parameters[num_params]
// setVariables(model_parameters);
startCheckpoint();
CKP_ARRAY_SAVE(6, rates);
endCheckpoint();
ModelMarkov::saveCheckpoint();
}
void ModelDNA::restoreCheckpoint() {
// curiously, this seems to be the only plase ModelDNA uses model_parameters.
ModelMarkov::restoreCheckpoint();
startCheckpoint();
CKP_ARRAY_RESTORE(6, rates);
endCheckpoint();
// getVariables(model_parameters); // updates rates and state_freq
string rate_spec = param_spec;
for (auto i = rate_spec.begin(); i != rate_spec.end(); i++)
*i = *i + '0';
if (!rate_spec.empty())
if (!setRateType(rate_spec))
ASSERT(0 && "Cannot set rate_spec");
decomposeRateMatrix();
if (phylo_tree)
phylo_tree->clearAllPartialLH();
}
void ModelDNA::readRates(string str) throw(const char*) {
int nrates = *max_element(param_spec.begin(), param_spec.end());
int end_pos = 0;
int i, j;
for (j = 0; j < param_spec.length(); j++)
rates[j] = 1.0;
num_params = 0;
for (i = 0; i <= nrates && end_pos < str.length(); i++) {
int new_end_pos;
double rate = 0;
int id = (i < nrates) ? i+1 : 0;
if (str[end_pos] == '?') {
param_fixed[id] = false;
end_pos++;
rate = 1.0;
num_params++;
} else {
if (Params::getInstance().optimize_rate_matrix) {
num_params++;
param_fixed[id] = false;
} else
if (Params::getInstance().optimize_from_given_params) {
num_params++;
param_fixed[id] = false;
} else {
param_fixed[id] = true;
}
try {
rate = convert_double(str.substr(end_pos).c_str(), new_end_pos);
} catch (string str) {
outError(str);
}
end_pos += new_end_pos;
}
if (rate < 0.0)
outError("Negative rates found");
if (i == nrates && end_pos < str.length())
outError("More than " + convertIntToString(nrates) + " rate parameters specified in " + str);
if (i < nrates-1 && end_pos >= str.length())
outError("Unexpected end of string ", str);
if (end_pos < str.length() && str[end_pos] != ',')
outError("Comma to separate rates not found in ", str);
end_pos++;
for (j = 0; j < param_spec.length(); j++)
if (param_spec[j] == id)
rates[j] = rate;
}
}
string ModelDNA::getNameParams() {
if (num_params == 0) return name;
ostringstream retname;
retname << name << '{';
int nrates = getNumRateEntries();
int k = 0;
for (int i = 0; i < nrates; i++) {
if (param_spec[i] > k) {
if (k>0) retname << ',';
retname << rates[i];
k++;
}
}
retname << '}';
getNameParamsFreq(retname);
return retname.str();
}
bool ModelDNA::setRateType(string rate_str) {
//char first_type = 127;
//char last_type = 0;
//char t = first_type;
int num_ch = rate_str.length();
int i;
if (num_ch != getNumRateEntries()) {
//outError("Model specification has wrong length!");
return false;
}
// only accept string of digits
for (i = 0; i < num_ch; i++)
if (!isdigit(rate_str[i])) return false;
/*
if (rate_str[num_ch-1] != '0') {
//outError("Model specification must end with '0'");
return false;
}
for (i = 0; i < num_ch; i++) {
if (rate_str[i] > last_type) last_type = rate_str[i];
if (rate_str[i] < first_type) first_type = rate_str[i];
}
if (first_type != rate_str[num_ch-1]) {
//outError("Model specification must contain digits!");
return false;
}
num_params = last_type - first_type;
param_spec = "";
for (i = 0; i < num_ch; i++) {
param_spec.push_back(rate_str[i]-first_type);
}*/
map<char,char> param_k;
num_params = 0;
param_spec = "";
// last entry get ID of 0 for easy management
param_k[rate_str[num_ch-1]] = 0;
for (i = 0; i < num_ch; i++) {
if (param_k.find(rate_str[i]) == param_k.end()) {
num_params++;
param_k[rate_str[i]] = (char)num_params;
param_spec.push_back(num_params);
} else {
param_spec.push_back(param_k[rate_str[i]]);
}
}
ASSERT(param_spec.length() == num_ch);
double *avg_rates = new double[num_params+1];
int *num_rates = new int[num_params+1];
memset(avg_rates, 0, sizeof(double) * (num_params+1));
memset(num_rates, 0, sizeof(int) * (num_params+1));
for (i = 0; i < param_spec.size(); i++) {
avg_rates[(int)param_spec[i]] += rates[i];
num_rates[(int)param_spec[i]]++;
}
for (i = 0; i <= num_params; i++)
avg_rates[i] /= num_rates[i];
for (i = 0; i < param_spec.size(); i++) {
if (avg_rates[0] > 0.0)
rates[i] = avg_rates[(int)param_spec[i]] / avg_rates[0];
else
rates[i] = avg_rates[(int)param_spec[i]];
}
if (verbose_mode >= VB_DEBUG) {
cout << "Initialized rates: ";
for (i = 0; i < param_spec.size(); i++)
cout << rates[i] << " ";
cout << endl;
}
if (param_fixed.size() == num_params + 1) {
num_params = 0;
for (auto p : param_fixed)
if (!p) num_params++;
} else {
param_fixed.resize(num_params+1, false);
param_fixed[0] = true; // fix the last entry
}
delete [] num_rates;
delete [] avg_rates;
return true;
}
int ModelDNA::getNDim() {
ASSERT(freq_type != FREQ_UNKNOWN);
// possible TO-DO: cache nFreqParams(freq_type) to avoid repeat calls.
// return (num_params+nFreqParams(freq_type));
int ndim = num_params;
if (freq_type == FREQ_ESTIMATE)
ndim += num_states-1;
else
ndim += nFreqParams(freq_type);
return ndim;
}
void ModelDNA::writeParameters(ostream &out) {
int i;
if (freq_type == FREQ_ESTIMATE) {
for (i = 0; i < num_states; i++)
out << "\t" << state_freq[i];
}
if (num_params == 0) return;
if (num_params <= 1)
out << "\t" << rates[1];
else {
int nrateout = getNumRateEntries() - 1;
for (i = 0; i < nrateout; i++)
out << "\t" << rates[i];
}
}
/*
* getVariables *changes* the state of the model, setting from *variables
* Returns true if the model state has changed, false if not.
*/
bool ModelDNA::getVariables(double *variables) {
int i;
bool changed = false;
if (num_params > 0) {
int num_all = param_spec.length();
if (verbose_mode >= VB_MAX) {
for (i = 1; i <= num_params; i++)
cout << " estimated variables[" << i << "] = " << variables[i] << endl;
}
for (i = 0; i < num_all; i++)
if (!param_fixed[param_spec[i]]) {
changed |= (rates[i] != variables[(int)param_spec[i]]);
rates[i] = variables[(int)param_spec[i]];
}
}
if (freq_type == FREQ_ESTIMATE) {
// 2015-09-07: relax the sum of state_freq to be 1, this will be done at the end of optimization
int ndim = getNDim();
changed |= memcmpcpy(state_freq, variables+(ndim-num_states+2), (num_states-1)*sizeof(double));
double sum = 0;
for (i = 0; i < num_states-1; i++)
sum += state_freq[i];
state_freq[num_states-1] = 1.0 - sum;
} else {
// BQM: for special DNA freq stuffs from MDW
changed |= freqsFromParams(state_freq,variables+num_params+1,freq_type);
}
return changed;
// BUG FIX 2015.08.28
// int nrate = getNDim();
// if (freq_type == FREQ_ESTIMATE) nrate -= (num_states-1);
// double sum = 1.0;
// int i, j;
// for (i = 1; i < num_states; i++)
// sum += variables[nrate+i];
// for (i = 0, j = 1; i < num_states; i++)
// if (i != highest_freq_state) {
// state_freq[i] = variables[nrate+j] / sum;
// j++;
// }
// state_freq[highest_freq_state] = 1.0/sum;
}
/*
* setVariables *reads* the state of the model and writes into "variables"
* Model does not change state. *variables should have length getNDim()+1
* If param_spec is (e.g.) 012210 (e.g. K3P model) then in general
* we'd have rates 0 and 5 (A<->C and G<->T) written to variables[0],
* rates 1 and 4 to variables[1] and rates 2 and 3 to variables[2].
* However one of these (typically 0) is 'fixed' (param_fixed)
* to always have value 1, and this doesn't get written.
* num_parameters in this case will be two, for two free rates parameters.
* Base frequency parameters get written after the rate parameters, so
* K3P+FO model (i.e. fits base frequencies with no constraints) would
* use variables[3] to variables[5] (3 values) to store base freq info.
*/
void ModelDNA::setVariables(double *variables) {
if (num_params > 0) {
int num_all = param_spec.length();
for (int i = 0; i < num_all; i++)
if (!param_fixed[param_spec[i]])
variables[(int)param_spec[i]] = rates[i];
}
// and copy parameters for base frequencies
if (freq_type == FREQ_ESTIMATE) {
// 2015-09-07: relax the sum of state_freq to be 1, this will be done at the end of optimization
int ndim = getNDim();
memcpy(variables+(ndim-num_states+2), state_freq, (num_states-1)*sizeof(double));
} else {
paramsFromFreqs(variables+num_params+1, state_freq, freq_type);
}
// BUG FIX 2015.08.28
// int nrate = getNDim();
// if (freq_type == FREQ_ESTIMATE) nrate -= (num_states-1);
// int i, j;
// for (i = 0, j = 1; i < num_states; i++)
// if (i != highest_freq_state) {
// variables[nrate+j] = state_freq[i] / state_freq[highest_freq_state];
// j++;
// }
}
|