1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
|
/***************************************************************************
* Copyright (C) 2009 by BUI Quang Minh *
* minh.bui@univie.ac.at *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#include "rateinvar.h"
#include "modelfactory.h"
#include "rategamma.h"
#include "rategammainvar.h"
#include "modelmarkov.h"
#include "modelliemarkov.h"
#include "modeldna.h"
#include "modelprotein.h"
#include "modelbin.h"
#include "modelcodon.h"
#include "modelmorphology.h"
#include "modelpomo.h"
#include "modelset.h"
#include "modelmixture.h"
#include "ratemeyerhaeseler.h"
#include "ratemeyerdiscrete.h"
#include "ratekategory.h"
#include "ratefree.h"
#include "ratefreeinvar.h"
#include "rateheterotachy.h"
#include "rateheterotachyinvar.h"
//#include "ngs.h"
#include <string>
#include "utils/timeutil.h"
#include "nclextra/myreader.h"
#include <sstream>
string::size_type findSubStr(string &name, string sub1, string sub2) {
string::size_type pos1, pos2;
for (pos1 = 0; pos1 != string::npos; pos1++) {
pos1 = name.find(sub1, pos1);
if (pos1 == string::npos)
break;
if (pos1+2 >= name.length() || !isalpha(name[pos1+2])) {
break;
}
}
for (pos2 = 0; pos2 != string::npos; pos2++) {
pos2 = name.find(sub2, pos2);
if (pos2 == string::npos)
break;
if (pos2+2 >= name.length() ||!isalpha(name[pos2+2]))
break;
}
if (pos1 != string::npos && pos2 != string::npos) {
return min(pos1, pos2);
} else if (pos1 != string::npos)
return pos1;
else
return pos2;
}
string::size_type posRateHeterotachy(string &model_name) {
return findSubStr(model_name, "+H", "*H");
}
string::size_type posRateFree(string &model_name) {
return findSubStr(model_name, "+R", "*R");
}
string::size_type posPOMO(string &model_name) {
return findSubStr(model_name, "+P", "*P");
}
ModelsBlock *readModelsDefinition(Params ¶ms) {
ModelsBlock *models_block = new ModelsBlock;
try
{
// loading internal model definitions
stringstream in(builtin_mixmodels_definition);
ASSERT(in && "stringstream is OK");
NxsReader nexus;
nexus.Add(models_block);
MyToken token(in);
nexus.Execute(token);
} catch (...) {
ASSERT(0 && "predefined mixture models not initialized");
}
try
{
// loading internal protei model definitions
stringstream in(builtin_prot_models);
ASSERT(in && "stringstream is OK");
NxsReader nexus;
nexus.Add(models_block);
MyToken token(in);
nexus.Execute(token);
} catch (...) {
ASSERT(0 && "predefined protein models not initialized");
}
if (params.model_def_file) {
cout << "Reading model definition file " << params.model_def_file << " ... ";
MyReader nexus(params.model_def_file);
nexus.Add(models_block);
MyToken token(nexus.inf);
nexus.Execute(token);
int num_model = 0, num_freq = 0;
for (ModelsBlock::iterator it = models_block->begin(); it != models_block->end(); it++)
if (it->second.flag & NM_FREQ) num_freq++; else num_model++;
cout << num_model << " models and " << num_freq << " frequency vectors loaded" << endl;
}
return models_block;
}
ModelFactory::ModelFactory() : CheckpointFactory() {
model = NULL;
site_rate = NULL;
store_trans_matrix = false;
is_storing = false;
joint_optimize = false;
fused_mix_rate = false;
unobserved_ptns = "";
}
size_t findCloseBracket(string &str, size_t start_pos) {
int counter = 0;
for (size_t pos = start_pos+1; pos < str.length(); pos++) {
if (str[pos] == '{') counter++;
if (str[pos] == '}') {
if (counter == 0) return pos; else counter--;
}
}
return string::npos;
}
ModelFactory::ModelFactory(Params ¶ms, string &model_name, PhyloTree *tree, ModelsBlock *models_block) : CheckpointFactory() {
store_trans_matrix = params.store_trans_matrix;
is_storing = false;
joint_optimize = params.optimize_model_rate_joint;
fused_mix_rate = false;
string model_str = model_name;
string rate_str;
try {
if (model_str == "") {
if (tree->aln->seq_type == SEQ_DNA) model_str = "HKY";
else if (tree->aln->seq_type == SEQ_PROTEIN) model_str = "LG";
else if (tree->aln->seq_type == SEQ_BINARY) model_str = "GTR2";
else if (tree->aln->seq_type == SEQ_CODON) model_str = "GY";
else if (tree->aln->seq_type == SEQ_MORPH) model_str = "MK";
else if (tree->aln->seq_type == SEQ_POMO) model_str = "HKY+P";
else model_str = "JC";
if (tree->aln->seq_type != SEQ_POMO)
outWarning("Default model "+model_str + " may be under-fitting. Use option '-m TEST' to determine the best-fit model.");
}
/********* preprocessing model string ****************/
NxsModel *nxsmodel = NULL;
string new_model_str = "";
size_t mix_pos;
for (mix_pos = 0; mix_pos < model_str.length(); mix_pos++) {
size_t next_mix_pos = model_str.find_first_of("+*", mix_pos);
string sub_model_str = model_str.substr(mix_pos, next_mix_pos-mix_pos);
nxsmodel = models_block->findMixModel(sub_model_str);
if (nxsmodel) sub_model_str = nxsmodel->description;
new_model_str += sub_model_str;
if (next_mix_pos != string::npos)
new_model_str += model_str[next_mix_pos];
else
break;
mix_pos = next_mix_pos;
}
if (new_model_str != model_str)
cout << "Model " << model_str << " is alias for " << new_model_str << endl;
model_str = new_model_str;
// nxsmodel = models_block->findModel(model_str);
// if (nxsmodel && nxsmodel->description.find_first_of("+*") != string::npos) {
// cout << "Model " << model_str << " is alias for " << nxsmodel->description << endl;
// model_str = nxsmodel->description;
// }
// Detect PoMo and throw error if sequence type is PoMo but +P is
// not given. This makes the model string cleaner and
// compareable.
string::size_type p_pos = posPOMO(model_str);
bool pomo = (p_pos != string::npos);
if ((p_pos == string::npos) &&
(tree->aln->seq_type == SEQ_POMO))
outError("Provided alignment is exclusively used by PoMo but model string does not contain, e.g., \"+P\".");
// Decompose model string into model_str and rate_str string.
size_t spec_pos = model_str.find_first_of("{+*");
if (spec_pos != string::npos) {
if (model_str[spec_pos] == '{') {
// Scan for the corresponding '}'.
size_t pos = findCloseBracket(model_str, spec_pos);
if (pos == string::npos)
outError("Model name has wrong bracket notation '{...}'");
rate_str = model_str.substr(pos+1);
model_str = model_str.substr(0, pos+1);
}
else {
rate_str = model_str.substr(spec_pos);
model_str = model_str.substr(0, spec_pos);
}
}
// PoMo; +NXX and +W or +S because those flags are handled when
// reading in the data. Set PoMo parameters (heterozygosity).
size_t n_pos_start = rate_str.find("+N");
size_t n_pos_end = rate_str.find_first_of("+", n_pos_start+1);
if (n_pos_start != string::npos) {
if (!pomo)
outError("Virtual population size can only be set with PoMo.");
if (n_pos_end != string::npos)
rate_str = rate_str.substr(0, n_pos_start)
+ rate_str.substr(n_pos_end);
else
rate_str = rate_str.substr(0, n_pos_start);
}
size_t wb_pos = rate_str.find("+WB");
if (wb_pos != string::npos) {
if (!pomo)
outError("Weighted binomial sampling can only be used with PoMo.");
rate_str = rate_str.substr(0, wb_pos)
+ rate_str.substr(wb_pos+3);
}
size_t wh_pos = rate_str.find("+WH");
if (wh_pos != string::npos) {
if (!pomo)
outError("Weighted hypergeometric sampling can only be used with PoMo.");
rate_str = rate_str.substr(0, wh_pos)
+ rate_str.substr(wh_pos+3);
}
size_t s_pos = rate_str.find("+S");
if ( s_pos != string::npos) {
if (!pomo)
outError("Binomial sampling can only be used with PoMo.");
rate_str = rate_str.substr(0, s_pos)
+ rate_str.substr(s_pos+2);
}
// In case of PoMo, check that only supported flags are given.
if (pomo) {
if (rate_str.find("+ASC") != string::npos)
// TODO DS: This is an important feature, because then,
// PoMo can be applied to SNP data only.
outError("PoMo does not yet support ascertainment bias correction (+ASC).");
if (posRateFree(rate_str) != string::npos)
outError("PoMo does not yet support free rate models (+R).");
if (rate_str.find("+FMIX") != string::npos)
outError("PoMo does not yet support frequency mixture models (+FMIX).");
if (posRateHeterotachy(rate_str) != string::npos)
outError("PoMo does not yet support heterotachy models (+H).");
}
// PoMo. The +P{}, +GXX and +I flags are interpreted during model creation.
// This is necessary for compatibility with mixture models. If there is no
// mixture model, move +P{}, +GXX and +I flags to model string. For mixture
// models, the heterozygosity can be set separately for each model and the
// +P{}, +GXX and +I flags should already be inside the model definition.
if (model_str.substr(0, 3) != "MIX" && pomo) {
// +P{} flag.
p_pos = posPOMO(rate_str);
if (p_pos != string::npos) {
if (rate_str[p_pos+2] == '{') {
string::size_type close_bracket = rate_str.find("}");
if (close_bracket == string::npos)
outError("No closing bracket in PoMo parameters.");
else {
string pomo_heterozygosity = rate_str.substr(p_pos+3,close_bracket-p_pos-3);
rate_str = rate_str.substr(0, p_pos) + rate_str.substr(close_bracket+1);
model_str += "+P{" + pomo_heterozygosity + "}";
}
}
else {
rate_str = rate_str.substr(0, p_pos) + rate_str.substr(p_pos + 2);
model_str += "+P";
}
}
// +G flag.
size_t pomo_rate_start_pos;
if ((pomo_rate_start_pos = rate_str.find("+G")) != string::npos) {
string pomo_rate_str = "";
size_t pomo_rate_end_pos = rate_str.find_first_of("+*", pomo_rate_start_pos+1);
if (pomo_rate_end_pos == string::npos) {
pomo_rate_str = rate_str.substr(pomo_rate_start_pos, rate_str.length() - pomo_rate_start_pos);
rate_str = rate_str.substr(0, pomo_rate_start_pos);
model_str += pomo_rate_str;
} else {
pomo_rate_str = rate_str.substr(pomo_rate_start_pos, pomo_rate_end_pos - pomo_rate_start_pos);
rate_str = rate_str.substr(0, pomo_rate_start_pos) + rate_str.substr(pomo_rate_end_pos);
model_str += pomo_rate_str;
}
}
// // +I flag.
// size_t pomo_irate_start_pos;
// if ((pomo_irate_start_pos = rate_str.find("+I")) != string::npos) {
// string pomo_irate_str = "";
// size_t pomo_irate_end_pos = rate_str.find_first_of("+*", pomo_irate_start_pos+1);
// if (pomo_irate_end_pos == string::npos) {
// pomo_irate_str = rate_str.substr(pomo_irate_start_pos, rate_str.length() - pomo_irate_start_pos);
// rate_str = rate_str.substr(0, pomo_irate_start_pos);
// model_str += pomo_irate_str;
// } else {
// pomo_irate_str = rate_str.substr(pomo_irate_start_pos, pomo_irate_end_pos - pomo_irate_start_pos);
// rate_str = rate_str.substr(0, pomo_irate_start_pos) + rate_str.substr(pomo_irate_end_pos);
// model_str += pomo_irate_str;
// }
}
// nxsmodel = models_block->findModel(model_str);
// if (nxsmodel && nxsmodel->description.find("MIX") != string::npos) {
// cout << "Model " << model_str << " is alias for " << nxsmodel->description << endl;
// model_str = nxsmodel->description;
// }
/******************** initialize state frequency ****************************/
StateFreqType freq_type = params.freq_type;
if (freq_type == FREQ_UNKNOWN) {
switch (tree->aln->seq_type) {
case SEQ_BINARY: freq_type = FREQ_ESTIMATE; break; // default for binary: optimized frequencies
case SEQ_PROTEIN: break; // let ModelProtein decide by itself
case SEQ_MORPH: freq_type = FREQ_EQUAL; break;
case SEQ_CODON: freq_type = FREQ_UNKNOWN; break;
break;
default: freq_type = FREQ_EMPIRICAL; break; // default for DNA, PoMo and others: counted frequencies from alignment
}
}
// first handle mixture frequency
string::size_type posfreq = rate_str.find("+FMIX");
string freq_params;
size_t close_bracket;
if (posfreq != string::npos) {
string freq_str;
size_t last_pos = rate_str.find_first_of("+*", posfreq+1);
if (last_pos == string::npos) {
freq_str = rate_str.substr(posfreq);
rate_str = rate_str.substr(0, posfreq);
} else {
freq_str = rate_str.substr(posfreq, last_pos-posfreq);
rate_str = rate_str.substr(0, posfreq) + rate_str.substr(last_pos);
}
if (freq_str[5] != OPEN_BRACKET)
outError("Mixture-frequency must start with +FMIX{");
close_bracket = freq_str.find(CLOSE_BRACKET);
if (close_bracket == string::npos)
outError("Close bracket not found in ", freq_str);
if (close_bracket != freq_str.length()-1)
outError("Wrong close bracket position ", freq_str);
freq_type = FREQ_MIXTURE;
freq_params = freq_str.substr(6, close_bracket-6);
}
// then normal frequency
if (rate_str.find("+FO") != string::npos)
posfreq = rate_str.find("+FO");
else if (rate_str.find("+Fo") != string::npos)
posfreq = rate_str.find("+Fo");
else
posfreq = rate_str.find("+F");
bool optimize_mixmodel_weight = params.optimize_mixmodel_weight;
if (posfreq != string::npos) {
string freq_str;
size_t last_pos = rate_str.find_first_of("+*", posfreq+1);
if (last_pos == string::npos) {
freq_str = rate_str.substr(posfreq);
rate_str = rate_str.substr(0, posfreq);
} else {
freq_str = rate_str.substr(posfreq, last_pos-posfreq);
rate_str = rate_str.substr(0, posfreq) + rate_str.substr(last_pos);
}
if (freq_str.length() > 2 && freq_str[2] == OPEN_BRACKET) {
if (freq_type == FREQ_MIXTURE)
outError("Mixture frequency with user-defined frequency is not allowed");
close_bracket = freq_str.find(CLOSE_BRACKET);
if (close_bracket == string::npos)
outError("Close bracket not found in ", freq_str);
if (close_bracket != freq_str.length()-1)
outError("Wrong close bracket position ", freq_str);
freq_type = FREQ_USER_DEFINED;
freq_params = freq_str.substr(3, close_bracket-3);
} else if (freq_str == "+FC" || freq_str == "+Fc" || freq_str == "+F") {
if (freq_type == FREQ_MIXTURE) {
freq_params = "empirical," + freq_params;
optimize_mixmodel_weight = true;
} else
freq_type = FREQ_EMPIRICAL;
} else if (freq_str == "+FU" || freq_str == "+Fu") {
if (freq_type == FREQ_MIXTURE)
outError("Mixture frequency with user-defined frequency is not allowed");
else
freq_type = FREQ_USER_DEFINED;
} else if (freq_str == "+FQ" || freq_str == "+Fq") {
if (freq_type == FREQ_MIXTURE)
outError("Mixture frequency with equal frequency is not allowed");
else
freq_type = FREQ_EQUAL;
} else if (freq_str == "+FO" || freq_str == "+Fo") {
if (freq_type == FREQ_MIXTURE) {
freq_params = "optimize," + freq_params;
optimize_mixmodel_weight = true;
} else
freq_type = FREQ_ESTIMATE;
} else if (freq_str == "+F1x4" || freq_str == "+F1X4") {
if (freq_type == FREQ_MIXTURE)
outError("Mixture frequency with " + freq_str + " is not allowed");
else
freq_type = FREQ_CODON_1x4;
} else if (freq_str == "+F3x4" || freq_str == "+F3X4") {
if (freq_type == FREQ_MIXTURE)
outError("Mixture frequency with " + freq_str + " is not allowed");
else
freq_type = FREQ_CODON_3x4;
} else if (freq_str == "+F3x4C" || freq_str == "+F3x4c" || freq_str == "+F3X4C" || freq_str == "+F3X4c") {
if (freq_type == FREQ_MIXTURE)
outError("Mixture frequency with " + freq_str + " is not allowed");
else
freq_type = FREQ_CODON_3x4C;
} else if (freq_str == "+FRY") {
// MDW to Minh: I don't know how these should interact with FREQ_MIXTURE,
// so as nearly everything else treats it as an error, I do too.
// BQM answer: that's fine
if (freq_type == FREQ_MIXTURE)
outError("Mixture frequency with " + freq_str + " is not allowed");
else
freq_type = FREQ_DNA_RY;
} else if (freq_str == "+FWS") {
if (freq_type == FREQ_MIXTURE)
outError("Mixture frequency with " + freq_str + " is not allowed");
else
freq_type = FREQ_DNA_WS;
} else if (freq_str == "+FMK") {
if (freq_type == FREQ_MIXTURE)
outError("Mixture frequency with " + freq_str + " is not allowed");
else
freq_type = FREQ_DNA_MK;
} else {
// might be "+F####" where # are digits
try {
freq_type = parseStateFreqDigits(freq_str.substr(2)); // throws an error if not in +F#### format
} catch (...) {
outError("Unknown state frequency type ",freq_str);
}
}
// model_str = model_str.substr(0, posfreq);
}
/******************** initialize model ****************************/
if (tree->aln->site_state_freq.empty()) {
if (model_str.substr(0, 3) == "MIX" || freq_type == FREQ_MIXTURE) {
string model_list;
if (model_str.substr(0, 3) == "MIX") {
if (model_str[3] != OPEN_BRACKET)
outError("Mixture model name must start with 'MIX{'");
if (model_str.rfind(CLOSE_BRACKET) != model_str.length()-1)
outError("Close bracket not found at the end of ", model_str);
model_list = model_str.substr(4, model_str.length()-5);
model_str = model_str.substr(0, 3);
}
model = new ModelMixture(model_name, model_str, model_list, models_block, freq_type, freq_params, tree, optimize_mixmodel_weight);
} else {
// string model_desc;
// NxsModel *nxsmodel = models_block->findModel(model_str);
// if (nxsmodel) model_desc = nxsmodel->description;
model = createModel(model_str, models_block, freq_type, freq_params, tree);
}
// fused_mix_rate &= model->isMixture() && site_rate->getNRate() > 1;
} else {
// site-specific model
if (model_str == "JC" || model_str == "POISSON")
outError("JC is not suitable for site-specific model");
model = new ModelSet(model_str.c_str(), tree);
ModelSet *models = (ModelSet*)model; // assign pointer for convenience
models->init((params.freq_type != FREQ_UNKNOWN) ? params.freq_type : FREQ_EMPIRICAL);
int i;
models->pattern_model_map.resize(tree->aln->getNPattern(), -1);
for (i = 0; i < tree->aln->getNSite(); i++) {
models->pattern_model_map[tree->aln->getPatternID(i)] = tree->aln->site_model[i];
//cout << "site " << i << " ptn " << tree->aln->getPatternID(i) << " -> model " << site_model[i] << endl;
}
double *state_freq = new double[model->num_states];
double *rates = new double[model->getNumRateEntries()];
for (i = 0; i < tree->aln->site_state_freq.size(); i++) {
ModelMarkov *modeli;
if (i == 0) {
modeli = (ModelMarkov*)createModel(model_str, models_block, (params.freq_type != FREQ_UNKNOWN) ? params.freq_type : FREQ_EMPIRICAL, "", tree);
modeli->getStateFrequency(state_freq);
modeli->getRateMatrix(rates);
} else {
modeli = (ModelMarkov*)createModel(model_str, models_block, FREQ_EQUAL, "", tree);
modeli->setStateFrequency(state_freq);
modeli->setRateMatrix(rates);
}
if (tree->aln->site_state_freq[i])
modeli->setStateFrequency (tree->aln->site_state_freq[i]);
modeli->init(FREQ_USER_DEFINED);
models->push_back(modeli);
}
delete [] rates;
delete [] state_freq;
models->joinEigenMemory();
models->decomposeRateMatrix();
// delete information of the old alignment
// tree->aln->ordered_pattern.clear();
// tree->deleteAllPartialLh();
}
// if (model->isMixture())
// cout << "Mixture model with " << model->getNMixtures() << " components!" << endl;
/******************** initialize ascertainment bias correction model ****************************/
string::size_type posasc;
if ((posasc = rate_str.find("+ASC")) != string::npos) {
// ascertainment bias correction
unobserved_ptns = tree->aln->getUnobservedConstPatterns();
// delete rarely observed state
for (int i = unobserved_ptns.length()-1; i >= 0; i--)
if (model->state_freq[(int)unobserved_ptns[i]] < 1e-8)
unobserved_ptns.erase(i);
// rebuild the seq_states to contain states of unobserved constant patterns
tree->aln->buildSeqStates(true);
// if (unobserved_ptns.size() <= 0)
// outError("Invalid use of +ASC because all constant patterns are observed in the alignment");
if (tree->aln->frac_invariant_sites > 0) {
// cerr << tree->aln->frac_invariant_sites*tree->aln->getNSite() << " invariant sites observed in the alignment" << endl;
// for (Alignment::iterator pit = tree->aln->begin(); pit != tree->aln->end(); pit++)
// if (pit->isInvariant()) {
// string pat_str = "";
// for (Pattern::iterator it = pit->begin(); it != pit->end(); it++)
// pat_str += tree->aln->convertStateBackStr(*it);
// cerr << pat_str << " is invariant site pattern" << endl;
// }
if (!params.partition_file) {
string varsites_file = ((string)params.out_prefix + ".varsites.phy");
tree->aln->printPhylip(varsites_file.c_str(), false, NULL, false, true);
cerr << "For your convenience alignment with variable sites printed to " << varsites_file << endl;
}
outError("Invalid use of +ASC because of " + convertIntToString(tree->aln->frac_invariant_sites*tree->aln->getNSite()) +
" invariant sites in the alignment");
}
if (verbose_mode >= VB_MED)
cout << "Ascertainment bias correction: " << unobserved_ptns.size() << " unobservable constant patterns"<< endl;
rate_str = rate_str.substr(0, posasc) + rate_str.substr(posasc+4);
} else {
tree->aln->buildSeqStates(false);
}
/******************** initialize site rate heterogeneity ****************************/
string::size_type posI = rate_str.find("+I");
string::size_type posG = rate_str.find("+G");
string::size_type posG2 = rate_str.find("*G");
if (posG != string::npos && posG2 != string::npos) {
cout << "NOTE: both +G and *G were specified, continue with "
<< ((posG < posG2)? rate_str.substr(posG,2) : rate_str.substr(posG2,2)) << endl;
}
if (posG2 != string::npos && posG2 < posG) {
posG = posG2;
fused_mix_rate = true;
}
string::size_type posR = rate_str.find("+R"); // FreeRate model
string::size_type posR2 = rate_str.find("*R"); // FreeRate model
if (posG != string::npos && (posR != string::npos || posR2 != string::npos)) {
outWarning("Both Gamma and FreeRate models were specified, continue with FreeRate model");
posG = string::npos;
fused_mix_rate = false;
}
if (posR != string::npos && posR2 != string::npos) {
cout << "NOTE: both +R and *R were specified, continue with "
<< ((posR < posR2)? rate_str.substr(posR,2) : rate_str.substr(posR2,2)) << endl;
}
if (posR2 != string::npos && posR2 < posR) {
posR = posR2;
fused_mix_rate = true;
}
string::size_type posH = rate_str.find("+H"); // heterotachy model
string::size_type posH2 = rate_str.find("*H"); // heterotachy model
if (posG != string::npos && (posH != string::npos || posH2 != string::npos)) {
outWarning("Both Gamma and heterotachy models were specified, continue with heterotachy model");
posG = string::npos;
fused_mix_rate = false;
}
if (posR != string::npos && (posH != string::npos || posH2 != string::npos)) {
outWarning("Both FreeRate and heterotachy models were specified, continue with heterotachy model");
posR = string::npos;
fused_mix_rate = false;
}
if (posH != string::npos && posH2 != string::npos) {
cout << "NOTE: both +H and *H were specified, continue with "
<< ((posH < posH2)? rate_str.substr(posH,2) : rate_str.substr(posH2,2)) << endl;
}
if (posH2 != string::npos && posH2 < posH) {
posH = posH2;
fused_mix_rate = true;
}
string::size_type posX;
/* create site-rate heterogeneity */
int num_rate_cats = params.num_rate_cats;
if (fused_mix_rate && model->isMixture()) num_rate_cats = model->getNMixtures();
double gamma_shape = params.gamma_shape;
double p_invar_sites = params.p_invar_sites;
string freerate_params = "";
if (posI != string::npos) {
// invariable site model
if (rate_str.length() > posI+2 && rate_str[posI+2] == OPEN_BRACKET) {
close_bracket = rate_str.find(CLOSE_BRACKET, posI);
if (close_bracket == string::npos)
outError("Close bracket not found in ", rate_str);
p_invar_sites = convert_double(rate_str.substr(posI+3, close_bracket-posI-3).c_str());
if (p_invar_sites < 0 || p_invar_sites >= 1)
outError("p_invar must be in [0,1)");
} else if (rate_str.length() > posI+2 && rate_str[posI+2] != '+' && rate_str[posI+2] != '*')
outError("Wrong model name ", rate_str);
}
if (posG != string::npos) {
// Gamma rate model
int end_pos = 0;
if (rate_str.length() > posG+2 && isdigit(rate_str[posG+2])) {
num_rate_cats = convert_int(rate_str.substr(posG+2).c_str(), end_pos);
if (num_rate_cats < 1) outError("Wrong number of rate categories");
}
if (rate_str.length() > posG+2+end_pos && rate_str[posG+2+end_pos] == OPEN_BRACKET) {
close_bracket = rate_str.find(CLOSE_BRACKET, posG);
if (close_bracket == string::npos)
outError("Close bracket not found in ", rate_str);
gamma_shape = convert_double(rate_str.substr(posG+3+end_pos, close_bracket-posG-3-end_pos).c_str());
// if (gamma_shape < MIN_GAMMA_SHAPE || gamma_shape > MAX_GAMMA_SHAPE) {
// stringstream str;
// str << "Gamma shape parameter " << gamma_shape << "out of range ["
// << MIN_GAMMA_SHAPE << ',' << MAX_GAMMA_SHAPE << "]" << endl;
// outError(str.str());
// }
} else if (rate_str.length() > posG+2+end_pos && rate_str[posG+2+end_pos] != '+')
outError("Wrong model name ", rate_str);
}
if (posR != string::npos) {
// FreeRate model
int end_pos = 0;
if (rate_str.length() > posR+2 && isdigit(rate_str[posR+2])) {
num_rate_cats = convert_int(rate_str.substr(posR+2).c_str(), end_pos);
if (num_rate_cats < 1) outError("Wrong number of rate categories");
}
if (rate_str.length() > posR+2+end_pos && rate_str[posR+2+end_pos] == OPEN_BRACKET) {
close_bracket = rate_str.find(CLOSE_BRACKET, posR);
if (close_bracket == string::npos)
outError("Close bracket not found in ", rate_str);
freerate_params = rate_str.substr(posR+3+end_pos, close_bracket-posR-3-end_pos).c_str();
} else if (rate_str.length() > posR+2+end_pos && rate_str[posR+2+end_pos] != '+')
outError("Wrong model name ", rate_str);
}
string heterotachy_params = "";
if (posH != string::npos) {
// Heterotachy model
int end_pos = 0;
if (rate_str.length() > posH+2 && isdigit(rate_str[posH+2])) {
num_rate_cats = convert_int(rate_str.substr(posH+2).c_str(), end_pos);
if (num_rate_cats < 1) outError("Wrong number of rate categories");
} else {
if (!model->isMixture() || !fused_mix_rate)
outError("Please specify number of heterotachy classes (e.g., +H2)");
}
if (rate_str.length() > posH+2+end_pos && rate_str[posH+2+end_pos] == OPEN_BRACKET) {
close_bracket = rate_str.find(CLOSE_BRACKET, posH);
if (close_bracket == string::npos)
outError("Close bracket not found in ", rate_str);
heterotachy_params = rate_str.substr(posH+3+end_pos, close_bracket-posH-3-end_pos).c_str();
} else if (rate_str.length() > posH+2+end_pos && rate_str[posH+2+end_pos] != '+')
outError("Wrong model name ", rate_str);
}
if (rate_str.find('+') != string::npos || rate_str.find('*') != string::npos) {
//string rate_str = model_str.substr(pos);
if (posI != string::npos && posH != string::npos) {
site_rate = new RateHeterotachyInvar(num_rate_cats, heterotachy_params, p_invar_sites, tree);
} else if (posH != string::npos) {
site_rate = new RateHeterotachy(num_rate_cats, heterotachy_params, tree);
} else if (posI != string::npos && posG != string::npos) {
site_rate = new RateGammaInvar(num_rate_cats, gamma_shape, params.gamma_median,
p_invar_sites, params.optimize_alg_gammai, tree, false);
} else if (posI != string::npos && posR != string::npos) {
site_rate = new RateFreeInvar(num_rate_cats, gamma_shape, freerate_params, !fused_mix_rate, p_invar_sites, params.optimize_alg, tree);
} else if (posI != string::npos) {
site_rate = new RateInvar(p_invar_sites, tree);
} else if (posG != string::npos) {
site_rate = new RateGamma(num_rate_cats, gamma_shape, params.gamma_median, tree);
} else if (posR != string::npos) {
site_rate = new RateFree(num_rate_cats, gamma_shape, freerate_params, !fused_mix_rate, params.optimize_alg, tree);
// } else if ((posX = rate_str.find("+M")) != string::npos) {
// tree->setLikelihoodKernel(LK_NORMAL);
// params.rate_mh_type = true;
// if (rate_str.length() > posX+2 && isdigit(rate_str[posX+2])) {
// num_rate_cats = convert_int(rate_str.substr(posX+2).c_str());
// if (num_rate_cats < 0) outError("Wrong number of rate categories");
// } else num_rate_cats = -1;
// if (num_rate_cats >= 0)
// site_rate = new RateMeyerDiscrete(num_rate_cats, params.mcat_type,
// params.rate_file, tree, params.rate_mh_type);
// else
// site_rate = new RateMeyerHaeseler(params.rate_file, tree, params.rate_mh_type);
// site_rate->setTree(tree);
// } else if ((posX = rate_str.find("+D")) != string::npos) {
// tree->setLikelihoodKernel(LK_NORMAL);
// params.rate_mh_type = false;
// if (rate_str.length() > posX+2 && isdigit(rate_str[posX+2])) {
// num_rate_cats = convert_int(rate_str.substr(posX+2).c_str());
// if (num_rate_cats < 0) outError("Wrong number of rate categories");
// } else num_rate_cats = -1;
// if (num_rate_cats >= 0)
// site_rate = new RateMeyerDiscrete(num_rate_cats, params.mcat_type,
// params.rate_file, tree, params.rate_mh_type);
// else
// site_rate = new RateMeyerHaeseler(params.rate_file, tree, params.rate_mh_type);
// site_rate->setTree(tree);
// } else if ((posX = rate_str.find("+NGS")) != string::npos) {
// tree->setLikelihoodKernel(LK_NORMAL);
// if (rate_str.length() > posX+4 && isdigit(rate_str[posX+4])) {
// num_rate_cats = convert_int(rate_str.substr(posX+4).c_str());
// if (num_rate_cats < 0) outError("Wrong number of rate categories");
// } else num_rate_cats = -1;
// site_rate = new NGSRateCat(tree, num_rate_cats);
// site_rate->setTree(tree);
// } else if ((posX = rate_str.find("+NGS")) != string::npos) {
// tree->setLikelihoodKernel(LK_NORMAL);
// if (rate_str.length() > posX+4 && isdigit(rate_str[posX+4])) {
// num_rate_cats = convert_int(rate_str.substr(posX+4).c_str());
// if (num_rate_cats < 0) outError("Wrong number of rate categories");
// } else num_rate_cats = -1;
// site_rate = new NGSRate(tree);
// site_rate->setTree(tree);
} else if ((posX = rate_str.find("+K")) != string::npos) {
if (rate_str.length() > posX+2 && isdigit(rate_str[posX+2])) {
num_rate_cats = convert_int(rate_str.substr(posX+2).c_str());
if (num_rate_cats < 1) outError("Wrong number of rate categories");
}
site_rate = new RateKategory(num_rate_cats, tree);
} else
outError("Invalid rate heterogeneity type");
// if (model_str.find('+') != string::npos)
// model_str = model_str.substr(0, model_str.find('+'));
// else
// model_str = model_str.substr(0, model_str.find('*'));
} else {
site_rate = new RateHeterogeneity();
site_rate->setTree(tree);
}
if (fused_mix_rate) {
if (!model->isMixture()) {
if (verbose_mode >= VB_MED)
cout << endl << "NOTE: Using mixture model with unlinked " << model_str << " parameters" << endl;
string model_list = model_str;
delete model;
for (int i = 1; i < site_rate->getNRate(); i++)
model_list += "," + model_str;
model = new ModelMixture(model_name, model_str, model_list, models_block, freq_type, freq_params, tree, optimize_mixmodel_weight);
}
if (model->getNMixtures() != site_rate->getNRate())
outError("Mixture model and site rate model do not have the same number of categories");
// if (!tree->isMixlen()) {
// reset mixture model
model->setFixMixtureWeight(true);
int mix, nmix = model->getNMixtures();
for (mix = 0; mix < nmix; mix++) {
((ModelMarkov*)model->getMixtureClass(mix))->total_num_subst = 1.0;
model->setMixtureWeight(mix, 1.0);
}
model->decomposeRateMatrix();
// } else {
// site_rate->setFixParams(1);
// int c, ncat = site_rate->getNRate();
// for (c = 0; c < ncat; c++)
// site_rate->setProp(c, 1.0);
// }
}
tree->discardSaturatedSite(params.discard_saturated_site);
} catch (const char* str) {
outError(str);
}
}
void ModelFactory::setCheckpoint(Checkpoint *checkpoint) {
CheckpointFactory::setCheckpoint(checkpoint);
model->setCheckpoint(checkpoint);
site_rate->setCheckpoint(checkpoint);
}
void ModelFactory::startCheckpoint() {
checkpoint->startStruct("ModelFactory");
}
void ModelFactory::saveCheckpoint() {
model->saveCheckpoint();
site_rate->saveCheckpoint();
startCheckpoint();
// CKP_SAVE(fused_mix_rate);
// CKP_SAVE(unobserved_ptns);
// CKP_SAVE(joint_optimize);
endCheckpoint();
CheckpointFactory::saveCheckpoint();
}
void ModelFactory::restoreCheckpoint() {
model->restoreCheckpoint();
site_rate->restoreCheckpoint();
startCheckpoint();
// CKP_RESTORE(fused_mix_rate);
// CKP_RESTORE(unobserved_ptns);
// CKP_RESTORE(joint_optimize);
endCheckpoint();
}
int ModelFactory::getNParameters(int brlen_type) {
int df = model->getNDim() + model->getNDimFreq() + site_rate->getNDim() +
site_rate->getTree()->getNBranchParameters(brlen_type);
return df;
}
/*
double ModelFactory::initGTRGammaIParameters(RateHeterogeneity *rate, ModelSubst *model, double initAlpha,
double initPInvar, double *initRates, double *initStateFreqs) {
RateHeterogeneity* rateGammaInvar = rate;
ModelMarkov* modelGTR = (ModelMarkov*)(model);
modelGTR->setRateMatrix(initRates);
modelGTR->setStateFrequency(initStateFreqs);
rateGammaInvar->setGammaShape(initAlpha);
rateGammaInvar->setPInvar(initPInvar);
modelGTR->decomposeRateMatrix();
site_rate->phylo_tree->clearAllPartialLH();
return site_rate->phylo_tree->computeLikelihood();
}
*/
double ModelFactory::optimizeParametersOnly(int num_steps, double gradient_epsilon, double cur_logl) {
double logl;
/* Optimize substitution and heterogeneity rates independently */
if (!joint_optimize) {
// more steps for fused mix rate model
int steps;
if (false && fused_mix_rate && model->getNDim() > 0 && site_rate->getNDim() > 0) {
model->setOptimizeSteps(1);
site_rate->setOptimizeSteps(1);
steps = max(model->getNDim()+site_rate->getNDim(), num_steps) * 3;
} else {
steps = 1;
}
double prev_logl = cur_logl;
for (int step = 0; step < steps; step++) {
double model_lh = model->optimizeParameters(gradient_epsilon);
double rate_lh = site_rate->optimizeParameters(gradient_epsilon);
if (rate_lh == 0.0)
logl = model_lh;
else
logl = rate_lh;
if (logl <= prev_logl + gradient_epsilon)
break;
prev_logl = logl;
}
} else {
/* Optimize substitution and heterogeneity rates jointly using BFGS */
logl = optimizeAllParameters(gradient_epsilon);
}
return logl;
}
double ModelFactory::optimizeAllParameters(double gradient_epsilon) {
int ndim = getNDim();
// return if nothing to be optimized
if (ndim == 0) return 0.0;
double *variables = new double[ndim+1];
double *upper_bound = new double[ndim+1];
double *lower_bound = new double[ndim+1];
bool *bound_check = new bool[ndim+1];
int i;
double score;
// setup the bounds for model
setVariables(variables);
int model_ndim = model->getNDim();
for (i = 1; i <= model_ndim; i++) {
//cout << variables[i] << endl;
lower_bound[i] = MIN_RATE;
upper_bound[i] = MAX_RATE;
bound_check[i] = false;
}
if (model->freq_type == FREQ_ESTIMATE) {
for (i = model_ndim- model->num_states+2; i <= model_ndim; i++)
upper_bound[i] = 1.0;
}
// setup the bounds for site_rate
site_rate->setBounds(lower_bound+model_ndim, upper_bound+model_ndim, bound_check+model_ndim);
score = -minimizeMultiDimen(variables, ndim, lower_bound, upper_bound, bound_check, max(gradient_epsilon, TOL_RATE));
getVariables(variables);
//if (freq_type == FREQ_ESTIMATE) scaleStateFreq(true);
model->decomposeRateMatrix();
site_rate->phylo_tree->clearAllPartialLH();
score = site_rate->phylo_tree->computeLikelihood();
delete [] bound_check;
delete [] lower_bound;
delete [] upper_bound;
delete [] variables;
return score;
}
double ModelFactory::optimizeParametersGammaInvar(int fixed_len, bool write_info, double logl_epsilon, double gradient_epsilon) {
if (!site_rate->isGammai() || site_rate->isFixPInvar() || site_rate->isFixGammaShape() || site_rate->getTree()->aln->frac_const_sites == 0.0 || model->isMixture())
return optimizeParameters(fixed_len, write_info, logl_epsilon, gradient_epsilon);
double begin_time = getRealTime();
PhyloTree *tree = site_rate->getTree();
double frac_const = tree->aln->frac_const_sites;
tree->setCurScore(tree->computeLikelihood());
/* Back up branch lengths and substitutional rates */
DoubleVector initBranLens;
DoubleVector bestLens;
tree->saveBranchLengths(initBranLens);
bestLens = initBranLens;
// int numRateEntries = tree->getModel()->getNumRateEntries();
Checkpoint *model_ckp = new Checkpoint;
Checkpoint *best_ckp = new Checkpoint;
Checkpoint *saved_ckp = model->getCheckpoint();
*model_ckp = *saved_ckp;
// double *rates = new double[numRateEntries];
// double *bestRates = new double[numRateEntries];
// tree->getModel()->getRateMatrix(rates);
// int numStates = tree->aln->num_states;
// double *state_freqs = new double[numStates];
// tree->getModel()->getStateFrequency(state_freqs);
/* Best estimates found */
// double *bestStateFreqs = new double[numStates];
double bestLogl = -DBL_MAX;
double bestAlpha = 0.0;
double bestPInvar = 0.0;
double testInterval = (frac_const - MIN_PINVAR * 2) / 9;
double initPInv = MIN_PINVAR;
double initAlpha = site_rate->getGammaShape();
if (Params::getInstance().opt_gammai_fast) {
initPInv = frac_const/2;
bool stop = false;
while(!stop) {
if (write_info) {
cout << endl;
cout << "Testing with init. pinv = " << initPInv << " / init. alpha = " << initAlpha << endl;
}
vector<double> estResults = optimizeGammaInvWithInitValue(fixed_len, logl_epsilon, gradient_epsilon,
initPInv, initAlpha, initBranLens, model_ckp);
if (write_info) {
cout << "Est. p_inv: " << estResults[0] << " / Est. gamma shape: " << estResults[1]
<< " / Logl: " << estResults[2] << endl;
}
if (estResults[2] > bestLogl) {
bestLogl = estResults[2];
bestAlpha = estResults[1];
bestPInvar = estResults[0];
bestLens.clear();
tree->saveBranchLengths(bestLens);
model->setCheckpoint(best_ckp);
model->saveCheckpoint();
model->setCheckpoint(saved_ckp);
// *best_ckp = *saved_ckp;
// tree->getModel()->getRateMatrix(bestRates);
// tree->getModel()->getStateFrequency(bestStateFreqs);
if (estResults[0] < initPInv) {
initPInv = estResults[0] - testInterval;
if (initPInv < 0.0)
initPInv = 0.0;
} else {
initPInv = estResults[0] + testInterval;
if (initPInv > frac_const)
initPInv = frac_const;
}
//cout << "New initPInv = " << initPInv << endl;
} else {
stop = true;
}
}
} else {
// Now perform testing different initial p_inv values
if (write_info)
cout << "Thoroughly optimizing +I+G parameters from 10 start values..." << endl;
while (initPInv <= frac_const) {
vector<double> estResults; // vector of p_inv, alpha and logl
if (Params::getInstance().opt_gammai_keep_bran)
estResults = optimizeGammaInvWithInitValue(fixed_len, logl_epsilon, gradient_epsilon,
initPInv, initAlpha, bestLens, model_ckp);
else
estResults = optimizeGammaInvWithInitValue(fixed_len, logl_epsilon, gradient_epsilon,
initPInv, initAlpha, initBranLens, model_ckp);
if (write_info) {
cout << "Init pinv, alpha: " << initPInv << ", " << initAlpha
<< " / Estimate: " << estResults[0] << ", " << estResults[1]
<< " / LogL: " << estResults[2] << endl;
}
initPInv = initPInv + testInterval;
if (estResults[2] > bestLogl) {
bestLogl = estResults[2];
bestAlpha = estResults[1];
bestPInvar = estResults[0];
bestLens.clear();
tree->saveBranchLengths(bestLens);
model->setCheckpoint(best_ckp);
model->saveCheckpoint();
model->setCheckpoint(saved_ckp);
// *best_ckp = *saved_ckp;
// tree->getModel()->getRateMatrix(bestRates);
// tree->getModel()->getStateFrequency(bestStateFreqs);
}
}
}
site_rate->setGammaShape(bestAlpha);
site_rate->setPInvar(bestPInvar);
// -- Mon Apr 17 21:12:14 BST 2017
// DONE Minh, merged correctly
model->setCheckpoint(best_ckp);
model->restoreCheckpoint();
model->setCheckpoint(saved_ckp);
// ((ModelGTR*) tree->getModel())->setRateMatrix(bestRates);
// ((ModelGTR*) tree->getModel())->setStateFrequency(bestStateFreqs);
// --
tree->restoreBranchLengths(bestLens);
// tree->getModel()->decomposeRateMatrix();
tree->clearAllPartialLH();
tree->setCurScore(tree->computeLikelihood());
if (write_info) {
cout << "Optimal pinv,alpha: " << bestPInvar << ", " << bestAlpha << " / ";
cout << "LogL: " << tree->getCurScore() << endl << endl;
}
ASSERT(fabs(tree->getCurScore() - bestLogl) < 1.0);
// delete [] rates;
// delete [] state_freqs;
// delete [] bestRates;
// delete [] bestStateFreqs;
delete model_ckp;
delete best_ckp;
double elapsed_secs = getRealTime() - begin_time;
if (write_info)
cout << "Parameters optimization took " << elapsed_secs << " sec" << endl;
// updating global variable is not safe!
// Params::getInstance().testAlpha = false;
// 2016-03-14: this was missing!
return tree->getCurScore();
}
vector<double> ModelFactory::optimizeGammaInvWithInitValue(int fixed_len, double logl_epsilon, double gradient_epsilon,
double initPInv, double initAlpha,
DoubleVector &lenvec, Checkpoint *model_ckp) {
PhyloTree *tree = site_rate->getTree();
tree->restoreBranchLengths(lenvec);
// -- Mon Apr 17 21:12:24 BST 2017
// DONE Minh: merged correctly
Checkpoint *saved_ckp = model->getCheckpoint();
model->setCheckpoint(model_ckp);
model->restoreCheckpoint();
model->setCheckpoint(saved_ckp);
site_rate->setPInvar(initPInv);
site_rate->setGammaShape(initAlpha);
// --
tree->clearAllPartialLH();
optimizeParameters(fixed_len, false, logl_epsilon, gradient_epsilon);
vector<double> estResults;
double estPInv = site_rate->getPInvar();
double estAlpha = site_rate->getGammaShape();
double logl = tree->getCurScore();
estResults.push_back(estPInv);
estResults.push_back(estAlpha);
estResults.push_back(logl);
return estResults;
}
double ModelFactory::optimizeParameters(int fixed_len, bool write_info,
double logl_epsilon, double gradient_epsilon) {
ASSERT(model);
ASSERT(site_rate);
// double defaultEpsilon = logl_epsilon;
double begin_time = getRealTime();
double cur_lh;
PhyloTree *tree = site_rate->getTree();
ASSERT(tree);
stopStoringTransMatrix();
// modified by Thomas Wong on Sept 11, 15
// no optimization of branch length in the first round
cur_lh = tree->computeLikelihood();
tree->setCurScore(cur_lh);
if (verbose_mode >= VB_MED || write_info) {
int p = -1;
// SET precision to 17 (temporarily)
if (verbose_mode >= VB_DEBUG) p = cout.precision(17);
// PRINT Log-Likelihood
cout << "1. Initial log-likelihood: " << cur_lh << endl;
// RESTORE previous precision
if (verbose_mode >= VB_DEBUG) cout.precision(p);
if (verbose_mode >= VB_MAX) {
tree->printTree(cout);
cout << endl;
}
}
// For UpperBounds -----------
//cout<<"MLCheck = "<<tree->mlCheck <<endl;
if(tree->mlCheck == 0){
tree->mlInitial = cur_lh;
}
// ---------------------------
int i;
//bool optimize_rate = true;
// double gradient_epsilon = min(logl_epsilon, 0.01); // epsilon for parameters starts at epsilon for logl
for (i = 2; i < tree->params->num_param_iterations; i++) {
double new_lh;
// changed to opimise edge length first, and then Q,W,R inside the loop by Thomas on Sept 11, 15
if (fixed_len == BRLEN_OPTIMIZE)
new_lh = tree->optimizeAllBranches(min(i,3), logl_epsilon); // loop only 3 times in total (previously in v0.9.6 5 times)
else if (fixed_len == BRLEN_SCALE) {
double scaling = 1.0;
new_lh = tree->optimizeTreeLengthScaling(MIN_BRLEN_SCALE, scaling, MAX_BRLEN_SCALE, gradient_epsilon);
} else
new_lh = cur_lh;
new_lh = optimizeParametersOnly(i, gradient_epsilon, new_lh);
if (new_lh == 0.0) {
if (fixed_len == BRLEN_OPTIMIZE)
cur_lh = tree->optimizeAllBranches(tree->params->num_param_iterations, logl_epsilon);
else if (fixed_len == BRLEN_SCALE) {
double scaling = 1.0;
cur_lh = tree->optimizeTreeLengthScaling(MIN_BRLEN_SCALE, scaling, MAX_BRLEN_SCALE, gradient_epsilon);
}
break;
}
if (verbose_mode >= VB_MED) {
model->writeInfo(cout);
site_rate->writeInfo(cout);
if (fixed_len == BRLEN_SCALE)
cout << "Scaled tree length: " << tree->treeLength() << endl;
}
if (new_lh > cur_lh + logl_epsilon) {
cur_lh = new_lh;
if (write_info)
cout << i << ". Current log-likelihood: " << cur_lh << endl;
} else {
site_rate->classifyRates(new_lh);
if (fixed_len == BRLEN_OPTIMIZE)
cur_lh = tree->optimizeAllBranches(100, logl_epsilon);
else if (fixed_len == BRLEN_SCALE) {
double scaling = 1.0;
cur_lh = tree->optimizeTreeLengthScaling(MIN_BRLEN_SCALE, scaling, MAX_BRLEN_SCALE, gradient_epsilon);
}
break;
}
}
// normalize rates s.t. branch lengths are #subst per site
// if (Params::getInstance().optimize_alg_gammai != "EM")
{
double mean_rate = site_rate->rescaleRates();
if (fabs(mean_rate-1.0) > 1e-6) {
if (fixed_len == BRLEN_FIX)
outError("Fixing branch lengths not supported under specified site rate model");
tree->scaleLength(mean_rate);
tree->clearAllPartialLH();
}
}
if (verbose_mode >= VB_MED || write_info)
cout << "Optimal log-likelihood: " << cur_lh << endl;
// For UpperBounds -----------
if(tree->mlCheck == 0)
tree->mlFirstOpt = cur_lh;
// ---------------------------
if (verbose_mode <= VB_MIN && write_info) {
model->writeInfo(cout);
site_rate->writeInfo(cout);
if (fixed_len == BRLEN_SCALE)
cout << "Scaled tree length: " << tree->treeLength() << endl;
}
double elapsed_secs = getRealTime() - begin_time;
if (write_info)
cout << "Parameters optimization took " << i-1 << " rounds (" << elapsed_secs << " sec)" << endl;
startStoringTransMatrix();
// For UpperBounds -----------
tree->mlCheck = 1;
// ---------------------------
tree->setCurScore(cur_lh);
return cur_lh;
}
/**
* @return TRUE if parameters are at the boundary that may cause numerical unstability
*/
bool ModelFactory::isUnstableParameters() {
if (model->isUnstableParameters()) return true;
return false;
}
void ModelFactory::startStoringTransMatrix() {
if (!store_trans_matrix) return;
is_storing = true;
}
void ModelFactory::stopStoringTransMatrix() {
if (!store_trans_matrix) return;
is_storing = false;
if (!empty()) {
for (iterator it = begin(); it != end(); it++)
delete it->second;
clear();
}
}
double ModelFactory::computeTrans(double time, int state1, int state2) {
return model->computeTrans(time, state1, state2);
}
double ModelFactory::computeTrans(double time, int state1, int state2, double &derv1, double &derv2) {
return model->computeTrans(time, state1, state2, derv1, derv2);
}
void ModelFactory::computeTransMatrix(double time, double *trans_matrix, int mixture) {
if (!store_trans_matrix || !is_storing || model->isSiteSpecificModel()) {
model->computeTransMatrix(time, trans_matrix, mixture);
return;
}
int mat_size = model->num_states * model->num_states;
iterator ass_it = find(round(time * 1e6));
if (ass_it == end()) {
// allocate memory for 3 matricies
double *trans_entry = new double[mat_size * 3];
trans_entry[mat_size] = trans_entry[mat_size+1] = 0.0;
model->computeTransMatrix(time, trans_entry, mixture);
ass_it = insert(value_type(round(time * 1e6), trans_entry)).first;
} else {
//if (verbose_mode >= VB_MAX)
//cout << "ModelFactory bingo" << endl;
}
memcpy(trans_matrix, ass_it->second, mat_size * sizeof(double));
}
void ModelFactory::computeTransDerv(double time, double *trans_matrix,
double *trans_derv1, double *trans_derv2, int mixture) {
if (!store_trans_matrix || !is_storing || model->isSiteSpecificModel()) {
model->computeTransDerv(time, trans_matrix, trans_derv1, trans_derv2, mixture);
return;
}
int mat_size = model->num_states * model->num_states;
iterator ass_it = find(round(time * 1e6));
if (ass_it == end()) {
// allocate memory for 3 matricies
double *trans_entry = new double[mat_size * 3];
trans_entry[mat_size] = trans_entry[mat_size+1] = 0.0;
model->computeTransDerv(time, trans_entry, trans_entry+mat_size, trans_entry+(mat_size*2), mixture);
ass_it = insert(value_type(round(time * 1e6), trans_entry)).first;
} else if (ass_it->second[mat_size] == 0.0 && ass_it->second[mat_size+1] == 0.0) {
double *trans_entry = ass_it->second;
model->computeTransDerv(time, trans_entry, trans_entry+mat_size, trans_entry+(mat_size*2), mixture);
}
memcpy(trans_matrix, ass_it->second, mat_size * sizeof(double));
memcpy(trans_derv1, ass_it->second + mat_size, mat_size * sizeof(double));
memcpy(trans_derv2, ass_it->second + (mat_size*2), mat_size * sizeof(double));
}
ModelFactory::~ModelFactory()
{
for (iterator it = begin(); it != end(); it++)
delete it->second;
clear();
}
/************* FOLLOWING SERVE FOR JOINT OPTIMIZATION OF MODEL AND RATE PARAMETERS *******/
int ModelFactory::getNDim()
{
return model->getNDim() + site_rate->getNDim();
}
double ModelFactory::targetFunk(double x[]) {
model->getVariables(x);
// need to compute rates again if p_inv or Gamma shape changes!
if (model->state_freq[model->num_states-1] < MIN_RATE) return 1.0e+12;
model->decomposeRateMatrix();
site_rate->phylo_tree->clearAllPartialLH();
return site_rate->targetFunk(x + model->getNDim());
}
void ModelFactory::setVariables(double *variables) {
model->setVariables(variables);
site_rate->setVariables(variables + model->getNDim());
}
bool ModelFactory::getVariables(double *variables) {
bool changed = model->getVariables(variables);
changed |= site_rate->getVariables(variables + model->getNDim());
return changed;
}
|