File: modelfactory.cpp

package info (click to toggle)
iqtree 1.6.12%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 12,140 kB
  • sloc: cpp: 111,752; ansic: 53,619; python: 242; sh: 195; makefile: 52
file content (1399 lines) | stat: -rw-r--r-- 55,493 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
/***************************************************************************
 *   Copyright (C) 2009 by BUI Quang Minh   *
 *   minh.bui@univie.ac.at   *
 *                                                                         *
 *   This program is free software; you can redistribute it and/or modify  *
 *   it under the terms of the GNU General Public License as published by  *
 *   the Free Software Foundation; either version 2 of the License, or     *
 *   (at your option) any later version.                                   *
 *                                                                         *
 *   This program is distributed in the hope that it will be useful,       *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
 *   GNU General Public License for more details.                          *
 *                                                                         *
 *   You should have received a copy of the GNU General Public License     *
 *   along with this program; if not, write to the                         *
 *   Free Software Foundation, Inc.,                                       *
 *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
 ***************************************************************************/
#include "rateinvar.h"
#include "modelfactory.h"
#include "rategamma.h"
#include "rategammainvar.h"
#include "modelmarkov.h"
#include "modelliemarkov.h"
#include "modeldna.h"
#include "modelprotein.h"
#include "modelbin.h"
#include "modelcodon.h"
#include "modelmorphology.h"
#include "modelpomo.h"
#include "modelset.h"
#include "modelmixture.h"
#include "ratemeyerhaeseler.h"
#include "ratemeyerdiscrete.h"
#include "ratekategory.h"
#include "ratefree.h"
#include "ratefreeinvar.h"
#include "rateheterotachy.h"
#include "rateheterotachyinvar.h"
//#include "ngs.h"
#include <string>
#include "utils/timeutil.h"
#include "nclextra/myreader.h"
#include <sstream>

string::size_type findSubStr(string &name, string sub1, string sub2) {
    string::size_type pos1, pos2;
    for (pos1 = 0; pos1 != string::npos; pos1++) {
        pos1 = name.find(sub1, pos1);
        if (pos1 == string::npos)
            break;
        if (pos1+2 >= name.length() || !isalpha(name[pos1+2])) {
            break;
        }
    }
    
    for (pos2 = 0; pos2 != string::npos; pos2++) {
        pos2 = name.find(sub2, pos2);
        if (pos2 == string::npos)
            break;
        if (pos2+2 >= name.length() ||!isalpha(name[pos2+2]))
            break;
    }
    
    if (pos1 != string::npos && pos2 != string::npos) {
        return min(pos1, pos2);
    } else if (pos1 != string::npos)
        return pos1;
    else
        return pos2;
}

string::size_type posRateHeterotachy(string &model_name) {
    return findSubStr(model_name, "+H", "*H");
}

string::size_type posRateFree(string &model_name) {
    return findSubStr(model_name, "+R", "*R");
}

string::size_type posPOMO(string &model_name) {
    return findSubStr(model_name, "+P", "*P");
}

ModelsBlock *readModelsDefinition(Params &params) {

	ModelsBlock *models_block = new ModelsBlock;

	try
	{
		// loading internal model definitions
		stringstream in(builtin_mixmodels_definition);
        ASSERT(in && "stringstream is OK");
		NxsReader nexus;
		nexus.Add(models_block);
	    MyToken token(in);
	    nexus.Execute(token);
	} catch (...) {
        ASSERT(0 && "predefined mixture models not initialized");
    }

	try
	{
		// loading internal protei model definitions
		stringstream in(builtin_prot_models);
        ASSERT(in && "stringstream is OK");
		NxsReader nexus;
		nexus.Add(models_block);
	    MyToken token(in);
	    nexus.Execute(token);
	} catch (...) {
        ASSERT(0 && "predefined protein models not initialized");
    }

	if (params.model_def_file) {
		cout << "Reading model definition file " << params.model_def_file << " ... ";
		MyReader nexus(params.model_def_file);
		nexus.Add(models_block);
	    MyToken token(nexus.inf);
	    nexus.Execute(token);
	    int num_model = 0, num_freq = 0;
	    for (ModelsBlock::iterator it = models_block->begin(); it != models_block->end(); it++)
	    	if (it->second.flag & NM_FREQ) num_freq++; else num_model++;
	    cout << num_model << " models and " << num_freq << " frequency vectors loaded" << endl;
	}
	return models_block;
}

ModelFactory::ModelFactory() : CheckpointFactory() {
	model = NULL;
	site_rate = NULL;
	store_trans_matrix = false;
	is_storing = false;
	joint_optimize = false;
	fused_mix_rate = false;
	unobserved_ptns = "";
}

size_t findCloseBracket(string &str, size_t start_pos) {
	int counter = 0;
	for (size_t pos = start_pos+1; pos < str.length(); pos++) {
		if (str[pos] == '{') counter++;
		if (str[pos] == '}') {
			if (counter == 0) return pos; else counter--;
		}
    }
	return string::npos;
}

ModelFactory::ModelFactory(Params &params, string &model_name, PhyloTree *tree, ModelsBlock *models_block) : CheckpointFactory() {
	store_trans_matrix = params.store_trans_matrix;
	is_storing = false;
	joint_optimize = params.optimize_model_rate_joint;
	fused_mix_rate = false;
    string model_str = model_name;
	string rate_str;

	try {


	if (model_str == "") {
		if (tree->aln->seq_type == SEQ_DNA) model_str = "HKY";
		else if (tree->aln->seq_type == SEQ_PROTEIN) model_str = "LG";
		else if (tree->aln->seq_type == SEQ_BINARY) model_str = "GTR2";
		else if (tree->aln->seq_type == SEQ_CODON) model_str = "GY";
		else if (tree->aln->seq_type == SEQ_MORPH) model_str = "MK";
        else if (tree->aln->seq_type == SEQ_POMO) model_str = "HKY+P";
		else model_str = "JC";
        if (tree->aln->seq_type != SEQ_POMO)
            outWarning("Default model "+model_str + " may be under-fitting. Use option '-m TEST' to determine the best-fit model.");
	}

	/********* preprocessing model string ****************/
	NxsModel *nxsmodel  = NULL;

    string new_model_str = "";
    size_t mix_pos;
    for (mix_pos = 0; mix_pos < model_str.length(); mix_pos++) {
        size_t next_mix_pos = model_str.find_first_of("+*", mix_pos);
        string sub_model_str = model_str.substr(mix_pos, next_mix_pos-mix_pos);
        nxsmodel = models_block->findMixModel(sub_model_str);
        if (nxsmodel) sub_model_str = nxsmodel->description;
        new_model_str += sub_model_str;
        if (next_mix_pos != string::npos)
            new_model_str += model_str[next_mix_pos];
        else
            break;
        mix_pos = next_mix_pos;
    }
    if (new_model_str != model_str)
        cout << "Model " << model_str << " is alias for " << new_model_str << endl;
    model_str = new_model_str;

    //	nxsmodel = models_block->findModel(model_str);
    //	if (nxsmodel && nxsmodel->description.find_first_of("+*") != string::npos) {
    //		cout << "Model " << model_str << " is alias for " << nxsmodel->description << endl;
    //		model_str = nxsmodel->description;
    //	}

    // Detect PoMo and throw error if sequence type is PoMo but +P is
    // not given.  This makes the model string cleaner and
    // compareable.
    string::size_type p_pos = posPOMO(model_str);
    bool pomo = (p_pos != string::npos);

    if ((p_pos == string::npos) &&
        (tree->aln->seq_type == SEQ_POMO))
        outError("Provided alignment is exclusively used by PoMo but model string does not contain, e.g., \"+P\".");

    // Decompose model string into model_str and rate_str string.
	size_t spec_pos = model_str.find_first_of("{+*");
	if (spec_pos != string::npos) {
		if (model_str[spec_pos] == '{') {
			// Scan for the corresponding '}'.
			size_t pos = findCloseBracket(model_str, spec_pos);
			if (pos == string::npos)
				outError("Model name has wrong bracket notation '{...}'");
				rate_str = model_str.substr(pos+1);
				model_str = model_str.substr(0, pos+1);
        }
    else {
            rate_str = model_str.substr(spec_pos);
            model_str = model_str.substr(0, spec_pos);
        }
    }

    // PoMo; +NXX and +W or +S because those flags are handled when
    // reading in the data.  Set PoMo parameters (heterozygosity).
    size_t n_pos_start = rate_str.find("+N");
    size_t n_pos_end   = rate_str.find_first_of("+", n_pos_start+1);
    if (n_pos_start != string::npos) {
        if (!pomo)
            outError("Virtual population size can only be set with PoMo.");
        if (n_pos_end != string::npos)
            rate_str = rate_str.substr(0, n_pos_start)
                + rate_str.substr(n_pos_end);
        else
            rate_str = rate_str.substr(0, n_pos_start);
    }

    size_t wb_pos = rate_str.find("+WB");
    if (wb_pos != string::npos) {
      if (!pomo)
        outError("Weighted binomial sampling can only be used with PoMo.");
      rate_str = rate_str.substr(0, wb_pos)
        + rate_str.substr(wb_pos+3);
    }
    size_t wh_pos = rate_str.find("+WH");
    if (wh_pos != string::npos) {
        if (!pomo)
            outError("Weighted hypergeometric sampling can only be used with PoMo.");
        rate_str = rate_str.substr(0, wh_pos)
            + rate_str.substr(wh_pos+3);
    }
    size_t s_pos = rate_str.find("+S");
    if ( s_pos != string::npos) {
        if (!pomo)
            outError("Binomial sampling can only be used with PoMo.");
        rate_str = rate_str.substr(0, s_pos)
            + rate_str.substr(s_pos+2);
    }

    // In case of PoMo, check that only supported flags are given.
    if (pomo) {
        if (rate_str.find("+ASC") != string::npos)
            // TODO DS: This is an important feature, because then,
            // PoMo can be applied to SNP data only.
            outError("PoMo does not yet support ascertainment bias correction (+ASC).");
        if (posRateFree(rate_str) != string::npos)
            outError("PoMo does not yet support free rate models (+R).");
        if (rate_str.find("+FMIX") != string::npos)
            outError("PoMo does not yet support frequency mixture models (+FMIX).");
        if (posRateHeterotachy(rate_str) != string::npos)
            outError("PoMo does not yet support heterotachy models (+H).");
    }

    // PoMo. The +P{}, +GXX and +I flags are interpreted during model creation.
    // This is necessary for compatibility with mixture models. If there is no
    // mixture model, move +P{}, +GXX and +I flags to model string. For mixture
    // models, the heterozygosity can be set separately for each model and the
    // +P{}, +GXX and +I flags should already be inside the model definition.
    if (model_str.substr(0, 3) != "MIX" && pomo) {
      // +P{} flag.
      p_pos = posPOMO(rate_str);
      if (p_pos != string::npos) {
        if (rate_str[p_pos+2] == '{') {
          string::size_type close_bracket = rate_str.find("}");
          if (close_bracket == string::npos)
            outError("No closing bracket in PoMo parameters.");
          else {
            string pomo_heterozygosity = rate_str.substr(p_pos+3,close_bracket-p_pos-3);
            rate_str = rate_str.substr(0, p_pos) + rate_str.substr(close_bracket+1);
            model_str += "+P{" + pomo_heterozygosity + "}";
          }
        }
        else {
          rate_str = rate_str.substr(0, p_pos) + rate_str.substr(p_pos + 2);
          model_str += "+P";
        }
      }

      // +G flag.
      size_t pomo_rate_start_pos;
      if ((pomo_rate_start_pos = rate_str.find("+G")) != string::npos) {
        string pomo_rate_str = "";
        size_t pomo_rate_end_pos = rate_str.find_first_of("+*", pomo_rate_start_pos+1);
        if (pomo_rate_end_pos == string::npos) {
          pomo_rate_str = rate_str.substr(pomo_rate_start_pos, rate_str.length() - pomo_rate_start_pos);
          rate_str = rate_str.substr(0, pomo_rate_start_pos);
          model_str += pomo_rate_str;
        } else {
          pomo_rate_str = rate_str.substr(pomo_rate_start_pos, pomo_rate_end_pos - pomo_rate_start_pos);
          rate_str = rate_str.substr(0, pomo_rate_start_pos) + rate_str.substr(pomo_rate_end_pos);
          model_str += pomo_rate_str;
        }
      }

      // // +I flag.
      // size_t pomo_irate_start_pos;
      // if ((pomo_irate_start_pos = rate_str.find("+I")) != string::npos) {
      //   string pomo_irate_str = "";
      //   size_t pomo_irate_end_pos = rate_str.find_first_of("+*", pomo_irate_start_pos+1);
      //   if (pomo_irate_end_pos == string::npos) {
      //     pomo_irate_str = rate_str.substr(pomo_irate_start_pos, rate_str.length() - pomo_irate_start_pos);
      //     rate_str = rate_str.substr(0, pomo_irate_start_pos);
      //     model_str += pomo_irate_str;
      //   } else {
      //     pomo_irate_str = rate_str.substr(pomo_irate_start_pos, pomo_irate_end_pos - pomo_irate_start_pos);
      //     rate_str = rate_str.substr(0, pomo_irate_start_pos) + rate_str.substr(pomo_irate_end_pos);
      //     model_str += pomo_irate_str;
      //   }
    }

    //	nxsmodel = models_block->findModel(model_str);
    //	if (nxsmodel && nxsmodel->description.find("MIX") != string::npos) {
    //		cout << "Model " << model_str << " is alias for " << nxsmodel->description << endl;
    //		model_str = nxsmodel->description;
    //	}

	/******************** initialize state frequency ****************************/

	StateFreqType freq_type = params.freq_type;

	if (freq_type == FREQ_UNKNOWN) {
		switch (tree->aln->seq_type) {
		case SEQ_BINARY: freq_type = FREQ_ESTIMATE; break; // default for binary: optimized frequencies
		case SEQ_PROTEIN: break; // let ModelProtein decide by itself
		case SEQ_MORPH: freq_type = FREQ_EQUAL; break;
		case SEQ_CODON: freq_type = FREQ_UNKNOWN; break;
            break;
		default: freq_type = FREQ_EMPIRICAL; break; // default for DNA, PoMo and others: counted frequencies from alignment
		}
	}

    // first handle mixture frequency
    string::size_type posfreq = rate_str.find("+FMIX");
	string freq_params;
    size_t close_bracket;

    if (posfreq != string::npos) {
		string freq_str;
		size_t last_pos = rate_str.find_first_of("+*", posfreq+1);

		if (last_pos == string::npos) {
			freq_str = rate_str.substr(posfreq);
			rate_str = rate_str.substr(0, posfreq);
		} else {
			freq_str = rate_str.substr(posfreq, last_pos-posfreq);
			rate_str = rate_str.substr(0, posfreq) + rate_str.substr(last_pos);
		}

        if (freq_str[5] != OPEN_BRACKET)
            outError("Mixture-frequency must start with +FMIX{");
        close_bracket = freq_str.find(CLOSE_BRACKET);
        if (close_bracket == string::npos)
            outError("Close bracket not found in ", freq_str);
        if (close_bracket != freq_str.length()-1)
            outError("Wrong close bracket position ", freq_str);
        freq_type = FREQ_MIXTURE;
        freq_params = freq_str.substr(6, close_bracket-6);
    }

    // then normal frequency
    if (rate_str.find("+FO") != string::npos)
        posfreq = rate_str.find("+FO");
    else if (rate_str.find("+Fo") != string::npos)
        posfreq = rate_str.find("+Fo");
    else
        posfreq = rate_str.find("+F");

    bool optimize_mixmodel_weight = params.optimize_mixmodel_weight;

	if (posfreq != string::npos) {
		string freq_str;
		size_t last_pos = rate_str.find_first_of("+*", posfreq+1);
		if (last_pos == string::npos) {
			freq_str = rate_str.substr(posfreq);
			rate_str = rate_str.substr(0, posfreq);
		} else {
			freq_str = rate_str.substr(posfreq, last_pos-posfreq);
			rate_str = rate_str.substr(0, posfreq) + rate_str.substr(last_pos);
		}

        if (freq_str.length() > 2 && freq_str[2] == OPEN_BRACKET) {
            if (freq_type == FREQ_MIXTURE)
                outError("Mixture frequency with user-defined frequency is not allowed");
            close_bracket = freq_str.find(CLOSE_BRACKET);
            if (close_bracket == string::npos)
                outError("Close bracket not found in ", freq_str);
            if (close_bracket != freq_str.length()-1)
                outError("Wrong close bracket position ", freq_str);
            freq_type = FREQ_USER_DEFINED;
            freq_params = freq_str.substr(3, close_bracket-3);
        } else if (freq_str == "+FC" || freq_str == "+Fc" || freq_str == "+F") {
            if (freq_type == FREQ_MIXTURE) {
                freq_params = "empirical," + freq_params;
                optimize_mixmodel_weight = true;
            } else
                freq_type = FREQ_EMPIRICAL;
	} else if (freq_str == "+FU" || freq_str == "+Fu") {
            if (freq_type == FREQ_MIXTURE)
                outError("Mixture frequency with user-defined frequency is not allowed");
            else
                freq_type = FREQ_USER_DEFINED;
        } else if (freq_str == "+FQ" || freq_str == "+Fq") {
            if (freq_type == FREQ_MIXTURE)
                outError("Mixture frequency with equal frequency is not allowed");
            else
            freq_type = FREQ_EQUAL;
        } else if (freq_str == "+FO" || freq_str == "+Fo") {
            if (freq_type == FREQ_MIXTURE) {
                freq_params = "optimize," + freq_params;
                optimize_mixmodel_weight = true;
            } else
                freq_type = FREQ_ESTIMATE;
	} else if (freq_str == "+F1x4" || freq_str == "+F1X4") {
            if (freq_type == FREQ_MIXTURE)
                outError("Mixture frequency with " + freq_str + " is not allowed");
            else
                freq_type = FREQ_CODON_1x4;
        } else if (freq_str == "+F3x4" || freq_str == "+F3X4") {
            if (freq_type == FREQ_MIXTURE)
                outError("Mixture frequency with " + freq_str + " is not allowed");
            else
                freq_type = FREQ_CODON_3x4;
        } else if (freq_str == "+F3x4C" || freq_str == "+F3x4c" || freq_str == "+F3X4C" || freq_str == "+F3X4c") {
            if (freq_type == FREQ_MIXTURE)
                outError("Mixture frequency with " + freq_str + " is not allowed");
            else
                freq_type = FREQ_CODON_3x4C;
        } else if (freq_str == "+FRY") {
	    // MDW to Minh: I don't know how these should interact with FREQ_MIXTURE,
	    // so as nearly everything else treats it as an error, I do too.
        // BQM answer: that's fine
            if (freq_type == FREQ_MIXTURE)
                outError("Mixture frequency with " + freq_str + " is not allowed");
            else
                freq_type = FREQ_DNA_RY;
        } else if (freq_str == "+FWS") {
            if (freq_type == FREQ_MIXTURE)
                outError("Mixture frequency with " + freq_str + " is not allowed");
            else
                freq_type = FREQ_DNA_WS;
        } else if (freq_str == "+FMK") {
            if (freq_type == FREQ_MIXTURE)
                outError("Mixture frequency with " + freq_str + " is not allowed");
            else
                freq_type = FREQ_DNA_MK;
        } else {
            // might be "+F####" where # are digits
            try {
                freq_type = parseStateFreqDigits(freq_str.substr(2)); // throws an error if not in +F#### format
            } catch (...) {
                outError("Unknown state frequency type ",freq_str);
            }
        }
//          model_str = model_str.substr(0, posfreq);
        }

	/******************** initialize model ****************************/

	if (tree->aln->site_state_freq.empty()) {
		if (model_str.substr(0, 3) == "MIX" || freq_type == FREQ_MIXTURE) {
			string model_list;
			if (model_str.substr(0, 3) == "MIX") {
				if (model_str[3] != OPEN_BRACKET)
					outError("Mixture model name must start with 'MIX{'");
				if (model_str.rfind(CLOSE_BRACKET) != model_str.length()-1)
					outError("Close bracket not found at the end of ", model_str);
				model_list = model_str.substr(4, model_str.length()-5);
				model_str = model_str.substr(0, 3);
			}
			model = new ModelMixture(model_name, model_str, model_list, models_block, freq_type, freq_params, tree, optimize_mixmodel_weight);
		} else {
            //			string model_desc;
            //			NxsModel *nxsmodel = models_block->findModel(model_str);
            //			if (nxsmodel) model_desc = nxsmodel->description;
			model = createModel(model_str, models_block, freq_type, freq_params, tree);
		}
//		fused_mix_rate &= model->isMixture() && site_rate->getNRate() > 1;
	} else {
		// site-specific model
		if (model_str == "JC" || model_str == "POISSON")
			outError("JC is not suitable for site-specific model");
		model = new ModelSet(model_str.c_str(), tree);
		ModelSet *models = (ModelSet*)model; // assign pointer for convenience
		models->init((params.freq_type != FREQ_UNKNOWN) ? params.freq_type : FREQ_EMPIRICAL);
		int i;
		models->pattern_model_map.resize(tree->aln->getNPattern(), -1);
		for (i = 0; i < tree->aln->getNSite(); i++) {
			models->pattern_model_map[tree->aln->getPatternID(i)] = tree->aln->site_model[i];
			//cout << "site " << i << " ptn " << tree->aln->getPatternID(i) << " -> model " << site_model[i] << endl;
		}
		double *state_freq = new double[model->num_states];
		double *rates = new double[model->getNumRateEntries()];
		for (i = 0; i < tree->aln->site_state_freq.size(); i++) {
			ModelMarkov *modeli;
			if (i == 0) {
				modeli = (ModelMarkov*)createModel(model_str, models_block, (params.freq_type != FREQ_UNKNOWN) ? params.freq_type : FREQ_EMPIRICAL, "", tree);
				modeli->getStateFrequency(state_freq);
				modeli->getRateMatrix(rates);
			} else {
				modeli = (ModelMarkov*)createModel(model_str, models_block, FREQ_EQUAL, "", tree);
				modeli->setStateFrequency(state_freq);
				modeli->setRateMatrix(rates);
			}
			if (tree->aln->site_state_freq[i])
				modeli->setStateFrequency (tree->aln->site_state_freq[i]);

			modeli->init(FREQ_USER_DEFINED);
			models->push_back(modeli);
		}
		delete [] rates;
		delete [] state_freq;

        models->joinEigenMemory();
        models->decomposeRateMatrix();

        // delete information of the old alignment
//        tree->aln->ordered_pattern.clear();
//        tree->deleteAllPartialLh();
	}

//	if (model->isMixture())
//		cout << "Mixture model with " << model->getNMixtures() << " components!" << endl;

	/******************** initialize ascertainment bias correction model ****************************/

	string::size_type posasc;

	if ((posasc = rate_str.find("+ASC")) != string::npos) {
		// ascertainment bias correction
		unobserved_ptns = tree->aln->getUnobservedConstPatterns();
        
        // delete rarely observed state
        for (int i = unobserved_ptns.length()-1; i >= 0; i--)
            if (model->state_freq[(int)unobserved_ptns[i]] < 1e-8)
                unobserved_ptns.erase(i);
                
		// rebuild the seq_states to contain states of unobserved constant patterns
		tree->aln->buildSeqStates(true);
//		if (unobserved_ptns.size() <= 0)
//			outError("Invalid use of +ASC because all constant patterns are observed in the alignment");
		if (tree->aln->frac_invariant_sites > 0) {
//            cerr << tree->aln->frac_invariant_sites*tree->aln->getNSite() << " invariant sites observed in the alignment" << endl;
//            for (Alignment::iterator pit = tree->aln->begin(); pit != tree->aln->end(); pit++)
//                if (pit->isInvariant()) {
//                    string pat_str = "";
//                    for (Pattern::iterator it = pit->begin(); it != pit->end(); it++)
//                        pat_str += tree->aln->convertStateBackStr(*it);
//                    cerr << pat_str << " is invariant site pattern" << endl;
//                }
            if (!params.partition_file) {
                string varsites_file = ((string)params.out_prefix + ".varsites.phy");
                tree->aln->printPhylip(varsites_file.c_str(), false, NULL, false, true);
                cerr << "For your convenience alignment with variable sites printed to " << varsites_file << endl;
            }
            outError("Invalid use of +ASC because of " + convertIntToString(tree->aln->frac_invariant_sites*tree->aln->getNSite()) +
                " invariant sites in the alignment");
        }
        if (verbose_mode >= VB_MED)
            cout << "Ascertainment bias correction: " << unobserved_ptns.size() << " unobservable constant patterns"<< endl;
		rate_str = rate_str.substr(0, posasc) + rate_str.substr(posasc+4);
	} else {
        tree->aln->buildSeqStates(false);
    }


	/******************** initialize site rate heterogeneity ****************************/

	string::size_type posI = rate_str.find("+I");
	string::size_type posG = rate_str.find("+G");
	string::size_type posG2 = rate_str.find("*G");
    if (posG != string::npos && posG2 != string::npos) {
        cout << "NOTE: both +G and *G were specified, continue with "
            << ((posG < posG2)? rate_str.substr(posG,2) : rate_str.substr(posG2,2)) << endl;
    }
    if (posG2 != string::npos && posG2 < posG) {
        posG = posG2;
        fused_mix_rate = true;
    }

	string::size_type posR = rate_str.find("+R"); // FreeRate model
	string::size_type posR2 = rate_str.find("*R"); // FreeRate model

    if (posG != string::npos && (posR != string::npos || posR2 != string::npos)) {
        outWarning("Both Gamma and FreeRate models were specified, continue with FreeRate model");
        posG = string::npos;
        fused_mix_rate = false;
    }

    if (posR != string::npos && posR2 != string::npos) {
        cout << "NOTE: both +R and *R were specified, continue with "
            << ((posR < posR2)? rate_str.substr(posR,2) : rate_str.substr(posR2,2)) << endl;
    }

    if (posR2 != string::npos && posR2 < posR) {
        posR = posR2;
        fused_mix_rate = true;
    }

	string::size_type posH = rate_str.find("+H"); // heterotachy model
	string::size_type posH2 = rate_str.find("*H"); // heterotachy model

    if (posG != string::npos && (posH != string::npos || posH2 != string::npos)) {
        outWarning("Both Gamma and heterotachy models were specified, continue with heterotachy model");
        posG = string::npos;
        fused_mix_rate = false;
    }

    if (posR != string::npos && (posH != string::npos || posH2 != string::npos)) {
        outWarning("Both FreeRate and heterotachy models were specified, continue with heterotachy model");
        posR = string::npos;
        fused_mix_rate = false;
    }

    if (posH != string::npos && posH2 != string::npos) {
        cout << "NOTE: both +H and *H were specified, continue with "
            << ((posH < posH2)? rate_str.substr(posH,2) : rate_str.substr(posH2,2)) << endl;
    }
    if (posH2 != string::npos && posH2 < posH) {
        posH = posH2;
        fused_mix_rate = true;
    }

	string::size_type posX;
	/* create site-rate heterogeneity */
	int num_rate_cats = params.num_rate_cats;
	if (fused_mix_rate && model->isMixture()) num_rate_cats = model->getNMixtures();
	double gamma_shape = params.gamma_shape;
	double p_invar_sites = params.p_invar_sites;
	string freerate_params = "";
	if (posI != string::npos) {
		// invariable site model
		if (rate_str.length() > posI+2 && rate_str[posI+2] == OPEN_BRACKET) {
			close_bracket = rate_str.find(CLOSE_BRACKET, posI);
			if (close_bracket == string::npos)
				outError("Close bracket not found in ", rate_str);
			p_invar_sites = convert_double(rate_str.substr(posI+3, close_bracket-posI-3).c_str());
			if (p_invar_sites < 0 || p_invar_sites >= 1)
				outError("p_invar must be in [0,1)");
		} else if (rate_str.length() > posI+2 && rate_str[posI+2] != '+' && rate_str[posI+2] != '*')
			outError("Wrong model name ", rate_str);
	}
	if (posG != string::npos) {
		// Gamma rate model
		int end_pos = 0;
		if (rate_str.length() > posG+2 && isdigit(rate_str[posG+2])) {
			num_rate_cats = convert_int(rate_str.substr(posG+2).c_str(), end_pos);
			if (num_rate_cats < 1) outError("Wrong number of rate categories");
		}
		if (rate_str.length() > posG+2+end_pos && rate_str[posG+2+end_pos] == OPEN_BRACKET) {
			close_bracket = rate_str.find(CLOSE_BRACKET, posG);
			if (close_bracket == string::npos)
				outError("Close bracket not found in ", rate_str);
			gamma_shape = convert_double(rate_str.substr(posG+3+end_pos, close_bracket-posG-3-end_pos).c_str());
//			if (gamma_shape < MIN_GAMMA_SHAPE || gamma_shape > MAX_GAMMA_SHAPE) {
//				stringstream str;
//				str << "Gamma shape parameter " << gamma_shape << "out of range ["
//						<< MIN_GAMMA_SHAPE << ',' << MAX_GAMMA_SHAPE << "]" << endl;
//				outError(str.str());
//			}
		} else if (rate_str.length() > posG+2+end_pos && rate_str[posG+2+end_pos] != '+')
			outError("Wrong model name ", rate_str);
	}
	if (posR != string::npos) {
		// FreeRate model
		int end_pos = 0;
		if (rate_str.length() > posR+2 && isdigit(rate_str[posR+2])) {
			num_rate_cats = convert_int(rate_str.substr(posR+2).c_str(), end_pos);
				if (num_rate_cats < 1) outError("Wrong number of rate categories");
			}
		if (rate_str.length() > posR+2+end_pos && rate_str[posR+2+end_pos] == OPEN_BRACKET) {
			close_bracket = rate_str.find(CLOSE_BRACKET, posR);
			if (close_bracket == string::npos)
				outError("Close bracket not found in ", rate_str);
			freerate_params = rate_str.substr(posR+3+end_pos, close_bracket-posR-3-end_pos).c_str();
		} else if (rate_str.length() > posR+2+end_pos && rate_str[posR+2+end_pos] != '+')
			outError("Wrong model name ", rate_str);
	}

	string heterotachy_params = "";
	if (posH != string::npos) {
		// Heterotachy model
		int end_pos = 0;
		if (rate_str.length() > posH+2 && isdigit(rate_str[posH+2])) {
			num_rate_cats = convert_int(rate_str.substr(posH+2).c_str(), end_pos);
				if (num_rate_cats < 1) outError("Wrong number of rate categories");
        } else {
            if (!model->isMixture() || !fused_mix_rate)
                outError("Please specify number of heterotachy classes (e.g., +H2)");
        }
		if (rate_str.length() > posH+2+end_pos && rate_str[posH+2+end_pos] == OPEN_BRACKET) {
			close_bracket = rate_str.find(CLOSE_BRACKET, posH);
			if (close_bracket == string::npos)
				outError("Close bracket not found in ", rate_str);
			heterotachy_params = rate_str.substr(posH+3+end_pos, close_bracket-posH-3-end_pos).c_str();
		} else if (rate_str.length() > posH+2+end_pos && rate_str[posH+2+end_pos] != '+')
			outError("Wrong model name ", rate_str);
	}


	if (rate_str.find('+') != string::npos || rate_str.find('*') != string::npos) {
		//string rate_str = model_str.substr(pos);
        if (posI != string::npos && posH != string::npos) {
			site_rate = new RateHeterotachyInvar(num_rate_cats, heterotachy_params, p_invar_sites, tree);
        } else if (posH != string::npos) {
			site_rate = new RateHeterotachy(num_rate_cats, heterotachy_params, tree);
		} else if (posI != string::npos && posG != string::npos) {
			site_rate = new RateGammaInvar(num_rate_cats, gamma_shape, params.gamma_median,
					p_invar_sites, params.optimize_alg_gammai, tree, false);
		} else if (posI != string::npos && posR != string::npos) {
			site_rate = new RateFreeInvar(num_rate_cats, gamma_shape, freerate_params, !fused_mix_rate, p_invar_sites, params.optimize_alg, tree);
		} else if (posI != string::npos) {
			site_rate = new RateInvar(p_invar_sites, tree);
		} else if (posG != string::npos) {
			site_rate = new RateGamma(num_rate_cats, gamma_shape, params.gamma_median, tree);
		} else if (posR != string::npos) {
			site_rate = new RateFree(num_rate_cats, gamma_shape, freerate_params, !fused_mix_rate, params.optimize_alg, tree);
//		} else if ((posX = rate_str.find("+M")) != string::npos) {
//			tree->setLikelihoodKernel(LK_NORMAL);
//			params.rate_mh_type = true;
//			if (rate_str.length() > posX+2 && isdigit(rate_str[posX+2])) {
//				num_rate_cats = convert_int(rate_str.substr(posX+2).c_str());
//				if (num_rate_cats < 0) outError("Wrong number of rate categories");
//			} else num_rate_cats = -1;
//			if (num_rate_cats >= 0)
//				site_rate = new RateMeyerDiscrete(num_rate_cats, params.mcat_type,
//					params.rate_file, tree, params.rate_mh_type);
//			else
//				site_rate = new RateMeyerHaeseler(params.rate_file, tree, params.rate_mh_type);
//			site_rate->setTree(tree);
//		} else if ((posX = rate_str.find("+D")) != string::npos) {
//			tree->setLikelihoodKernel(LK_NORMAL);
//			params.rate_mh_type = false;
//			if (rate_str.length() > posX+2 && isdigit(rate_str[posX+2])) {
//				num_rate_cats = convert_int(rate_str.substr(posX+2).c_str());
//				if (num_rate_cats < 0) outError("Wrong number of rate categories");
//			} else num_rate_cats = -1;
//			if (num_rate_cats >= 0)
//				site_rate = new RateMeyerDiscrete(num_rate_cats, params.mcat_type,
//					params.rate_file, tree, params.rate_mh_type);
//			else
//				site_rate = new RateMeyerHaeseler(params.rate_file, tree, params.rate_mh_type);
//			site_rate->setTree(tree);
//		} else if ((posX = rate_str.find("+NGS")) != string::npos) {
//			tree->setLikelihoodKernel(LK_NORMAL);
//			if (rate_str.length() > posX+4 && isdigit(rate_str[posX+4])) {
//				num_rate_cats = convert_int(rate_str.substr(posX+4).c_str());
//				if (num_rate_cats < 0) outError("Wrong number of rate categories");
//			} else num_rate_cats = -1;
//			site_rate = new NGSRateCat(tree, num_rate_cats);
//			site_rate->setTree(tree);
//		} else if ((posX = rate_str.find("+NGS")) != string::npos) {
//			tree->setLikelihoodKernel(LK_NORMAL);
//			if (rate_str.length() > posX+4 && isdigit(rate_str[posX+4])) {
//				num_rate_cats = convert_int(rate_str.substr(posX+4).c_str());
//				if (num_rate_cats < 0) outError("Wrong number of rate categories");
//			} else num_rate_cats = -1;
//			site_rate = new NGSRate(tree);
//			site_rate->setTree(tree);
		} else if ((posX = rate_str.find("+K")) != string::npos) {
			if (rate_str.length() > posX+2 && isdigit(rate_str[posX+2])) {
				num_rate_cats = convert_int(rate_str.substr(posX+2).c_str());
				if (num_rate_cats < 1) outError("Wrong number of rate categories");
			}
			site_rate = new RateKategory(num_rate_cats, tree);
		} else
			outError("Invalid rate heterogeneity type");
//		if (model_str.find('+') != string::npos)
//			model_str = model_str.substr(0, model_str.find('+'));
//		else
//			model_str = model_str.substr(0, model_str.find('*'));
	} else {
		site_rate = new RateHeterogeneity();
		site_rate->setTree(tree);
	}

	if (fused_mix_rate) {
		if (!model->isMixture()) {
            if (verbose_mode >= VB_MED)
                cout << endl << "NOTE: Using mixture model with unlinked " << model_str << " parameters" << endl;
            string model_list = model_str;
            delete model;
            for (int i = 1; i < site_rate->getNRate(); i++)
                model_list += "," + model_str;
            model = new ModelMixture(model_name, model_str, model_list, models_block, freq_type, freq_params, tree, optimize_mixmodel_weight);
        }
		if (model->getNMixtures() != site_rate->getNRate())
			outError("Mixture model and site rate model do not have the same number of categories");
//        if (!tree->isMixlen()) {
            // reset mixture model
            model->setFixMixtureWeight(true);
            int mix, nmix = model->getNMixtures();
            for (mix = 0; mix < nmix; mix++) {
                ((ModelMarkov*)model->getMixtureClass(mix))->total_num_subst = 1.0;
                model->setMixtureWeight(mix, 1.0);
            }
            model->decomposeRateMatrix();
//        } else {
//            site_rate->setFixParams(1);
//            int c, ncat = site_rate->getNRate();
//            for (c = 0; c < ncat; c++)
//                site_rate->setProp(c, 1.0);
//        }
	}

	tree->discardSaturatedSite(params.discard_saturated_site);

	} catch (const char* str) {
		outError(str);
	}

}

void ModelFactory::setCheckpoint(Checkpoint *checkpoint) {
	CheckpointFactory::setCheckpoint(checkpoint);
	model->setCheckpoint(checkpoint);
	site_rate->setCheckpoint(checkpoint);
}

void ModelFactory::startCheckpoint() {
    checkpoint->startStruct("ModelFactory");
}

void ModelFactory::saveCheckpoint() {
    model->saveCheckpoint();
    site_rate->saveCheckpoint();
    startCheckpoint();
//    CKP_SAVE(fused_mix_rate);
//    CKP_SAVE(unobserved_ptns);
//    CKP_SAVE(joint_optimize);
    endCheckpoint();
    CheckpointFactory::saveCheckpoint();
}

void ModelFactory::restoreCheckpoint() {
    model->restoreCheckpoint();
    site_rate->restoreCheckpoint();
    startCheckpoint();
//    CKP_RESTORE(fused_mix_rate);
//    CKP_RESTORE(unobserved_ptns);
//    CKP_RESTORE(joint_optimize);
    endCheckpoint();
}

int ModelFactory::getNParameters(int brlen_type) {
	int df = model->getNDim() + model->getNDimFreq() + site_rate->getNDim() +
        site_rate->getTree()->getNBranchParameters(brlen_type);

    return df;
}
/*
double ModelFactory::initGTRGammaIParameters(RateHeterogeneity *rate, ModelSubst *model, double initAlpha,
                                           double initPInvar, double *initRates, double *initStateFreqs)  {

    RateHeterogeneity* rateGammaInvar = rate;
    ModelMarkov* modelGTR = (ModelMarkov*)(model);
    modelGTR->setRateMatrix(initRates);
    modelGTR->setStateFrequency(initStateFreqs);
    rateGammaInvar->setGammaShape(initAlpha);
    rateGammaInvar->setPInvar(initPInvar);
    modelGTR->decomposeRateMatrix();
    site_rate->phylo_tree->clearAllPartialLH();
    return site_rate->phylo_tree->computeLikelihood();
}
*/

double ModelFactory::optimizeParametersOnly(int num_steps, double gradient_epsilon, double cur_logl) {
	double logl;
	/* Optimize substitution and heterogeneity rates independently */
	if (!joint_optimize) {
        // more steps for fused mix rate model
        int steps;
        if (false && fused_mix_rate && model->getNDim() > 0 && site_rate->getNDim() > 0) {
            model->setOptimizeSteps(1);
            site_rate->setOptimizeSteps(1);
            steps = max(model->getNDim()+site_rate->getNDim(), num_steps) * 3;
        } else {
            steps = 1;
        }
        double prev_logl = cur_logl;
        for (int step = 0; step < steps; step++) {
            double model_lh = model->optimizeParameters(gradient_epsilon);
            double rate_lh = site_rate->optimizeParameters(gradient_epsilon);

            if (rate_lh == 0.0)
                logl = model_lh;
            else
                logl = rate_lh;
            if (logl <= prev_logl + gradient_epsilon)
                break;
            prev_logl = logl;
        }
	} else {
		/* Optimize substitution and heterogeneity rates jointly using BFGS */
		logl = optimizeAllParameters(gradient_epsilon);
	}
	return logl;
}

double ModelFactory::optimizeAllParameters(double gradient_epsilon) {
    int ndim = getNDim();

    // return if nothing to be optimized
    if (ndim == 0) return 0.0;

    double *variables = new double[ndim+1];
    double *upper_bound = new double[ndim+1];
    double *lower_bound = new double[ndim+1];
    bool *bound_check = new bool[ndim+1];
    int i;
    double score;

    // setup the bounds for model
    setVariables(variables);
    int model_ndim = model->getNDim();
    for (i = 1; i <= model_ndim; i++) {
        //cout << variables[i] << endl;
        lower_bound[i] = MIN_RATE;
        upper_bound[i] = MAX_RATE;
        bound_check[i] = false;
    }

    if (model->freq_type == FREQ_ESTIMATE) {
        for (i = model_ndim- model->num_states+2; i <= model_ndim; i++)
            upper_bound[i] = 1.0;
    }

    // setup the bounds for site_rate
    site_rate->setBounds(lower_bound+model_ndim, upper_bound+model_ndim, bound_check+model_ndim);

    score = -minimizeMultiDimen(variables, ndim, lower_bound, upper_bound, bound_check, max(gradient_epsilon, TOL_RATE));

    getVariables(variables);
    //if (freq_type == FREQ_ESTIMATE) scaleStateFreq(true);
    model->decomposeRateMatrix();
    site_rate->phylo_tree->clearAllPartialLH();

    score = site_rate->phylo_tree->computeLikelihood();

    delete [] bound_check;
    delete [] lower_bound;
    delete [] upper_bound;
    delete [] variables;

    return score;
}

double ModelFactory::optimizeParametersGammaInvar(int fixed_len, bool write_info, double logl_epsilon, double gradient_epsilon) {
    if (!site_rate->isGammai() || site_rate->isFixPInvar() || site_rate->isFixGammaShape() || site_rate->getTree()->aln->frac_const_sites == 0.0 || model->isMixture())
        return optimizeParameters(fixed_len, write_info, logl_epsilon, gradient_epsilon);

	double begin_time = getRealTime();

    PhyloTree *tree = site_rate->getTree();
	double frac_const = tree->aln->frac_const_sites;
    tree->setCurScore(tree->computeLikelihood());

	/* Back up branch lengths and substitutional rates */
	DoubleVector initBranLens;
	DoubleVector bestLens;
	tree->saveBranchLengths(initBranLens);
    bestLens = initBranLens;
//	int numRateEntries = tree->getModel()->getNumRateEntries();
    Checkpoint *model_ckp = new Checkpoint;
    Checkpoint *best_ckp = new Checkpoint;
    Checkpoint *saved_ckp = model->getCheckpoint();
    *model_ckp = *saved_ckp;
//	double *rates = new double[numRateEntries];
//	double *bestRates = new double[numRateEntries];
//	tree->getModel()->getRateMatrix(rates);
//	int numStates = tree->aln->num_states;
//	double *state_freqs = new double[numStates];
//	tree->getModel()->getStateFrequency(state_freqs);

	/* Best estimates found */
//	double *bestStateFreqs =  new double[numStates];
	double bestLogl = -DBL_MAX;
	double bestAlpha = 0.0;
	double bestPInvar = 0.0;

	double testInterval = (frac_const - MIN_PINVAR * 2) / 9;
	double initPInv = MIN_PINVAR;
	double initAlpha = site_rate->getGammaShape();

    if (Params::getInstance().opt_gammai_fast) {
        initPInv = frac_const/2;
        bool stop = false;
        while(!stop) {
            if (write_info) {
                cout << endl;
                cout << "Testing with init. pinv = " << initPInv << " / init. alpha = "  << initAlpha << endl;
            }

            vector<double> estResults = optimizeGammaInvWithInitValue(fixed_len, logl_epsilon, gradient_epsilon,
                                                                   initPInv, initAlpha, initBranLens, model_ckp);


            if (write_info) {
                cout << "Est. p_inv: " << estResults[0] << " / Est. gamma shape: " << estResults[1]
                << " / Logl: " << estResults[2] << endl;
            }

            if (estResults[2] > bestLogl) {
                bestLogl = estResults[2];
                bestAlpha = estResults[1];
                bestPInvar = estResults[0];
                bestLens.clear();
                tree->saveBranchLengths(bestLens);
                model->setCheckpoint(best_ckp);
                model->saveCheckpoint();
                model->setCheckpoint(saved_ckp);
//                *best_ckp = *saved_ckp;

//                tree->getModel()->getRateMatrix(bestRates);
//                tree->getModel()->getStateFrequency(bestStateFreqs);
                if (estResults[0] < initPInv) {
                    initPInv = estResults[0] - testInterval;
                    if (initPInv < 0.0)
                        initPInv = 0.0;
                } else {
                    initPInv = estResults[0] + testInterval;
                    if (initPInv > frac_const)
                        initPInv = frac_const;
                }
                //cout << "New initPInv = " << initPInv << endl;
            }  else {
                stop = true;
            }
        }
    } else {
        // Now perform testing different initial p_inv values
        if (write_info)
            cout << "Thoroughly optimizing +I+G parameters from 10 start values..." << endl;
        while (initPInv <= frac_const) {
            vector<double> estResults; // vector of p_inv, alpha and logl
            if (Params::getInstance().opt_gammai_keep_bran)
                estResults = optimizeGammaInvWithInitValue(fixed_len, logl_epsilon, gradient_epsilon,
                    initPInv, initAlpha, bestLens, model_ckp);
            else
                estResults = optimizeGammaInvWithInitValue(fixed_len, logl_epsilon, gradient_epsilon,
                    initPInv, initAlpha, initBranLens, model_ckp);
            if (write_info) {
                cout << "Init pinv, alpha: " << initPInv << ", "  << initAlpha
                     << " / Estimate: " << estResults[0] << ", " << estResults[1]
                     << " / LogL: " << estResults[2] << endl;
            }

            initPInv = initPInv + testInterval;

            if (estResults[2] > bestLogl) {
                bestLogl = estResults[2];
                bestAlpha = estResults[1];
                bestPInvar = estResults[0];
                bestLens.clear();
                tree->saveBranchLengths(bestLens);
                model->setCheckpoint(best_ckp);
                model->saveCheckpoint();
                model->setCheckpoint(saved_ckp);
//                *best_ckp = *saved_ckp;

//                tree->getModel()->getRateMatrix(bestRates);
//                tree->getModel()->getStateFrequency(bestStateFreqs);
            }
        }
    }

    site_rate->setGammaShape(bestAlpha);
    site_rate->setPInvar(bestPInvar);

    // -- Mon Apr 17 21:12:14 BST 2017
    // DONE Minh, merged correctly
    model->setCheckpoint(best_ckp);
    model->restoreCheckpoint();
    model->setCheckpoint(saved_ckp);
    // ((ModelGTR*) tree->getModel())->setRateMatrix(bestRates);
    // ((ModelGTR*) tree->getModel())->setStateFrequency(bestStateFreqs);
    // --

	tree->restoreBranchLengths(bestLens);
    // tree->getModel()->decomposeRateMatrix();

	tree->clearAllPartialLH();
	tree->setCurScore(tree->computeLikelihood());
    if (write_info) {
        cout << "Optimal pinv,alpha: " << bestPInvar << ", " << bestAlpha << " / ";
        cout << "LogL: " << tree->getCurScore() << endl << endl;
    }
    ASSERT(fabs(tree->getCurScore() - bestLogl) < 1.0);

//	delete [] rates;
//	delete [] state_freqs;
//	delete [] bestRates;
//	delete [] bestStateFreqs;

    delete model_ckp;
    delete best_ckp;

	double elapsed_secs = getRealTime() - begin_time;
	if (write_info)
		cout << "Parameters optimization took " << elapsed_secs << " sec" << endl;

    // updating global variable is not safe!
//	Params::getInstance().testAlpha = false;

    // 2016-03-14: this was missing!
    return tree->getCurScore();
}

vector<double> ModelFactory::optimizeGammaInvWithInitValue(int fixed_len, double logl_epsilon, double gradient_epsilon,
                                                 double initPInv, double initAlpha,
                                                 DoubleVector &lenvec, Checkpoint *model_ckp) {
    PhyloTree *tree = site_rate->getTree();
    tree->restoreBranchLengths(lenvec);

    // -- Mon Apr 17 21:12:24 BST 2017
    // DONE Minh: merged correctly
    Checkpoint *saved_ckp = model->getCheckpoint();
    model->setCheckpoint(model_ckp);
    model->restoreCheckpoint();
    model->setCheckpoint(saved_ckp);
    site_rate->setPInvar(initPInv);
    site_rate->setGammaShape(initAlpha);
    // --

    tree->clearAllPartialLH();
    optimizeParameters(fixed_len, false, logl_epsilon, gradient_epsilon);

    vector<double> estResults;
    double estPInv = site_rate->getPInvar();
    double estAlpha = site_rate->getGammaShape();
    double logl = tree->getCurScore();
    estResults.push_back(estPInv);
    estResults.push_back(estAlpha);
    estResults.push_back(logl);
    return estResults;
}


double ModelFactory::optimizeParameters(int fixed_len, bool write_info,
                                        double logl_epsilon, double gradient_epsilon) {
	ASSERT(model);
	ASSERT(site_rate);

//    double defaultEpsilon = logl_epsilon;

	double begin_time = getRealTime();
	double cur_lh;
	PhyloTree *tree = site_rate->getTree();
	ASSERT(tree);

	stopStoringTransMatrix();
    // modified by Thomas Wong on Sept 11, 15
    // no optimization of branch length in the first round
    cur_lh = tree->computeLikelihood();
    tree->setCurScore(cur_lh);
    if (verbose_mode >= VB_MED || write_info) {
	int p = -1;

	// SET precision to 17 (temporarily)
	if (verbose_mode >= VB_DEBUG) p = cout.precision(17);

	// PRINT Log-Likelihood
	cout << "1. Initial log-likelihood: " << cur_lh << endl;

	// RESTORE previous precision
	if (verbose_mode >= VB_DEBUG) cout.precision(p);

        if (verbose_mode >= VB_MAX) {
            tree->printTree(cout);
            cout << endl;
        }
    }

	// For UpperBounds -----------
	//cout<<"MLCheck = "<<tree->mlCheck <<endl;
	if(tree->mlCheck == 0){
		tree->mlInitial = cur_lh;
	}
	// ---------------------------


	int i;
	//bool optimize_rate = true;
//	double gradient_epsilon = min(logl_epsilon, 0.01); // epsilon for parameters starts at epsilon for logl
	for (i = 2; i < tree->params->num_param_iterations; i++) {
        double new_lh;

        // changed to opimise edge length first, and then Q,W,R inside the loop by Thomas on Sept 11, 15
		if (fixed_len == BRLEN_OPTIMIZE)
			new_lh = tree->optimizeAllBranches(min(i,3), logl_epsilon);  // loop only 3 times in total (previously in v0.9.6 5 times)
        else if (fixed_len == BRLEN_SCALE) {
            double scaling = 1.0;
            new_lh = tree->optimizeTreeLengthScaling(MIN_BRLEN_SCALE, scaling, MAX_BRLEN_SCALE, gradient_epsilon);
        } else
            new_lh = cur_lh;

        new_lh = optimizeParametersOnly(i, gradient_epsilon, new_lh);

		if (new_lh == 0.0) {
            if (fixed_len == BRLEN_OPTIMIZE)
                cur_lh = tree->optimizeAllBranches(tree->params->num_param_iterations, logl_epsilon);
            else if (fixed_len == BRLEN_SCALE) {
                double scaling = 1.0;
                cur_lh = tree->optimizeTreeLengthScaling(MIN_BRLEN_SCALE, scaling, MAX_BRLEN_SCALE, gradient_epsilon);
            }
			break;
		}
		if (verbose_mode >= VB_MED) {
			model->writeInfo(cout);
			site_rate->writeInfo(cout);
            if (fixed_len == BRLEN_SCALE)
                cout << "Scaled tree length: " << tree->treeLength() << endl;
		}
		if (new_lh > cur_lh + logl_epsilon) {
			cur_lh = new_lh;
			if (write_info)
				cout << i << ". Current log-likelihood: " << cur_lh << endl;
		} else {
			site_rate->classifyRates(new_lh);
            if (fixed_len == BRLEN_OPTIMIZE)
                cur_lh = tree->optimizeAllBranches(100, logl_epsilon);
            else if (fixed_len == BRLEN_SCALE) {
                double scaling = 1.0;
                cur_lh = tree->optimizeTreeLengthScaling(MIN_BRLEN_SCALE, scaling, MAX_BRLEN_SCALE, gradient_epsilon);
            }
            break;
		}
	}

	// normalize rates s.t. branch lengths are #subst per site
//    if (Params::getInstance().optimize_alg_gammai != "EM")
    {
        double mean_rate = site_rate->rescaleRates();
        if (fabs(mean_rate-1.0) > 1e-6) {
            if (fixed_len == BRLEN_FIX)
                outError("Fixing branch lengths not supported under specified site rate model");
            tree->scaleLength(mean_rate);
            tree->clearAllPartialLH();
        }
    }

	if (verbose_mode >= VB_MED || write_info)
		cout << "Optimal log-likelihood: " << cur_lh << endl;

	// For UpperBounds -----------
	if(tree->mlCheck == 0)
		tree->mlFirstOpt = cur_lh;
	// ---------------------------

	if (verbose_mode <= VB_MIN && write_info) {
		model->writeInfo(cout);
		site_rate->writeInfo(cout);
        if (fixed_len == BRLEN_SCALE)
            cout << "Scaled tree length: " << tree->treeLength() << endl;
	}
	double elapsed_secs = getRealTime() - begin_time;
	if (write_info)
		cout << "Parameters optimization took " << i-1 << " rounds (" << elapsed_secs << " sec)" << endl;
	startStoringTransMatrix();

	// For UpperBounds -----------
	tree->mlCheck = 1;
	// ---------------------------

	tree->setCurScore(cur_lh);
	return cur_lh;
}

/**
 * @return TRUE if parameters are at the boundary that may cause numerical unstability
 */
bool ModelFactory::isUnstableParameters() {
	if (model->isUnstableParameters()) return true;
	return false;
}

void ModelFactory::startStoringTransMatrix() {
	if (!store_trans_matrix) return;
	is_storing = true;
}

void ModelFactory::stopStoringTransMatrix() {
	if (!store_trans_matrix) return;
	is_storing = false;
	if (!empty()) {
		for (iterator it = begin(); it != end(); it++)
			delete it->second;
		clear();
	}
}


double ModelFactory::computeTrans(double time, int state1, int state2) {
	return model->computeTrans(time, state1, state2);
}

double ModelFactory::computeTrans(double time, int state1, int state2, double &derv1, double &derv2) {
	return model->computeTrans(time, state1, state2, derv1, derv2);
}

void ModelFactory::computeTransMatrix(double time, double *trans_matrix, int mixture) {
	if (!store_trans_matrix || !is_storing || model->isSiteSpecificModel()) {
		model->computeTransMatrix(time, trans_matrix, mixture);
		return;
	}
	int mat_size = model->num_states * model->num_states;
	iterator ass_it = find(round(time * 1e6));
	if (ass_it == end()) {
		// allocate memory for 3 matricies
		double *trans_entry = new double[mat_size * 3];
		trans_entry[mat_size] = trans_entry[mat_size+1] = 0.0;
		model->computeTransMatrix(time, trans_entry, mixture);
		ass_it = insert(value_type(round(time * 1e6), trans_entry)).first;
	} else {
		//if (verbose_mode >= VB_MAX)
			//cout << "ModelFactory bingo" << endl;
	}

	memcpy(trans_matrix, ass_it->second, mat_size * sizeof(double));
}

void ModelFactory::computeTransDerv(double time, double *trans_matrix,
	double *trans_derv1, double *trans_derv2, int mixture) {
	if (!store_trans_matrix || !is_storing || model->isSiteSpecificModel()) {
		model->computeTransDerv(time, trans_matrix, trans_derv1, trans_derv2, mixture);
		return;
	}
	int mat_size = model->num_states * model->num_states;
	iterator ass_it = find(round(time * 1e6));
	if (ass_it == end()) {
		// allocate memory for 3 matricies
		double *trans_entry = new double[mat_size * 3];
		trans_entry[mat_size] = trans_entry[mat_size+1] = 0.0;
		model->computeTransDerv(time, trans_entry, trans_entry+mat_size, trans_entry+(mat_size*2), mixture);
		ass_it = insert(value_type(round(time * 1e6), trans_entry)).first;
	} else if (ass_it->second[mat_size] == 0.0 && ass_it->second[mat_size+1] == 0.0) {
		double *trans_entry = ass_it->second;
		model->computeTransDerv(time, trans_entry, trans_entry+mat_size, trans_entry+(mat_size*2), mixture);
	}
	memcpy(trans_matrix, ass_it->second, mat_size * sizeof(double));
	memcpy(trans_derv1, ass_it->second + mat_size, mat_size * sizeof(double));
	memcpy(trans_derv2, ass_it->second + (mat_size*2), mat_size * sizeof(double));
}

ModelFactory::~ModelFactory()
{
	for (iterator it = begin(); it != end(); it++)
		delete it->second;
	clear();
}

/************* FOLLOWING SERVE FOR JOINT OPTIMIZATION OF MODEL AND RATE PARAMETERS *******/
int ModelFactory::getNDim()
{
	return model->getNDim() + site_rate->getNDim();
}

double ModelFactory::targetFunk(double x[]) {
	model->getVariables(x);
	// need to compute rates again if p_inv or Gamma shape changes!
	if (model->state_freq[model->num_states-1] < MIN_RATE) return 1.0e+12;
	model->decomposeRateMatrix();
	site_rate->phylo_tree->clearAllPartialLH();
	return site_rate->targetFunk(x + model->getNDim());
}

void ModelFactory::setVariables(double *variables) {
	model->setVariables(variables);
	site_rate->setVariables(variables + model->getNDim());
}

bool ModelFactory::getVariables(double *variables) {
	bool changed = model->getVariables(variables);
	changed |= site_rate->getVariables(variables + model->getNDim());
    return changed;
}