1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
|
/*
* modelliemarkov.cpp
*
* Created on: 24/05/2016
* Author: Michael Woodhams
*/
/*
* TO DO:
* Currently all LM models are treated as non time-reversible.
* In fact, a few are time reversible (TIME_REVERSIBLE[model_num]).
* Allowing this to be recognized by rest of program would speed up
* analysis of these models significantly.
*/
/*
* TO DO:
* Currently symmetry permutation is applied every time setRates is called.
* Would be more efficient to apply it just once to basis in constructor.
*/
#ifdef USE_EIGEN3
#include <Eigen/Dense>
#include <unsupported/Eigen/MatrixFunctions>
using namespace Eigen;
#endif
#include "modelliemarkov.h"
#include <float.h>
#undef NDEBUG
#include <assert.h>
#include <complex>
/*
* TO DO: It is inconvenient to have all of these const declarations
* here, as it is so much to scroll past to find the actual code.
* Find some way to be able to put these at end of .cpp file,
* or maybe in .h file (not preferred, as nothing external to this
* file needs or is allowed to see the definitions.)
*/
/*
* Enum of the Lie-Markov basis matrices. D, E1 and E2 are the
* ones which affect base frequencies and so get treated differently
* when params.freq_type is not FREQ_ESTIMATE, so they are given the
* highest numbers.
*/
enum BASIS_MATRIX_TYPE {BM_A=0, BM_A2, BM_B,
BM_C, BM_D1, BM_F1,
BM_F2, BM_G1, BM_G2,
BM_D, BM_E1, BM_E2};
/*
* Basis matrices as displayed are columns sum to zero convention.
* For RY pairing, columns/rows are in order A, G, C, T
* For WS pairing, columns/rows are in order A, T, C, G
* For MK pairing, columns/rows are in order A, C, G, T
* Only the off-diagonal entries are stored. rates array is in
* rows sum to zero convention, so we read down the columns
* to enter them into the array (skipping diagonal entries.)
*
* From table 1 of Woodhams et al Syst Biol 64 p638-650 (2015) DOI:10.1093/sysbio/syv021
*/
/* A:
* +3 +1 +1 +1
* +1 +3 +1 +1
* +1 +1 +3 +1
* +1 +1 +1 +3
*/
const static double A[] = {+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1};
/* A2:
* 0 +2 -1 -1
* +2 0 -1 -1
* -1 -1 0 +2
* -1 -1 +2 0
*/
const static double A2[] = {+2,-1,-1,+2,-1,-1,-1,-1,+2,-1,-1,+2};
/* B:
* 0 0 + -
* 0 0 - +
* + - 0 0
* - + 0 0
*/
const static double B[] = { 0,+1,-1, 0,-1,+1,+1,-1, 0,-1,+1, 0};
/* C:
* 0 0 + -
* 0 0 - +
* - + 0 0
* + - 0 0
*/
const static double C[] = { 0,-1,+1, 0,+1,-1,+1,-1, 0,-1,+1, 0};
/* D1:
* - + 0 0
* + - 0 0
* 0 0 + -
* 0 0 - +
*/
const static double D1[] = {+1, 0, 0,+1, 0, 0, 0, 0,-1, 0, 0,-1};
/* D:
* + + + +
* + + + +
* - - - -
* - - - -
*/
const static double D[] = {+1,-1,-1,+1,-1,-1,+1,+1,-1,+1,+1,-1};
const static double mD[] = {-1,+1,+1,-1,+1,+1,-1,-1,+1,-1,-1,+1}; // -D
/* E1:
* + + + +
* - - - -
* 0 0 0 0
* 0 0 0 0
*/
const static double E1[] = {-1, 0, 0,+1, 0, 0,+1,-1, 0,+1,-1, 0};
const static double mE1[] = {+1, 0, 0,-1, 0, 0,-1,+1, 0,-1,+1, 0}; // -E1
const static double tE1[] = {-2, 0, 0,+2, 0, 0,+2,-2, 0,+2,-2, 0}; // 2 E1
/* E2:
* 0 0 0 0
* 0 0 0 0
* + + + +
* - - - -
*/
const static double E2[] = { 0,+1,-1, 0,+1,-1, 0, 0,-1, 0, 0,+1};
const static double mE2[] = { 0,-1,+1, 0,-1,+1, 0, 0,+1, 0, 0,-1}; // -E2
const static double tE2[] = { 0,+2,-2, 0,+2,-2, 0, 0,-2, 0, 0,+2}; // 2 E2
/* F1:
* + + - -
* - - + +
* 0 0 0 0
* 0 0 0 0
*/
const static double F1[] = {-1, 0, 0,+1, 0, 0,-1,+1, 0,-1,+1, 0};
/* F2:
* 0 0 0 0
* 0 0 0 0
* + + - -
* - - + +
*/
const static double F2[] = { 0,+1,-1, 0,+1,-1, 0, 0,+1, 0, 0,-1};
/* G1:
* + - 0 0
* + - 0 0
* - + 0 0
* - + 0 0
*/
const static double G1[] = {+1,-1,-1,-1,+1,+1, 0, 0, 0, 0, 0, 0};
/* G2:
* 0 0 + -
* 0 0 + -
* 0 0 - +
* 0 0 - +
*/
const static double G2[] = { 0, 0, 0, 0, 0, 0,+1,+1,-1,-1,-1,+1};
// same order as BASIS_MATRIX_TYPE enum.
const static double *LM_BASIS_MATRICES[] = {A,A2,B,C,D1,F1,F2,G1,G2,D,E1,E2};
/*
// never found a use for this.
enum LM_MODEL = {LM11, LM22b, LM33a, LM33b, LM33c, LM34, LM44a, LM44b,
LM45a, LM45b, LM56a, LM56b, LM57a, LM57b, LM57c,
LM511a, LM511b, LM511c, LM516, LM66, LM67a, LM57b,
LM68a, LM68b, LM617a, LM617b, LM88, LM810a, LM810b,
LM816, LM817, LM818, LM920a, LM920b, LM1012, LM1034, LM1212};
*/
// Lengths of these arrays (minus one) stored in MODEL_PARAMS. Note BM_D, BM_E1, BM_E2 must be at end
// (as these are treated differently in setBasis() for some freq_type values) (spacing emphasises this split)
const static BASIS_MATRIX_TYPE BASIS_11[] = {BM_A};
const static BASIS_MATRIX_TYPE BASIS_22B[] = {BM_A,BM_A2};
const static BASIS_MATRIX_TYPE BASIS_33A[] = {BM_A,BM_A2,BM_B };
const static BASIS_MATRIX_TYPE BASIS_33B[] = {BM_A,BM_A2,BM_C };
const static BASIS_MATRIX_TYPE BASIS_33C[] = {BM_A,BM_A2,BM_D1};
const static BASIS_MATRIX_TYPE BASIS_34[] = {BM_A,BM_A2, BM_D};
const static BASIS_MATRIX_TYPE BASIS_44A[] = {BM_A, BM_D,BM_E1,BM_E2};
const static BASIS_MATRIX_TYPE BASIS_44B[] = {BM_A,BM_A2,BM_D1, BM_D};
const static BASIS_MATRIX_TYPE BASIS_45A[] = {BM_A,BM_A2,BM_B, BM_D};
const static BASIS_MATRIX_TYPE BASIS_45B[] = {BM_A,BM_A2,BM_C, BM_D};
const static BASIS_MATRIX_TYPE BASIS_56A[] = {BM_A,BM_A2,BM_B, BM_C, BM_D1};
const static BASIS_MATRIX_TYPE BASIS_56B[] = {BM_A,BM_A2, BM_D,BM_E1,BM_E2};
const static BASIS_MATRIX_TYPE BASIS_57A[] = {BM_A,BM_A2,BM_B, BM_E1,BM_E2};
const static BASIS_MATRIX_TYPE BASIS_57B[] = {BM_A,BM_A2,BM_B, BM_F1,BM_F2};
const static BASIS_MATRIX_TYPE BASIS_57C[] = {BM_A,BM_A2,BM_B, BM_G1,BM_G2};
const static BASIS_MATRIX_TYPE BASIS_511A[] = {BM_A,BM_A2,BM_D1, BM_E1,BM_E2};
const static BASIS_MATRIX_TYPE BASIS_511B[] = {BM_A,BM_A2,BM_D1,BM_F1,BM_F2};
const static BASIS_MATRIX_TYPE BASIS_511C[] = {BM_A,BM_A2,BM_D1,BM_G1,BM_G2};
const static BASIS_MATRIX_TYPE BASIS_516[] = {BM_A,BM_A2,BM_G1,BM_G2, BM_D};
const static BASIS_MATRIX_TYPE BASIS_66[] = {BM_A,BM_A2,BM_B, BM_C, BM_D1, BM_D};
const static BASIS_MATRIX_TYPE BASIS_67A[] = {BM_A,BM_A2,BM_B, BM_D,BM_E1,BM_E2};
const static BASIS_MATRIX_TYPE BASIS_67B[] = {BM_A,BM_A2,BM_C, BM_D,BM_E1,BM_E2};
const static BASIS_MATRIX_TYPE BASIS_68A[] = {BM_A,BM_A2,BM_D1, BM_D,BM_E1,BM_E2};
const static BASIS_MATRIX_TYPE BASIS_68B[] = {BM_A,BM_A2,BM_D1,BM_G1,BM_G2, BM_D};
const static BASIS_MATRIX_TYPE BASIS_617A[] = {BM_A,BM_A2,BM_B, BM_G1,BM_G2, BM_D};
const static BASIS_MATRIX_TYPE BASIS_617B[] = {BM_A,BM_A2,BM_C, BM_G1,BM_G2, BM_D};
const static BASIS_MATRIX_TYPE BASIS_88[] = {BM_A,BM_A2,BM_D1,BM_F1,BM_F2, BM_D,BM_E1,BM_E2};
const static BASIS_MATRIX_TYPE BASIS_810A[] = {BM_A,BM_A2,BM_B, BM_C, BM_D1, BM_D,BM_E1,BM_E2};
const static BASIS_MATRIX_TYPE BASIS_810B[] = {BM_A,BM_A2,BM_B, BM_C, BM_D1,BM_G1,BM_G2, BM_D};
const static BASIS_MATRIX_TYPE BASIS_816[] = {BM_A,BM_A2,BM_D1,BM_G1,BM_G2, BM_D,BM_E1,BM_E2};
const static BASIS_MATRIX_TYPE BASIS_817[] = {BM_A,BM_A2,BM_B, BM_G1,BM_G2, BM_D,BM_E1,BM_E2};
const static BASIS_MATRIX_TYPE BASIS_818[] = {BM_A,BM_A2,BM_B, BM_F1,BM_F2, BM_D,BM_E1,BM_E2};
const static BASIS_MATRIX_TYPE BASIS_920A[] = {BM_A,BM_A2,BM_B, BM_C, BM_D1,BM_F1,BM_F2, BM_E1,BM_E2};
const static BASIS_MATRIX_TYPE BASIS_920B[] = {BM_A,BM_A2,BM_B, BM_C, BM_D1,BM_F1,BM_F2,BM_G1,BM_G2};
const static BASIS_MATRIX_TYPE BASIS_1012[] = {BM_A,BM_A2,BM_B, BM_C, BM_D1,BM_F1,BM_F2, BM_D,BM_E1,BM_E2};
const static BASIS_MATRIX_TYPE BASIS_1034[] = {BM_A,BM_A2,BM_B, BM_C, BM_D1,BM_G1,BM_G2, BM_D,BM_E1,BM_E2};
const static BASIS_MATRIX_TYPE BASIS_1212[] = {BM_A,BM_A2,BM_B, BM_C, BM_D1,BM_F1,BM_F2,BM_G1,BM_G2,BM_D,BM_E1,BM_E2};
const static int NUM_LM_MODELS = 38;
// Note: really just 37 models, 38th is to provide "StrSym" as an alias for WS6.6
const static int STR_SYM_INDEX = 37; // entry 37 in BASES, MODEL_NAMES etc is strand symmetric model.
const static BASIS_MATRIX_TYPE *BASES[] =
{BASIS_11, BASIS_22B, BASIS_33A, BASIS_33B, BASIS_33C,
BASIS_34, BASIS_44A, BASIS_44B, BASIS_45A, BASIS_45B,
BASIS_56A, BASIS_56B, BASIS_57A, BASIS_57B, BASIS_57C,
BASIS_511A,BASIS_511B,BASIS_511C,BASIS_516, BASIS_66,
BASIS_67A, BASIS_67B, BASIS_68A, BASIS_68B, BASIS_617A,
BASIS_617B,BASIS_88, BASIS_810A,BASIS_810B,BASIS_816,
BASIS_817, BASIS_818, BASIS_920A,BASIS_920B,BASIS_1012,
BASIS_1034,BASIS_1212,BASIS_66};
const static string MODEL_NAMES[] =
{ "1.1", "2.2b", "3.3a", "3.3b", "3.3c",
"3.4", "4.4a", "4.4b", "4.5a", "4.5b",
"5.6a", "5.6b", "5.7a", "5.7b", "5.7c",
"5.11a","5.11b","5.11c","5.16", "6.6",
"6.7a", "6.7b", "6.8a", "6.8b", "6.17a",
"6.17b","8.8", "8.10a","8.10b", "8.16",
"8.17", "8.18", "9.20a","9.20b","10.12",
"10.34","12.12","strsym"};
const static int MODEL_PARAMS[] =
{0,1,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,
5,5,5,5,5,5,5,7,7,7,7,7,7,8,8,9,9,11,5};
const static bool TIME_REVERSIBLE[] =
{true, true, true, false,true,
true, true, true, false,false,
false,false,false,false,false,
false,false,false,false,false,
false,false,false,false,false,
false,false,false,false,false,
false,false,false,false,false,
false,false,false};
/*
* Base frequency Degrees of Freedom, by model. This is the number
* of matrices out of D, E1, E2 in the model.
* BDF=0 => equilibrium base frequencies are pi_A=pi_G=pi_C=pi_T = 1/4
* BDF=1 => eqbm freqs pi_A=pi_G, pi_C=pi_T (for RY pairing)
* BDF=2 => eqbm freqs pi_A+pi_G = pi_C+pi_T = 1/2
* BDF=3 => arbitrary eqbm freqs
*/
const static int BDF[] =
{0,0,0,0,0, // 1.1, 2.2b, 3.3a, 3.3b, 3.3c
1,3,1,1,1, // 3.4, 4.4a, 4.4b, 4.5a, 4.5b
0,3,2,0,0, // 5.6a, 5.6b, 5.7a, 5.7b, 5.7c
2,0,0,1,1, // 5.11a, 5.11b, 5.11c, 5.16, 6.6
3,3,3,1,1, // 6.7a, 6.7b, 6.8a, 6.8b, 6.17a
1,3,3,1,3, // 6.17b, 8.8, 8.10a, 8.10b, 8.16
3,3,2,0,3, // 8.17, 8.18, 9.20a, 9.20b, 10.12
3,3,1}; // 10.34, 12.12, strsym
/*
* For the TRANSFORM_* arrays:
* Each shows how to modify a basis matrix to enforce a fixed base
* frequency vector. The base frequency vector is encoded as
* tauRY = pi_A+pi_G-pi_C-pi_T
* tauAG = pi_A-pi_G
* tauCT = pi_C-pi_T
* (or for WS symmetry think of them as tauWS, tauAT, tauCG, and
* for MK symmetry think of them as tauMK, tauAC, tauGT)
* then transformed basis matrix X = tauRY*TRANSFORM_X[0]+tauAG*TRANSFORM_X[1]+tauCT*TRANSFORM_X[2]
*/
const static double *TRANSFORM_A[] = {D, tE1, tE2};
const static double *TRANSFORM_A2[] = {mD, E1, E2};
const static double *TRANSFORM_B[] = {NULL, mE2, mE1};
const static double *TRANSFORM_C[] = {NULL, E2, mE1};
const static double *TRANSFORM_D1[] = {NULL, E1, mE2};
const static double *TRANSFORM_F1[] = {mE1, NULL, NULL};
const static double *TRANSFORM_F2[] = {mE2, NULL, NULL};
const static double *TRANSFORM_G1[] = {NULL, mD, NULL};
const static double *TRANSFORM_G2[] = {NULL, NULL, mD};
const static double **BASIS_TRANSFORM[] = {
TRANSFORM_A, TRANSFORM_A2, TRANSFORM_B,
TRANSFORM_C, TRANSFORM_D1, TRANSFORM_F1,
TRANSFORM_F2, TRANSFORM_G1, TRANSFORM_G2};
/*
* symmetry 3 (empty string) is only for models with full symmetry
* (RY, WS, MK models are isomorphic). FULL_SYMMETRY identifies
* these models (1.1, 3.3a, 4.4a, 6.7a, 9.20b, 12.12).
* (this is cosmetic - names of these models don't have RY, WS or MK appended.)
*/
const static string SYMMETRY[] = {"RY","WS","MK",""};
/*
* The definitions of tau (piToTau(), below) determine the unpermuted
* base orderings for each symmetry. For RY, order = (A,G,C,T); for
* WS order is (A,T,C,G). For MK, (A,C,G,T). Then the unpermuted
* rates need to be permuted to the (A,C,G,T) order native to iqtree.
*/
const static int SYMMETRY_PERM[][12] =
{{1,0,2,6,7,8,3,4,5,9,11,10}, // RY
{1,2,0,6,8,7,9,11,10,3,4,5}, // WS
{0,1,2,3,4,5,6,7,8,9,10,11}, // MK
{1,0,2,6,7,8,3,4,5,9,11,10}}; // sym=3 uses RY permutation
const static bool FULL_SYMMETRY[] =
{true, false,true, false,false, // 1.1, 2.2b, 3.3a, 3.3b, 3.3c
false,true, false,false,false, // 3.4, 4.4a, 4.4b, 4.5a, 4.5b
false,false,false,false,false, // 5.6a, 5.6b, 5.7a, 5.7b, 5.7c
false,false,false,false,false, // 5.11a, 5.11b, 5.11c, 5.16, 6.6
true, false,false,false,false, // 6.7a, 6.7b, 6.8a, 6.8b, 6.17a
false,false,false,false,false, // 6.17b, 8.8, 8.10a, 8.10b, 8.16
false,false,false,true, false, // 8.17, 8.18, 9.20a, 9.20b, 10.12
false,true, false}; // 10.34, 12.12, StrSym
const static int NUM_RATES = 12;
/*
* In principle, Lie Markov parameters range in [-1,1]. However values
* very near the boundary are biologically implausible (will put at least
* one entry in the rate matrix very close to zero) and can cause
* numerical problems, so we restrict the range a bit.
*/
const double MIN_LIE_WEIGHT = -0.98;
const double MAX_LIE_WEIGHT = 0.98;
ModelLieMarkov::ModelLieMarkov(string model_name, PhyloTree *tree, string model_params, StateFreqType freq_type, string freq_params)
: ModelMarkov(tree, false) {
init(model_name.c_str(), model_params, freq_type, freq_params);
}
void ModelLieMarkov::init(const char *model_name, string model_params, StateFreqType freq, string freq_params)
{
// TODO: why is freq_params not handled here?
nondiagonalizable = false;
ASSERT(NUM_RATES==getNumRateEntries());
StateFreqType expected_freq_type; // returned by getLieMarkovModelInfo but not used here
getLieMarkovModelInfo((string)model_name, name, full_name, model_num, symmetry, expected_freq_type);
if (model_num<0) {
// should never happen - model_name should have been accepted
// by validModelName before constructor was called.
cerr << "Bad model name in ModelLieMarkov constructor" << endl;
abort();
}
setBasis(); // sets basis and num_params
// if (model_parameters)
// delete[] model_parameters;
model_parameters = new double [num_params];
memset(model_parameters, 0, sizeof(double)*num_params);
this->setRates();
// param optfromgiven only has effect if model_params != ""
if (model_params != "") {
DoubleVector vec;
convert_double_vec(model_params.c_str(), vec);
if (vec.size() != num_params)
outError("String '"+ model_params + "' does not have exactly " + convertIntToString(num_params) + " parameters");
for (int i = 0; i < num_params; i++) {
if (vec[i] <= MIN_LIE_WEIGHT || vec[i] >= MAX_LIE_WEIGHT)
outError("Weights for Lie Markov model must be between " + convertDoubleToString(MIN_LIE_WEIGHT) + " and " +
convertDoubleToString(MAX_LIE_WEIGHT));
model_parameters[i] = vec[i];
fixed_parameters = !Params::getInstance().optimize_from_given_params;
}
setRates();
}
if (freq_type == FREQ_UNKNOWN || expected_freq_type == FREQ_EQUAL) freq_type = expected_freq_type;
ModelMarkov::init(freq_type);
}
// Note to Minh: I see ModelUnrest also lacks checkpointing.
// I think this code could be copied straight over.
// If modelDNA had a setRates() method,
// we could make virtual setRates in ModelMarkov and
// perhaps move this code all into there. - MDW
void ModelLieMarkov::startCheckpoint() {
checkpoint->startStruct("ModelLieMarkov" + name);
}
void ModelLieMarkov::saveCheckpoint() {
// saves model_parameters
startCheckpoint();
if (num_params > 0)
CKP_ARRAY_SAVE(num_params, model_parameters);
endCheckpoint();
ModelMarkov::saveCheckpoint();
}
void ModelLieMarkov::restoreCheckpoint() {
ModelMarkov::restoreCheckpoint();
// restores model_parameters
startCheckpoint();
if (num_params > 0)
CKP_ARRAY_RESTORE(num_params, model_parameters);
endCheckpoint();
setRates(); // updates rate matrix
decomposeRateMatrix(); // updates eigen system.
if (phylo_tree)
phylo_tree->clearAllPartialLH();
}
void ModelLieMarkov::writeInfo(ostream &out) {
int i;
out << "Model parameters: ";
if (num_params>0) out << model_parameters[0];
for (i=1; i < num_params; i++) out << "," << model_parameters[i];
out << endl;
}
/*static*/ void ModelLieMarkov::getLieMarkovModelInfo(string model_name, string &name, string &full_name, int &model_num, int &symmetry, StateFreqType &def_freq) {
parseModelName(model_name,&model_num,&symmetry);
// Special case, just because it is confusing
if (model_name == "2.2a" || model_name == "RY2.2a" ||
model_name == "WS2.2a" || model_name == "MK2.2a") {
cerr << "Model 2.2a does not exist, do you mean 2.2b?\n";
}
if (model_num<0) {
// model not found
name = "";
full_name = "";
model_num = -1;
symmetry = -1;
def_freq = FREQ_UNKNOWN;
return;
}
// name and full_name:
// Special case for strand symmetric model.
if (model_num == STR_SYM_INDEX) {
name = "StrSym"; // Can't use MODEL_NAMES[STR_SYM_INDEX] as this is all lowercase, as it must be for parseModelName to work.
full_name = "Strand Symmetric model (alias WS6.6) (non reversible)";
} else {
name = SYMMETRY[symmetry]+MODEL_NAMES[model_num];
full_name = "Lie Markov model "+SYMMETRY[symmetry]+MODEL_NAMES[model_num]
+ (TIME_REVERSIBLE[model_num] ? "" : " (non reversible)");
}
// def_freq
int bdf = BDF[model_num];
if (bdf==0) {
def_freq=FREQ_EQUAL;
} else if (bdf==1) {
switch(symmetry) {
case 0:
def_freq=FREQ_DNA_1212;
break;
case 1:
def_freq=FREQ_DNA_1221;
break;
case 2:
def_freq=FREQ_DNA_1122;
break;
case 3:
default:
cerr << "Can't happen" << endl;
abort();
}
} else if (bdf==2) {
switch(symmetry) {
case 0:
def_freq=FREQ_DNA_RY;
break;
case 1:
def_freq=FREQ_DNA_WS;
break;
case 2:
def_freq=FREQ_DNA_MK;
break;
case 3:
default:
cerr << "Can't happen" << endl;
abort();
}
} else if (bdf==3) {
def_freq=FREQ_ESTIMATE;
}
return;
}
ModelLieMarkov::~ModelLieMarkov() {
// Do nothing, for now. model_parameters is reclaimed in ~ModelMarkov
// BQM: Do something now
if (model_parameters)
delete [] model_parameters;
}
/*
* Return 'true' if freq type is compatible with this Lie-Markov model.
* NOTE: Any freq_type exept FREQ_USER_DEFINED, FREQ_EMPIRICAL or
* FREQ_ESTIMATE is at best redundant, and worst incompatible.
* The above three are really the only freq types which should be used
* with an LM model.
* Actually, the +F1123s are valid with a BDF=3 LM model, but
* I haven't coded for this possibility so reject it. Could be fixed.
*
* Also for FREQ_USER_DEFINED and FREQ_EMPIRICAL, for LM models with
* BDF<3, compatibility depends on the given base freqs. There
* is code elsewhere which prints a warning if incompatible base freqs
* (and actual model base freqs will be 'close to' the requested freqs.)
*
* (update - this code is now unused, but left in for possible future use.)
*/
bool ModelLieMarkov::validFreqType() {
int bdf=BDF[model_num];
switch(getFreqType()) {
case FREQ_USER_DEFINED:
case FREQ_EMPIRICAL:
case FREQ_ESTIMATE:
return true;
case FREQ_UNKNOWN:
case FREQ_CODON_1x4:
case FREQ_CODON_3x4:
case FREQ_CODON_3x4C:
case FREQ_MIXTURE:
case FREQ_DNA_1112:
case FREQ_DNA_1121:
case FREQ_DNA_1211:
case FREQ_DNA_2111:
case FREQ_DNA_1123:
case FREQ_DNA_1213:
case FREQ_DNA_1231:
case FREQ_DNA_2113:
case FREQ_DNA_2131:
case FREQ_DNA_2311:
return false;
case FREQ_EQUAL:
return (bdf==0);
case FREQ_DNA_RY: return("+FRY");
return (bdf==2 && symmetry==0);
case FREQ_DNA_WS: return("+FWS");
return (bdf==2 && symmetry==1);
case FREQ_DNA_MK: return("+FMK");
return (bdf==2 && symmetry==2);
case FREQ_DNA_1122: return("+F1122");
return (bdf==1 && symmetry==2);
case FREQ_DNA_1212: return("+F1212");
return (bdf==1 && symmetry==0);
case FREQ_DNA_1221: return("+F1221");
return (bdf==1 && symmetry==1);
default: throw("Unrecoginzed freq_type in validFreqType - can't happen");
}
}
/*
* Overrides ModelMarkov::getNDimFreq().
* The degrees of freedom in base frequencies are already accounted
* for in num_param, so no more should be added.
*/
//int ModelLieMarkov::getNDimFreq() {
// return 0;
//}
/*
* Some LM models are time reversible. Currently this is used in
* ModelFactory::getNParameters() to adjust the degrees of freedom
* by one. Should the code ever be changed such that TR LM models
* are given an unrooted tree and optimized by TR methods,
* ModelFactory::getNParameters() may need changing.
*/
bool ModelLieMarkov::isReversible() {
// TODO: crash when setting reversible to true
// ASSERT(is_reversible == TIME_REVERSIBLE[model_num]);
// return(TIME_REVERSIBLE[model_num]);
return false;
}
/* static */ bool ModelLieMarkov::validModelName(string model_name) {
int model_num, symmetry;
parseModelName(model_name,&model_num,&symmetry);
return (model_num!=-1);
}
/*
* Model names are like 3.3a or WS6.6.
* The model name is something in the list MODEL_NAMES, optionally
* prefixed by "RY", "WS" or "MK" to set the distinguished pair.
* If the model has full symmetry, prefix is irrelevant and is ignored.
* If the model does not have full symmetry and has no prefix, "RY"
* pair is assumed.
*
* Returns number of entry on MODEL_NAMES in model_num (-1 if not found),
* and symmetry is 0 for RY, 1 for WS, 2 for MK, 3 for full symmetry.
*
* SPECIAL CASE: "StrSym" (case insensitive) is a synonym for WS6.6
* (strand symmetric). A minor misfeature is that RY, WS and MK will
* be accepted as prefixes to StrSym (e.g. "ryStrsym" is an alias for StrSym)
*/
/* static */ void ModelLieMarkov::parseModelName(string model_name, int* model_num, int* symmetry) {
int len = model_name.length();
string base_name;
string name_lower = model_name;
for (string::iterator it = name_lower.begin(); it != name_lower.end(); it++)
(*it) = tolower(*it);
if (name_lower.find("ry")==0) {
// found "RY" at start of model name
*symmetry = 0;
base_name = name_lower.substr(2,len-2);
} else if (name_lower.find("ws")==0) {
// found "WS" at start of model name
*symmetry = 1;
base_name = name_lower.substr(2,len-2);
} else if (name_lower.find("mk")==0) {
// found "MK" at start of model name
*symmetry = 2;
base_name = name_lower.substr(2,len-2);
} else {
// Found no prefix
*symmetry = 0;
base_name = name_lower;
}
// search for basename in MODEL_NAMES
*model_num = -1; // not found yet
for (int i=0; i<NUM_LM_MODELS; i++) {
if (MODEL_NAMES[i].compare(base_name)==0) {
*model_num = i;
break;
}
}
// Special case: strand symmetric model has WS symmetry
if (*model_num == STR_SYM_INDEX) *symmetry = 1;
// set full symmetry if have a fully symmetric model
if (*model_num>=0 && FULL_SYMMETRY[*model_num]) *symmetry = 3;
return;
}
/*
* Overrides ModelMarkov::getName().
* Avoids appending +FO to name, as this is implied by how LM models
* work.
* Minh: you might chose to remove this override, if you like "+FO"
* to be on LM model names.
*/
string ModelLieMarkov::getName() {
switch(getFreqType()) {
case FREQ_ESTIMATE:
return name;
case FREQ_EMPIRICAL:
return name+"+F";
case FREQ_USER_DEFINED:
return name+"+FU";
case FREQ_EQUAL:
return name;
default:
cerr << "Bad freq_type for a Lie-Markov model. Can't happen" << endl;
abort();
}
}
/*
* Technically bounds are +/- 1, but on the boundaries there will be
* mutation rates equal to zero, which may cause problems later.
*/
void ModelLieMarkov::setBounds(double *lower_bound, double *upper_bound, bool *bound_check) {
int i, ndim = getNDim();
for (i = 1; i <= ndim; i++) {
lower_bound[i] = MIN_LIE_WEIGHT;
upper_bound[i] = MAX_LIE_WEIGHT;
// If we end up with optimum on boundary, try restarting
// optimization from different start point, because LM models
// have a tendancy to find local maxima on boundary.
bound_check[i] = true;
}
}
void ModelLieMarkov::setVariables(double *variables) {
int nrate = getNDim();
// non-reversible case
if (!is_reversible) {
if (nrate > 0)
memcpy(variables+1, model_parameters, nrate*sizeof(double));
return;
}
if (freq_type == FREQ_ESTIMATE) nrate -= (num_states-1);
if (nrate > 0)
memcpy(variables+1, rates, nrate*sizeof(double));
if (freq_type == FREQ_ESTIMATE) {
// 2015-09-07: relax the sum of state_freq to be 1, this will be done at the end of optimization
int ndim = getNDim();
memcpy(variables+(ndim-num_states+2), state_freq, (num_states-1)*sizeof(double));
}
}
bool ModelLieMarkov::getVariables(double *variables) {
int nrate = getNDim();
int i;
bool changed = false;
// non-reversible case
if (!is_reversible) {
for (i = 0; i < nrate && !changed; i++)
changed = (model_parameters[i] != variables[i+1]);
if (changed) {
memcpy(model_parameters, variables+1, nrate * sizeof(double));
setRates();
}
return changed;
}
if (freq_type == FREQ_ESTIMATE) nrate -= (num_states-1);
if (nrate > 0) {
for (i = 0; i < nrate; i++)
changed |= (rates[i] != variables[i+1]);
memcpy(rates, variables+1, nrate * sizeof(double));
}
if (freq_type == FREQ_ESTIMATE) {
// 2015-09-07: relax the sum of state_freq to be 1, this will be done at the end of optimization
// 2015-09-07: relax the sum of state_freq to be 1, this will be done at the end of optimization
int ndim = getNDim();
for (i = 0; i < num_states-1; i++)
changed |= (state_freq[i] != variables[i+ndim-num_states+2]);
memcpy(state_freq, variables+(ndim-num_states+2), (num_states-1)*sizeof(double));
}
return changed;
}
/*
* Lie Markov model parameter restart strategy:
* If no parameters (in 'guess') are on the boundary of parameter space,
* no restart is needed.
* If restart is needed, the first attempt is to take parameters which are on
* boundary, halve them and change sign. This means our restart should be
* well away from the local optimum on the boundary, so if the local optimum
* is not the global optimum, this restart will hopefully go somewhere else.
*
* On subsequent restarts (iterations 2 to 5), every parameter starts halfway
* between 0 and the boundary. The parameters are split into two sections
* of (nearly) equal size, and all restart parameters within a section have
* the same sign. The pattern of signs is:
* iteration group1 group2
* 2 - -
* 3 + +
* 4 - +
* 5 + -
* (this ordering gives maximal difference between restarts 2 and 3,
* which we hope will be more likely to find the way to a different
* local optimum.)
*/
const int MAX_ITER = 5;
bool ModelLieMarkov::restartParameters(double guess[], int ndim, double lower[], double upper[], bool bound_check[], int iteration) {
int i;
bool restart = false;
if (iteration <= MAX_ITER) {
for (i = 1; i <= ndim; i++) {
if (fabs(guess[i]-lower[i]) < 1e-4 || fabs(guess[i]-upper[i]) < 1e-4) {
restart = true; break;
} // if (fabs...
} // for
} // if iteration <= MAX_ITER
if (restart) {
if (iteration == 1) {
unsigned int signbits = 0;
for (i = ndim; i>0; i--) {
if (fabs(guess[i]-lower[i]) < 1e-4 || fabs(guess[i]-upper[i]) < 1e-4) {
guess[i] *= -0.5;
} // if (fabs...
signbits = (signbits << 1) + ((guess[i]>0) ? 1 : 0);
} // for
} else {
int halfN = ndim/2;
double sign1 = (iteration==2 || iteration==4) ? -1 : 1;
double sign2 = (iteration==2 || iteration==5) ? -1 : 1;
for (i=1; i<=halfN; i++) {
guess[i] = sign1 * upper[i]/2;
}
for (i=halfN+1; i<=ndim; i++) {
guess[i] = sign2 * upper[i]/2;
}
}
if (verbose_mode >= VB_MED) {
cout << "Lie Markov Restart estimation at the boundary, iteration " << iteration;
if (verbose_mode >= VB_MAX) {
cout << ", new start point:" << std::endl << guess[1] ;
for (i = 2; i <= ndim; i++) cout << "," << guess[i];
}
cout << std::endl;
}
} else {
if (iteration > 1 && verbose_mode >= VB_MAX)
cout << "Lie Markov restarts ended at iteration " << iteration-1 << std::endl;
} // if restart else
return (restart);
}
/*
* tau[0] = pi_R-pi_Y = pi_A+pi_G-pi_C-pi_T (for RY pairing)
* (or pi_W-pi_S for WS pairing, or pi_M-pi_K for MK pairing)
* tau[1] = pi_A-pi_G (RY pairing), pi_A-pi_T (WS pairing), pi_A-pi_C (MK pairing)
* tau[2] = pi_C-pi_T (RY pairing), pi_C-pi_G (WS pairing), pi_G-pi_T (MK pairing)
*/
// Writes into a length 3 tau vector calculated from a given pi, for given pairing/symmetry
static void piToTau(double* pi, double* tau, int sym) {
switch (sym) {
case 0: // RY
case 3: // full symmetry
tau[0] = pi[0]+pi[2]-pi[1]-pi[3];
tau[1] = pi[0]-pi[2];
tau[2] = pi[1]-pi[3];
break;
case 1: // WS
tau[0] = pi[0]+pi[3]-pi[1]-pi[2];
tau[1] = pi[0]-pi[3];
tau[2] = pi[1]-pi[2];
break;
case 2: // MK
tau[0] = pi[0]+pi[1]-pi[2]-pi[3];
tau[1] = pi[0]-pi[1];
tau[2] = pi[2]-pi[3];
break;
default: outError("Can't happen");
} // switch
}
// Writes into a length 4 pi vector calculated from given tau, for given pairing/symmetry.
static void tauToPi(double* tau, double* pi, int sym) {
switch (sym) {
case 0: // RY
case 3: // Full symmetry
// tau[0] = A+G-C-T, tau[1]=A-G, tau[2]=C-T
pi[0] = 0.25 + 0.25*tau[0] + 0.5*tau[1]; // pi_A
pi[1] = 0.25 - 0.25*tau[0] + 0.5*tau[2]; // pi_C
pi[2] = 0.25 + 0.25*tau[0] - 0.5*tau[1]; // pi_G
pi[3] = 0.25 - 0.25*tau[0] - 0.5*tau[2]; // pi_T
break;
case 1: // WS
// tau[0] = A+T-C-G, tau[1]=A-T, tau[2]=C-G
pi[0] = 0.25 + 0.25*tau[0] + 0.5*tau[1]; // pi_A
pi[1] = 0.25 - 0.25*tau[0] + 0.5*tau[2]; // pi_C
pi[2] = 0.25 - 0.25*tau[0] - 0.5*tau[2]; // pi_G
pi[3] = 0.25 + 0.25*tau[0] - 0.5*tau[1]; // pi_T
break;
case 2: // MK
// tau[0] = A+C-G-T, tau[1]=A-C, tau[2]=G-T
pi[0] = 0.25 + 0.25*tau[0] + 0.5*tau[1]; // pi_A
pi[1] = 0.25 + 0.25*tau[0] - 0.5*tau[1]; // pi_C
pi[2] = 0.25 - 0.25*tau[0] + 0.5*tau[2]; // pi_G
pi[3] = 0.25 - 0.25*tau[0] - 0.5*tau[2]; // pi_T
break;
default: outError("Can't happen");
}
}
/**
* Uses model_num, symmetry to populate 'basis' array.
*/
void ModelLieMarkov::setBasis() {
// BQM 2017-05-02: set reversibility
// TODO: crash when setting reversible to true
//setReversible(TIME_REVERSIBLE[model_num]);
setReversible(false);
// if not otherwise specified, use FREQ_ESTIMATE.
if (getFreqType() == FREQ_UNKNOWN) freq_type = FREQ_ESTIMATE;
/*
* Note I've chosen to be picky here, and reject almost all <model>+F
* frequency constraints. With some effort, I could be less picky:
* validFreqType() can detect when the +F... is redundant rather than
* contradictory. In some cases, a submodel could be used, e.g.
* RY5.6b+FQ is RY2.2b.
*/
if (getFreqType() != FREQ_EMPIRICAL &&
getFreqType() != FREQ_USER_DEFINED &&
getFreqType() != FREQ_ESTIMATE) {
// Note to Minh: this is formatted horribly - one hugely long line - if you know how to tidily output
// multiline throw, please fix.
throw("Lie-Markov models can only have base frequencies specified as\nempirical (-f c, <model>+FC or default), user defined (<model>+F{<freqs>})\nor estimated/optimized (-f o, <model>+FO).\nEach Lie-Markov model has its own base frequency constraints (corresponding\nto one of +FQ, +F1122,+F1212, +F1221, +FRY, +FWS, +FMK or unconstrained).\nImposing extra constraints is either redundant, makes the model no longer\nLie-Markov, or makes it a lower dimensioned Lie-Markov model.\n");
//throw("Invalid base frequency constraints for a Lie-Markov model");
}
if (getFreqType() == FREQ_EMPIRICAL ||
getFreqType() == FREQ_USER_DEFINED) {
int bdf = BDF[model_num];
// There are no free parameters for base frequencies:
num_params = MODEL_PARAMS[model_num]-bdf;
// This populates field state_freq. (TODO: this call might be redundant - check)
init_state_freq(getFreqType());
// state_freq is in order {pi_A, pi_C, pi_G, pi_T}
double tau[3];
piToTau(state_freq,tau,symmetry);
// Now zero tau entries which BDF forces to be zero, and print warnings
bool canMatchFreq = true;
switch (bdf) {
case 0:
canMatchFreq = ((fabs(tau[0])<0.001 && fabs(tau[1])<0.001) || fabs(tau[2])<0.001);
tau[0] = 0; tau[1] = 0; tau[2] = 0;
break;
case 1:
canMatchFreq = (fabs(tau[1])<0.001 || fabs(tau[2])<0.001);
tau[1] = 0; tau[2] = 0;
break;
case 2:
canMatchFreq = (fabs(tau[0])<0.001);
tau[0] = 0;
break;
case 3:
break;
default: outError("Can't happen");
} // switch
if (!canMatchFreq) {
// MDW to Minh: I suspect there is a better way, please recode if there is.
double eqbm[4];
tauToPi(tau,eqbm,symmetry);
char buffer[200];
snprintf(buffer,200,"Model %s cannot achieve requested equilibrium base frequencies\n(%5.3f,%5.3f,%5.3f,%5.3f).\nInstead it will use equilibrium base frequencies (%5.3f,%5.3f,%5.3f,%5.3f).\n",
name.c_str(),state_freq[0],state_freq[1],state_freq[2],state_freq[3],eqbm[0],eqbm[1],eqbm[2],eqbm[3]);
outWarning(buffer);
}
basis = new double*[num_params+1];
for (int i=0;i<=num_params;i++) {
int basisIndex = BASES[model_num][i];
double unpermuted_rates[NUM_RATES];
memcpy(unpermuted_rates, LM_BASIS_MATRICES[basisIndex], NUM_RATES* sizeof(double));
for (int tauIndex=0; tauIndex<3; tauIndex++) {
const double* transformationMatrix = BASIS_TRANSFORM[basisIndex][tauIndex];
if (tau[tauIndex]!=0 && transformationMatrix != NULL) {
for (int rate=0; rate<NUM_RATES; rate++) {
unpermuted_rates[rate] = unpermuted_rates[rate]+tau[tauIndex]*transformationMatrix[rate];
} // for rate
} // if tau && !=NULL
} // for tauIndex
double* permuted_rates = new double[NUM_RATES];
for (int rate=0; rate<NUM_RATES; rate++) {
permuted_rates[rate] = unpermuted_rates[SYMMETRY_PERM[symmetry][rate]];
}
basis[i] = permuted_rates;
} // for i
} else {
ASSERT(getFreqType() == FREQ_ESTIMATE); // only other legal possibility
num_params = MODEL_PARAMS[model_num];
basis = new double*[num_params+1];
for (int i=0;i<=num_params;i++) {
const double* unpermuted_rates = LM_BASIS_MATRICES[BASES[model_num][i]];
double* permuted_rates = new double[NUM_RATES];
for (int rate=0; rate<NUM_RATES; rate++) {
permuted_rates[rate] = unpermuted_rates[SYMMETRY_PERM[symmetry][rate]];
} // for rate
basis[i] = permuted_rates;
} // for i
} // if getFreqType() ... else ...
}
/*
* Set rates from model_parameters
*/
void ModelLieMarkov::setRates() {
memset(rates, 0, NUM_RATES*sizeof(double)); // rates = 0
double* aprime = basis[0]; // the only basis matrix with all offdiagonals non-negative, and trace non-zero
double max_abs = 0;
for (int param=0; param<num_params; param++) {
// COMMENT: is this abs() or fabs()? abs is for int type, whereas fabs for double
max_abs = (fabs(model_parameters[param])>max_abs ? fabs(model_parameters[param]) : max_abs);
for (int rate=0; rate<NUM_RATES; rate++)
rates[rate] += model_parameters[param]*basis[param+1][rate];
// basis[0] is 'A' matrix which doesn't get a parameter.
}
double min_unnorm = DBL_MAX;
for (int rate=0; rate<NUM_RATES; rate++) {
double ratio = rates[rate]/aprime[rate];
min_unnorm = (ratio<min_unnorm ? ratio : min_unnorm);
}
double norm = (max_abs==0 ? 0 : -max_abs/min_unnorm);
for (int rate=0; rate<NUM_RATES; rate++)
rates[rate]=aprime[rate]+norm*rates[rate];
if (verbose_mode >= VB_DEBUG) {
cout << "LM setRates params = (";
for (int param=0; param<num_params; param++)
cout << model_parameters[param] << ",";
cout << ")\nrates = (";
for (int rate=0; rate<NUM_RATES; rate++)
cout << rates[rate] << ",";
cout << ")" << endl;
}
}
void ModelLieMarkov::decomposeRateMatrix() {
ModelMarkov::decomposeRateMatrix();
if (phylo_tree->params->matrix_exp_technique == MET_SCALING_SQUARING)
return;
if (phylo_tree->params->matrix_exp_technique == MET_EIGEN3LIB_DECOMPOSITION) {
// using Eigen library
decomposeRateMatrixEigen3lib();
return;
}
if (phylo_tree->params->matrix_exp_technique == MET_LIE_MARKOV_DECOMPOSITION) {
decomposeRateMatrixClosedForm();
return;
}
}
void ModelLieMarkov::decomposeRateMatrixEigen3lib() {
#ifdef USE_EIGEN3
nondiagonalizable = false; // until proven otherwise
Matrix4d mat(rate_matrix);
mat.transpose();
EigenSolver<Matrix4d> eigensolver(mat);
ASSERT (eigensolver.info() == Eigen::Success);
Map<Vector4cd,Aligned> eval(ceval);
eval = eigensolver.eigenvalues();
Map<Matrix4cd,Aligned> evec(cevec);
evec = eigensolver.eigenvectors();
if (abs(evec.determinant())<1e-10) {
// limit of 1e-10 is something of a guess. 1e-12 was too restrictive.
nondiagonalizable = true; // will use scaled squaring instead of eigendecomposition for matrix exponentiation
return;
}
Map<Matrix4cd,Aligned> inv_evec(cinv_evec);
inv_evec = evec.inverse();
// cout << "det(evecs): " << setprecision(25) << evec.determinant() << endl;
// int i, j;
// for (i = 0; i < 4; i++) {
// ceval[i] = eval(i);
// for (j = 0; j < 4; j++) {
// cevec[j*4+i] = evec(i, j);
// cinv_evec[j*4+i] = inv_evec(i, j);
// }
// }
Matrix4cd eval_diag = eval.asDiagonal();
// cout << "eigenvalues:" << endl << eval_diag << endl;
// cout << "columns right eigenvectors" << endl << evec << endl;
// cout << "row left eigenvectors" << endl << inv_evec << endl;
// cout << "rate_matrix: " << endl << mat << endl;
// cout << "rate_matrix*eigenvectors:" << endl << mat*evec << endl;
// cout << "eigenvectors*eigenvalues: " << endl << (evec*eval_diag) << endl;
// cout << "diff: " << endl << (mat*evec - evec*eval_diag) << endl;
// cout << "check: " << endl << (inv_evec * mat * evec - eval_diag) << endl;
// Matrix4cd cmat = mat;
// cout << "check: " << endl << (evec * eval_diag * inv_evec) << endl;
Matrix4cd check = inv_evec * mat * evec - eval_diag;
for (int i = 0; i < 4; i++)
for (int j = 0; j < 4; j++)
ASSERT(abs(check(i,j)) < 1e-4);
#else
outError("Please install Eigen3 library for this option ", __func__);
#endif
}
const static int a2index[] = {-1, 0, 0, 0, 0, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
const static int bindex[] = {-1,-1, 1,-1,-1,-1,-1,-1, 1,-1, 1,-1, 1, 1, 1,-1,-1,-1,-1, 1, 1,-1,-1,-1, 1,-1,-1, 1, 1 -1, 1, 1, 1, 1, 1, 1, 1};
const static int cindex[] = {-1,-1,-1, 1,-1,-1,-1,-1,-1, 1, 2,-1,-1,-1,-1,-1,-1,-1,-1, 2,-1, 1,-1,-1,-1, 1,-1, 2, 2,-1,-1,-1, 2, 2, 2, 2, 2};
const static int dindex[] = {-1,-1,-1,-1,-1, 1, 0, 1, 2, 2,-1, 1,-1,-1,-1,-1,-1,-1, 1, 3, 2, 2, 1, 1, 2, 2, 1, 3, 3, 1, 2, 2,-1,-1, 3, 3, 3};
const static int d1index[] = {-1,-1,-1,-1, 1,-1,-1, 2,-1,-1, 3,-1,-1,-1,-1, 1, 1, 1,-1, 4,-1,-1, 2, 2,-1,-1, 2, 4, 4, 2,-1,-1, 3, 3, 4, 4, 4};
const static int e1index[] = {-1,-1,-1,-1,-1,-1, 1,-1,-1,-1,-1, 2, 2,-1,-1, 2,-1,-1,-1,-1, 3, 3, 3,-1,-1,-1, 3, 5,-1, 3, 3, 3, 4,-1, 5, 5, 5};
const static int e2index[] = {-1,-1,-1,-1,-1,-1, 2,-1,-1,-1,-1, 3, 3,-1,-1, 3,-1,-1,-1,-1, 4, 4, 4,-1,-1,-1, 4, 6,-1, 4, 4, 4, 5,-1, 6, 6, 6};
const static int f1index[] = {-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, 2,-1,-1, 2,-1,-1,-1,-1,-1,-1,-1,-1,-1, 5,-1,-1,-1,-1, 5, 6, 4, 7,-1, 7};
const static int f2index[] = {-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, 3,-1,-1, 3,-1,-1,-1,-1,-1,-1,-1,-1,-1, 6,-1,-1,-1,-1, 6, 7, 5, 8,-1, 8};
const static int g1index[] = {-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, 2,-1,-1, 2, 2,-1,-1,-1,-1, 3, 3, 3,-1,-1, 5, 5, 5,-1,-1, 6,-1, 7, 9};
const static int g2index[] = {-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, 3,-1,-1, 3, 3,-1,-1,-1,-1, 4, 4, 4,-1,-1, 6, 6, 6,-1,-1, 7,-1, 8,10};
void ModelLieMarkov::decomposeRateMatrixClosedForm() {
// Lie Markov eigen decomposition with closed formula
int i, j;
double a = 1., a2 = 0, b = 0, c = 0, d = 0, d1 = 0, e1 = 0, e2 = 0, f1 = 0, f2 = 0, g1 = 0, g2 = 0;
if (a2index[model_num] >= 0) a2 = model_parameters[a2index[model_num]];
if ( bindex[model_num] >= 0) b = model_parameters[ bindex[model_num]];
if ( cindex[model_num] >= 0) c = model_parameters[ cindex[model_num]];
if ( dindex[model_num] >= 0) d = model_parameters[ dindex[model_num]];
if (d1index[model_num] >= 0) d1 = model_parameters[d1index[model_num]];
if (e1index[model_num] >= 0) e1 = model_parameters[e1index[model_num]];
if (e2index[model_num] >= 0) e2 = model_parameters[e2index[model_num]];
if (f1index[model_num] >= 0) f1 = model_parameters[f1index[model_num]];
if (f2index[model_num] >= 0) f2 = model_parameters[f2index[model_num]];
if (g1index[model_num] >= 0) g1 = model_parameters[g1index[model_num]];
if (g2index[model_num] >= 0) g2 = model_parameters[g2index[model_num]];
// following code is from Cassius
if (name.find("1.1") != string::npos) {
a = 1./3.;
//Eigenvalues = {0, -4*a, -4*a, -4*a}
ceval[0] = 0.0; ceval[1] = ceval[2] = ceval[3] = -4.0*a;
//v0 = {1, 1, 1, 1}
cevec[0] = cevec[1] = cevec[2] = cevec[3] = 1.0;
//v1 = {-1, 0, 0, 1}
cevec[4] = -1.0;
cevec[5] = 0.0;
cevec[6] = 0.0;
cevec[7]= 1.0;
//v2 = {-1, 0, 1, 0}
cevec[8] = -1.0;
cevec[9] = 0.0;
cevec[10] = 1.0;
cevec[11] = 0.0;
//v3 = {-1, 1, 0, 0}
cevec[12] = -1.0;
cevec[13] = 1.0;
cevec[14] = 0.0;
cevec[15] = 0.0;
/*Inverses*/
cinv_evec[1] = cinv_evec[2] = cinv_evec[3] = cinv_evec[5] = cinv_evec[6] = cinv_evec[9] = cinv_evec[11] = cinv_evec[14] = cinv_evec[15] = -0.25;
cinv_evec[0] = cinv_evec[4] = cinv_evec[8] = cinv_evec[12] = 0.25;
cinv_evec[7] = cinv_evec[10] = cinv_evec[13] = 0.75;
} else if (name.find("2.2b") != string::npos) {
/******** eigenvalues *********/
//Eigenvalues = {0, -4 (a - a2), -2 (2 a + a2), -2 (2 a + a2)}
a = 1./3.;
a2 = -rate_matrix[1] + a;
ceval[0] = 0.0; ceval[1] = -4.0*(a - a2); ceval[2] = ceval[3] = -2.0*(2.0*a + a2);
/*ceval[0] = 0.0; ceval[1] = 0.0; ceval[2] = ceval[3] = 0.0;*/
/******** right eigenvectors *********/
// {{1, 1, 1, 1}, {-1, 1, -1, 1}, {0, -1, 0, 1}, {-1, 0, 1, 0}}
//v0 = {1, 1, 1, 1}
cevec[0] = cevec[1] = cevec[2] = cevec[3] = 1.0;
//v1 = {-1, 1, -1, 1}
cevec[4] = -1.0;
cevec[5] = 1.0;
cevec[6] = -1.0;
cevec[7] = 1.0;
//v2 ={0, -1, 0, 1}
cevec[8] = 0.0;
cevec[9] =-1.0;
cevec[10] = 0.0;
cevec[11] = 1.0;
//v3 = {-1, 0, 1, 0}
cevec[12] = -1.0;
cevec[13] = 0.0;
cevec[14] = 1.0;
cevec[15] = 0.0;
/*INVERSES*/
cinv_evec[0] = cinv_evec[4] = cinv_evec[5] = cinv_evec[8] = cinv_evec[12] = cinv_evec[13] = 0.25;
cinv_evec[1] = cinv_evec[9] = -0.25;
cinv_evec[2] = cinv_evec[10] = cinv_evec[15] = 0.;
cinv_evec[3] = cinv_evec[6] = -0.5;
cinv_evec[14] = cinv_evec[11] = 0.5;
} else if (name.find("3.3a") != string::npos) {
a = -rate_matrix[0]/3.;
a2 = (rate_matrix[2] - a)/2.;
b = rate_matrix[1] + a2 - a;
/******** eigenvalues *********/
//Eigenvalues = {0, -4 (a - a2), -2 (2 a + a2 - b), -2 (2 a + a2 + b)}
ceval[0] = 0.0; ceval[1] = -4.0*(a - a2); ceval[2] = -2.0*(2.0*a + a2 - b); ceval[3] = ceval[2] -4.0*b;
/******** right eigenvectors *********/
// {{1, 1, 1, 1}, {-1, 1, -1, 1}, {-1, -1, 1, 1}, {1, -1, -1, 1}}
//v0 = {1, 1, 1, 1}
cevec[0] = cevec[1] = cevec[2] = cevec[3] = 1.0;
//v1 = {-1, 1, -1, 1}
cevec[4] = -1.0;
cevec[5] = 1.0;
cevec[6] = -1.0;
cevec[7] = 1.0;
//v2 ={-1, -1, 1, 1}
cevec[8] = -1.0;
cevec[9] = -1.0;
cevec[10] = 1.0;
cevec[11] = 1.0;
//v3 = {1, -1, -1, 1}
cevec[12] = 1.0;
cevec[13] = -1.0;
cevec[14] = -1.0;
cevec[15] = 1.0;
/******** INVERSE *********/
cinv_evec[0] =cinv_evec[3] =cinv_evec[4] =cinv_evec[5] =cinv_evec[8] =cinv_evec[10] =cinv_evec[12] =cinv_evec[13] =cinv_evec[14] =cinv_evec[15] = 0.25;
cinv_evec[1] =cinv_evec[2] =cinv_evec[6] =cinv_evec[7] =cinv_evec[9] =cinv_evec[11] = -0.25;
}else if (name.find("3.3b") != string::npos) {
a = -rate_matrix[0]/3.;
a2 = (rate_matrix[2] - a)/2.;
c = -rate_matrix[1] - a2 + a;
/* cout <<"Los parametros son a = " << a << " a2 = " << a2 << " c = " << c << endl;*/
/******** eigenvalues *********/
//{0, -4 (a - a2), -2 (2 a + a2 - I c), -2 (2 a + a2 + I c)} std::sqrt()
ceval[0] = 0.0; ceval[1] = -4.0*(a - a2);
ceval[2] = complex<double> (-2.0*(2.0*a + a2), -2.0* c);
ceval[3] = complex<double> (-2.0*(2.0*a + a2), 2.0* c);
/******** right eigenvectors *********/
// {{1, 1, 1, 1}, {-1, 1, -1, 1}, {I, -1, -I, 1}, {-I, -1, I, 1}}
//v0 = {1, 1, 1, 1}
cevec[0] = cevec[1] = cevec[2] = cevec[3] = 1.0;
//v1 = {-1, 1, -1, 1}
cevec[4] = -1.0;
cevec[5] = 1.0;
cevec[6] = -1.0;
cevec[7] = 1.0;
//v2 ={I, -1, -I, 1}
cevec[8] = complex<double> (0., 1.);
cevec[9] = -1.0;
cevec[10] = complex<double> (0., -1.);
cevec[11] = 1.0;
//v3 = {-I, -1, I, 1}
cevec[12] = complex<double> (0., -1.);
cevec[13] = -1.0;
cevec[14] = complex<double> (0., 1.);
cevec[15] = 1.0;
/******** INVERSE *********/
cinv_evec[0] =cinv_evec[4] =cinv_evec[5] =cinv_evec[8] =cinv_evec[12] =cinv_evec[13] =cinv_evec[14] =cinv_evec[15] = 0.25;
cinv_evec[1] =cinv_evec[6] =cinv_evec[7] =cinv_evec[9] = -0.25;
cinv_evec[2] =cinv_evec[11] =complex<double> (0., -0.25);
cinv_evec[3] =cinv_evec[10] = complex<double> (0., 0.25);
} else if (name.find("3.3c") != string::npos) {
a = -(rate_matrix[0] + rate_matrix[5])/6. ;
d1 = -rate_matrix[0] - 3.*a;
a2 = -rate_matrix[1] + a;
/******** eigenvalues *********/
//Eigenvalues = {0, -4 (a - a2), -2 (2 a + a2), -2 (2 a + a2)}
ceval[0] = 0.0; ceval[1] = -4.0*(a - a2); ceval[2] = -2.0*(2.0*a + a2 - d1); ceval[3] = -2.0*(2.0*a + a2 + d1);
/******** right eigenvectors *********/
// {{1, 1, 1, 1}, {-((a - a2 - d)/(a - a2 + d)), 1, -((a - a2 - d)/(a - a2 + d)), 1}, {0, -1, 0, 1}, {-1, 0, 1, 0}}
//v0 = {1, 1, 1, 1}
cevec[0] = cevec[1] = cevec[2] = cevec[3] = 1.0;
//v1 = {-((a - a2 - d)/(a - a2 + d)), 1, -((a - a2 - d)/(a - a2 + d)), 1}
cevec[4] = -1.;
cevec[5] = 1.;
cevec[6] = -1.;
cevec[7] = 1.;
//v2 ={0, -1, 0, 1}
cevec[8] =0.0;
cevec[9] = -1.0;
cevec[10] = 0.0;
cevec[11] = 1.0;
//v3 = {-1, 0, 1, 0}}
cevec[12] = -1.0;
cevec[13] = 0.0;
cevec[14] = 1.0;
cevec[15] = 0.0;
/*INVERSE*/
cinv_evec[0] =cinv_evec[4] =cinv_evec[5] =cinv_evec[8] =cinv_evec[12] =cinv_evec[13] = 0.25;
cinv_evec[1] =cinv_evec[9] = -0.25;
cinv_evec[2] =cinv_evec[7] =cinv_evec[10] =cinv_evec[15] = 0.;
cinv_evec[3] =cinv_evec[6] = -0.5;
cinv_evec[11] =cinv_evec[14] = 0.5;
} else if (name.find("3.4") != string::npos) {
a = -(rate_matrix[0] + rate_matrix[5])/6. ;
d = rate_matrix[0] + 3.*a;
a2 = -rate_matrix[1] + a - d;
double deno1 = a-a2 + d;
double deno2 = a-a2;
if (abs(deno1) < 1.0e-7 || abs(deno2) < 1.0e-7) {
// call numerical method if denominator == 0
nondiagonalizable = true;
} else {
nondiagonalizable = false;
/******** eigenvalues *********/
//Eigenvalues = {0, -4 (a - a2), -2 (2 a + a2), -2 (2 a + a2)}
ceval[0] = 0.0; ceval[1] = -4.0*(a - a2); ceval[2] = ceval[3] = -2.0*(2.0*a + a2);
/******** right eigenvectors *********/
// {{1, 1, 1, 1}, {-((a - a2 - d)/(a - a2 + d)), 1, -((a - a2 - d)/(a - a2 + d)), 1}, {0, -1, 0, 1}, {-1, 0, 1, 0}}
//v0 = {1, 1, 1, 1}
cevec[0] = cevec[1] = cevec[2] = cevec[3] = 1.0;
//v1
cevec[4] = -(a - a2 - d)/deno1;
cevec[5] = 1.0;
cevec[6] = cevec[4];
cevec[7] = 1.0;
//v2
cevec[8] = 0.0;
cevec[9] = -1.0;
cevec[10] = 0.0;
cevec[11] = 1.0;
//v3
cevec[12] = -1.0;
cevec[13] = 0.0;
cevec[14] = 1.0;
cevec[15] = 0.0;
/*INVERSE*/
cinv_evec[0] =cinv_evec[5] =cinv_evec[8] =cinv_evec[13] = 0.25 + 0.25*d/deno2;
cinv_evec[1] =cinv_evec[9] = -cinv_evec[0];
cinv_evec[4] =cinv_evec[12] = -cinv_evec[0] + 0.5;
cinv_evec[14] =cinv_evec[11] = 0.5;
cinv_evec[3] =cinv_evec[6] = -0.5;
cinv_evec[2] =cinv_evec[7] =cinv_evec[10] =cinv_evec[15] = 0.;
}
} else if (name.find("4.4a") != string::npos) {
e1 = (rate_matrix[0] - rate_matrix[10])*0.5;
e2 = (rate_matrix[5] - rate_matrix[15])*0.5;
a = (-rate_matrix[0] + rate_matrix[4])*0.25;
d = rate_matrix[4] - a - e1;
double deno = a+d+e1;
double deno2 = 4*a;
if (abs(deno) < 1.0e-7|| abs(deno2) < 1.0e-7) {
// call numerical method if denominator == 0
nondiagonalizable = true;
} else {
nondiagonalizable = false;
deno = 1/deno;
deno2 = 1/deno2;
/******** eigenvalues *********/
//Eigenvalues = {0, -4 a, -4 a, -4 a}
ceval[0] = 0.0; ceval[1] = ceval[2] = ceval[3] = -4.0*a;
/******** right eigenvectors *********/
// {{1, 1, 1, 1}, {(-a + d + e2)/(a + d + e1), 0, 0, 1}, {-((a + d - e1)/(a + d + e1)), 0, 1, 0},
// {-((a - d + e2)/(a + d + e1)), 1, 0, 0}}
//v0
cevec[0] = cevec[1] = cevec[2] = cevec[3] = 1.0;
//v1
cevec[4] = (-a + d + e2)*deno;
cevec[5] = 0.0;
cevec[6] = 0.0;
cevec[7] = 1.0;
//v2
cevec[8] = -(a + d - e1)*deno;
cevec[9] = 0.0;
cevec[10] = 1.0;
cevec[11] = 0.0;
//v3 =
cevec[12] = -(a - d + e2)*deno;
cevec[13] = 1.0;
cevec[14] = 0.0;
cevec[15] = 0.0;
/******** INVERSE *********/
double auxd = d*deno2; double auxe1 = e1*deno2; double auxe2 = e2*deno2;
cinv_evec[0] = 0.25 + auxd + auxe1;
cinv_evec[1] = cinv_evec[2] = cinv_evec[3] = -cinv_evec[0];
cinv_evec[4] = 0.25 - auxd +auxe2;
cinv_evec[5] = cinv_evec[6] = -cinv_evec[4];
cinv_evec[7] = cinv_evec[6] + 1.;
cinv_evec[8] = 0.25 + auxd - auxe1;
cinv_evec[9] = cinv_evec[11] = -cinv_evec[8] ;
cinv_evec[10] = cinv_evec[9] + 1.;
cinv_evec[12] = 0.25 - auxd - auxe2;
cinv_evec[14] = cinv_evec[15] = -cinv_evec[12];
cinv_evec[13] = cinv_evec[14] + 1.;
}
} else if (name.find("4.4b") != string::npos) {
d = (rate_matrix[4] - rate_matrix[3])/2.;
d1 = (-rate_matrix[0] + rate_matrix[5] + 2.*d)/2.;
a = (-rate_matrix[0] + d - d1)/3.;
a2 = -rate_matrix[1] + a - d;
double deno = a - a2 + d;
double deno2 = a-a2;
if (abs(deno) < 1.0e-7 || abs(deno2) < 1.0e-7) {
// call numerical method if denominator == 0
nondiagonalizable = true;
} else {
nondiagonalizable = false;
/******** eigenvalues *********/
//Eigenvalues = {0, -4 (a - a2), -2 (2 a + a2 - d1), -2 (2 a + a2 + d1)}
ceval[0] = 0.0; ceval[1] = -4.0*(a-a2); ceval[2] = -2.0*(2.0*a + a2 -d1); ceval[3] = ceval[2]-4.0*d1;
/******** right eigenvectors *********/
// {{1, 1, 1, 1}, {(-a + a2 + d)/(a - a2 + d), 1, (-a + a2 + d)/(a - a2 + d), 1},
// {0, -1, 0, 1}, {-1, 0, 1, 0}}
//v0
cevec[0] = cevec[1] = cevec[2] = cevec[3] = 1.0;
//v1
cevec[4] = (-a + a2 + d)/deno;
cevec[5] = 1.0;
cevec[6] = cevec[4];
cevec[7] = 1.0;
//v2
cevec[8] = 0.0;
cevec[9] = -1.0;
cevec[10] = 0.0;
cevec[11] = 1.0;
//v3 =
cevec[12] = -1.0;
cevec[13] = 0.0;
cevec[14] = 1.0;
cevec[15] = 0.0;
/*INVERSE*/
cinv_evec[0] = 0.25 + 0.25*d/deno2;
cinv_evec[8] = cinv_evec[5] = cinv_evec[13] = cinv_evec[0];
cinv_evec[1] = cinv_evec[9] = -cinv_evec[0];
cinv_evec[2] = cinv_evec[10] = cinv_evec[7] = cinv_evec[15] = 0.;
cinv_evec[3] = cinv_evec[6] = -0.5;
cinv_evec[11] = cinv_evec[14] = 0.5;
cinv_evec[4] = -cinv_evec[0] + 0.5;
cinv_evec[12] = cinv_evec[4];
}
} else if (name.find("4.5a") != string::npos) {
d = (rate_matrix[0] - rate_matrix[5])/2.;
a = -(rate_matrix[0] - d)/3.;
a2 = (rate_matrix[2] - a - d)/2.;
b = rate_matrix[1] - a + a2 + d;
double deno = a - a2 + d;
if (abs(deno) < 1.0e-7 || abs(a-a2) < 1.0e-7) {
// call numerical method if denominator == 0
nondiagonalizable = true;
} else {
nondiagonalizable = false;
/******** eigenvalues *********/
//Eigenvalues = {0, -4 (a - a2), -2 (2 a + a2 - b), -2 (2 a + a2 + b)}
ceval[0] = 0.0; ceval[1] = -4.0*(a-a2); ceval[2] =-2.0*(2.0*a + a2 - b); ceval[3] = ceval[2]- 4.0*b;
/******** right eigenvectors *********/
// {{1, 1, 1, 1}, {-((a - a2 - d)/(a - a2 + d)), 1, -((a - a2 - d)/(a - a2 + d)), 1},
// {-1, -1, 1, 1}, {1, -1, -1, 1}}
//v0
cevec[0] = cevec[1] = cevec[2] = cevec[3] = 1.0;
//v1
cevec[4] = -(a - a2 - d)/deno;
cevec[5] = 1.0;
cevec[6] = cevec[4];
cevec[7] = 1.0;
//v2
cevec[8] = -1.0;
cevec[9] = -1.0;
cevec[10] = 1.0;
cevec[11] = 1.0;
//v3 =
cevec[12] = 1.0;
cevec[13] = -1.0;
cevec[14] = -1.0;
cevec[15] = 1.0;
/*INVERSE */
double auxd = 0.25*d/(a-a2);
cinv_evec[0] = cinv_evec[8] = cinv_evec[5] = cinv_evec[13] = 0.25 + auxd;
cinv_evec[2] = cinv_evec[11] = cinv_evec[6] = cinv_evec[7] = -0.25;
cinv_evec[3] = cinv_evec[10] = cinv_evec[14] = cinv_evec[15] = 0.25;
cinv_evec[1] = cinv_evec[9] = -cinv_evec[0];
cinv_evec[4] = cinv_evec[12] = 0.25 - auxd;
}
} else if (name.find("4.5b") != string::npos) {
d = (rate_matrix[0] - rate_matrix[5])/2.;
a = -(rate_matrix[0] + rate_matrix[5])/6.;
c = (rate_matrix[3] - rate_matrix[1])/2.;
a2 = -rate_matrix[1] + a - d - c;
double deno = a-a2 + d;
if (abs(deno) < 1.0e-7 || abs(a-a2) < 1.0e-7) {
nondiagonalizable = true;
} else {
nondiagonalizable = false;
deno = 1/deno;
/******** eigenvalues *********/
//Eigenvalues = {0, -4 (a - a2), -2 (2 a + a2 - I c), -2 (2 a + a2 + I c)}
ceval[0] = 0.0; ceval[1] = -4.0*(a-a2); ceval[2] = complex<double> (-2. *(2.* a + a2), -2.*c); ceval[3] = complex<double> (-2.*(2.*a + a2), 2.*c);
/******** right eigenvectors *********/
// {{1, 1, 1, 1}, {-((a - a2 - d)/(a - a2 + d)), 1, -((a - a2 - d)/(a - a2 + d)), 1},
// {I, -1, -I, 1}, {-I, -1, I, 1}}
//v0
cevec[0] = cevec[1] = cevec[2] = cevec[3] = 1.0;
//v1
cevec[4] = -(a - a2 - d)*deno;
cevec[5] = 1.0;
cevec[6] = cevec[4];
cevec[7] = 1.0;
//v2
cevec[8] = complex<double> (0., 1.);
cevec[9] = -1.0;
cevec[10] = complex<double> (0., -1.);
cevec[11] = 1.0;
//v3 =
cevec[12] = complex<double> (0., -1.);
cevec[13] = -1.0;
cevec[14] = complex<double> (0., 1.);
cevec[15] = 1.0;
/*INVERSE*/
double auxd = 0.25*d/(a-a2);
cinv_evec[0] =cinv_evec[8] =cinv_evec[5] =cinv_evec[13] = 0.25 + auxd;
cinv_evec[1] =cinv_evec[9] =-cinv_evec[0];
cinv_evec[4] =cinv_evec[12] = 0.25 - auxd;
cinv_evec[10] =cinv_evec[3] = complex<double> (0, 0.25);
cinv_evec[2] =cinv_evec[11] = complex<double> (0, -0.25);
cinv_evec[6] =cinv_evec[7] = -0.25;
cinv_evec[14] =cinv_evec[15] = 0.25;
}
} else if (name.find("5.6a") != string::npos) {
/*Cassius note: The formulas are complex; I think they are not worth it to be computed*/
nondiagonalizable = true;
} else if (name.find("5.6b") != string::npos) {
e1 = (rate_matrix[0] - rate_matrix[10])*0.5;
e2 = (rate_matrix[5] - rate_matrix[15])*0.5;
a = -(rate_matrix[0] + rate_matrix[5] -e1 - e2)/6.;
d = rate_matrix[0] + 3.*a - e1;
a2 = -rate_matrix[1] + a - d + e2;
double deno56b = (2.0* a + a2 + e1 + e2);
if (abs(deno56b) < 1.0e-7 || abs(a - a2 + d) < 1.0e-7 || abs(2.*a + a2) < 1.0e-7 || abs(a - a2) < 1.0e-7) {
nondiagonalizable = true;
} else {
nondiagonalizable = false;
/******** eigenvalues *********/
//Eigenvalues = {0, -4 (a - a2), -2 (2 a + a2), -2 (2 a + a2)}
ceval[0] = 0.0; ceval[1] = -4.0*(a - a2); ceval[2] = ceval[3] =-2.0*(2.0*a + a2);
/******** right eigenvectors *********/
// {{1, 1, 1, 1},
//{-((a - a2 - d)/(a - a2 + d)), 1, -((a - a2 - d)/(a - a2 + d)), 1},
// {(2 e2)/(2 a + a2 + e1 + e2),-((2 a + a2 + e1 - e2)/(2 a + a2 + e1 + e2)), 0, 1},
// {-((2 a + a2 - e1 + e2)/(2 a + a2 + e1 + e2)), (2 e1)/(2 a + a2 + e1 + e2), 1, 0}}
//v0
cevec[0] = cevec[1] = cevec[2] = cevec[3] = 1.0;
//v1
cevec[4] = -((a - a2 - d)/(a - a2 + d));
cevec[5] = 1.0;
cevec[6] = cevec[4];
cevec[7] = 1.0;
//v2; we declare an auxiliar denominator in order to reuse it
cevec[8] = (2.0* e2)/deno56b;
cevec[9] = -1.0 + cevec[8];
cevec[10] = 0.0;
cevec[11] = 1.0;
//v3
cevec[13] = (2.0* e1)/deno56b;
cevec[12] = -1.0+cevec[13];
cevec[14] = 1.0;
cevec[15] = 0.0;
/*INVERSE*/
double deno = 0.5/(2.*a + a2); double auxe1 = e1*deno; double auxe2 = e2*deno; double auxd = d*0.25/(a-a2);
cinv_evec[1] = cinv_evec[9] = -0.25 - auxd;
cinv_evec[5] = cinv_evec[13] = - cinv_evec[1];
cinv_evec[2] = -auxe1;
cinv_evec[10] = - cinv_evec[2];
cinv_evec[6] = -0.5 - auxe2;
cinv_evec[14] = -cinv_evec[6];
cinv_evec[3] = -0.5 -auxe1;
cinv_evec[11] = - cinv_evec[3];
cinv_evec[7] = -auxe2;
cinv_evec[15] = -cinv_evec[7];
cinv_evec[0] = 0.25 + auxe1 + auxd;
cinv_evec[4] = 0.25 + auxe2 -auxd;
cinv_evec[8] = 0.25 - auxe1 + auxd;
cinv_evec[12] = 0.25 - auxe2 - auxd;
}
}
else if (name.find("5.7a") != string::npos) {
a = -(rate_matrix[0] + rate_matrix[10])/6.;
e1 = rate_matrix[0] + 3.*a;
e2 = rate_matrix[5] + 3.*a;
a2 = (rate_matrix[2] - a + e1)/2.;
b = rate_matrix[1] - a + a2 - e2;
double deno1 = 2.0*a + a2 - b + e1 + e2;
double deno2 = 2.0* a + a2 + b - e1 + e2;
double deno3 = 2.*a + a2 - b;
double deno4 = 2.*a + a2 + b;
if (abs(deno1) < 1.0e-7 || abs(deno2) < 1.0e-7|| abs(deno3) < 1.0e-7 || abs(deno4) < 1.0e-7) {
nondiagonalizable = true;
} else {
nondiagonalizable = false;
/*cout <<"Los parametros son a = " << a << " e1 = " << e1 << "e2 = " << e2 << " a2 = " << a2 << " b = " << b << endl;*/
/******** eigenvalues *********/
//Eigenvalues = {0, -4 (a - a2), -2 (2 a + a2 - b), -2 (2 a + a2 + b)}
ceval[0] = 0.0; ceval[1] = -4.0*(a - a2); ceval[2] = -2.0*(2.0*a + a2 - b); ceval[3] = ceval[2]-4.0*b;
/******** right eigenvectors *********/
// {{1, 1, 1, 1},
// {-1, 1, -1, 1},
// {-((2 a + a2 - b - e1 - e2)/(2 a + a2 - b + e1 + e2)), -((2 a + a2 - b - e1 - e2)/(2 a + a2 - b + e1 + e2)), 1, 1},
//{1, -((2 a + a2 + b + e1 - e2)/(2 a + a2 + b - e1 + e2)), -((2 a + a2 + b + e1 - e2)/(2 a + a2 + b - e1 + e2)), 1}}
//v0
cevec[0] = cevec[1] = cevec[2] = cevec[3] = 1.0;
//v1
cevec[4] = -1.0;
cevec[5] = 1.0;
cevec[6] = -1.0;
cevec[7] = 1.0;
//v2
cevec[8] = -((2.0*a + a2 - b - e1 - e2)/deno1);
cevec[9] = cevec[8];
cevec[10] = 1.0;
cevec[11] = 1.0;
//v3
cevec[12] = 1.0;
cevec[13] = -((2.0*a + a2 + b + e1 - e2)/deno2);
cevec[14] = cevec[13];
cevec[15] = 1.0;
/******** INVERSE ****** There is a sum zero property ***/
double auxs = 0.25*(e1 + e2)/deno3; double auxr = 0.25*(-e1 + e2)/deno4;
cinv_evec[2] = cinv_evec[6] =-0.25 - auxs;
cinv_evec[10] = cinv_evec[14] = - cinv_evec[2];
cinv_evec[3] = cinv_evec[15] = 0.25 + auxr;
cinv_evec[7] = cinv_evec[11] =-cinv_evec[3];
cinv_evec[0] = 0.25 + auxs - auxr;
cinv_evec[4] = 0.25 + auxs + auxr;
cinv_evec[8] = 0.5 - cinv_evec[0];
cinv_evec[12] = 0.5 - cinv_evec[4];
cinv_evec[1] = cinv_evec[9] = -0.25;
cinv_evec[5] = cinv_evec[13] = 0.25;
}
} else if (name.find("5.7b") != string::npos) {
f1 = (rate_matrix[0] - rate_matrix[10])*0.5;
f2 = (rate_matrix[15] - rate_matrix[5])*0.5;
a = (-rate_matrix[0] + f1)/3.;
a2 = (rate_matrix[2] - a + f1)*0.5;
b = rate_matrix[1] - a + a2 -f2;
double deno57br1 = (3.0*a2 - b - f1 - f2);
double deno57br2 = (3.0*a2 + b + f1 - f2);
double deno3 = 3.*a2 - b;
double deno4 = 3.*a2 + b;
if (abs(deno57br1) < 1.0e-7 || abs(deno57br2) < 1.0e-7 || abs(deno3) < 1.0e-7 || abs(deno4) < 1.0e-7) {
nondiagonalizable = true;
} else {
nondiagonalizable = false;
deno57br1 = 1/deno57br1;
deno57br2 = 1/deno57br2;
/*cout << "These are the parameters a = " << a << " a2 = " << a2 << " b = " << b << " f1 = " << f1 << " f2 = " << f2 << endl;*/
/******** eigenvalues *********/
//Eigenvalues = {0, -4 (a - a2), -2 (2 a + a2 - b), -2 (2 a + a2 + b)}
ceval[0] = 0.0; ceval[1] = -4.0*(a - a2); ceval[2] = -2.0*(2.0*a + a2 - b); ceval[3] = ceval[2] - 4.0*b;
/******** right eigenvectors *********/
// {{1, 1, 1, 1},
//{-1, 1, -1, 1},
//{-1, -((3 a2 - b + f1 + f2)/(3 a2 - b - f1 - f2)), -((-3 a2 + b - f1 - f2)/(3 a2 - b - f1 - f2)), 1},
// {-((-3 a2 - b + f1 - f2)/(3 a2 + b + f1 - f2)), -((3 a2 + b - f1 + f2)/(3 a2 + b + f1 - f2)), -1, 1}}
//v0
cevec[0] = cevec[1] = cevec[2] = cevec[3] = 1.0;
//v1
cevec[4] = -1.0;
cevec[5] = 1.0;
cevec[6] = -1.0;
cevec[7] = 1.0;
//v4
cevec[8] = -1.0;
cevec[9] = -(3.0*a2 - b + f1 + f2)*deno57br1;
cevec[10] = -cevec[9];
cevec[11] = 1.0;
//v3
cevec[12] = -(-3.0*a2 - b + f1 - f2)*deno57br2;
cevec[13] = -cevec[12];
cevec[14] = -1.0;
cevec[15] = 1.0;
/*INVERSE : They satisfy a sumzero property*/
cinv_evec[0] =cinv_evec[4] =cinv_evec[8] =cinv_evec[12] = 0.25;
cinv_evec[2] =cinv_evec[6] = -0.25 + 0.25*(f1 + f2)/(3.*a2 - b);
cinv_evec[10] =cinv_evec[14] = - cinv_evec[2];
cinv_evec[3] =cinv_evec[15] = 0.25 + 0.25*(f1 - f2)/(3.*a2 + b);
cinv_evec[11] =cinv_evec[7] = -cinv_evec[3];
cinv_evec[1] = -cinv_evec[0]-cinv_evec[2]-cinv_evec[3];
cinv_evec[5] = -cinv_evec[4]-cinv_evec[6] - cinv_evec[7];
cinv_evec[9] = -cinv_evec[1] - 0.5;
cinv_evec[13] = -cinv_evec[5] +0.5;
}
} else if (name.find("5.7c") != string::npos) {
g1 = (rate_matrix[0] - rate_matrix[10])*0.5;
g2 = (rate_matrix[15] - rate_matrix[5])*0.5;
a = (-rate_matrix[0] + g1)/3.;
a2 = (rate_matrix[2] - a - g1)*0.5;
b = rate_matrix[1] - a + a2 + g1;
double aux57b1 = 9.0*a2*a2 - b*b;
double aux57b2 = 6.0*a2*g1 + 2.0 * b * g2;
double aux57b3 = 6.0*a2*g2 + 2.0 * b * g1;
double deno57bl = aux57b1 + aux57b3;
double deno2 = 3.*a2 - b;
double deno3 = 3.*a2 + b;
if (abs(deno57bl) < 1.0e-7 || abs(deno2) < 1.0e-7 || abs(deno3) < 1.0e-7) {
nondiagonalizable = true;
} else {
nondiagonalizable = false;
deno57bl = 1./deno57bl;
//Eigenvalues = {0, -4 (a - a2), -2 (2 a + a2 - b), -2 (2 a + a2 + b)}
ceval[0] = 0.0; ceval[1] = -4.0*(a - a2); ceval[2] = -2.0*(2.0*a + a2 - b); ceval[3] = ceval[2] - 4.0*b;
/******** right eigenvectors *********/
// {{1, 1, 1, 1},
//{-((9 a2^2 - b^2 + 6 a2 g1 + 2 b g2)/(9 a2^2 - b^2 + 2 b g1 + 6 a2 g2)),
// -((-9 a2^2 + b^2 + 2 b g1 + 6 a2 g2)/(9 a2^2 - b^2 + 2 b g1 + 6 a2 g2)),
// -((9 a2^2 - b^2 - 6 a2 g1 - 2 b g2)/(9 a2^2 - b^2 + 2 b g1 + 6 a2 g2)),
// 1},
// {-1, -1, 1, 1},
// {1, -1, -1, 1}}
//v0
cevec[0] = cevec[1] = cevec[2] = cevec[3] = 1.0;
//v1
cevec[4] = -(aux57b1 + aux57b2 )* deno57bl;
cevec[5] = -(-aux57b1 + aux57b3)* deno57bl;
cevec[6] = -(aux57b1 - aux57b2)* deno57bl;
cevec[7] = 1.0;
//v2
cevec[8] = -1.0;
cevec[9] = -1.0;
cevec[10] = 1.0;
cevec[11] = 1.0;
//v3
cevec[12] = 1.0;
cevec[13] = -1.0;
cevec[14] = -1.0;
cevec[15] = 1.0;
/*INVERSE*/
cinv_evec[0] =cinv_evec[4] =cinv_evec[8] =cinv_evec[12] = 0.25;
cinv_evec[2] = -0.25 + 0.25*(g1 + g2)/deno2;
cinv_evec[6] =-0.5 - cinv_evec[2];
cinv_evec[10] =-cinv_evec[6];
cinv_evec[14] = -cinv_evec[2];
cinv_evec[3] = 0.25 - 0.25*(g1 - g2)/deno3;
cinv_evec[7] =-cinv_evec[3];
cinv_evec[11] =cinv_evec[3] - 0.5;
cinv_evec[15] = - cinv_evec[11];
cinv_evec[1] = cinv_evec[9] = -cinv_evec[0]-cinv_evec[2]-cinv_evec[3];
cinv_evec[5] = cinv_evec[13] = -cinv_evec[1];
}
} else if (name.find("5.11a") != string::npos) {
e2 = (rate_matrix[1] - rate_matrix[3])*0.5;
e1 = (rate_matrix[4] - rate_matrix[6])*0.5;
d1 = (rate_matrix[5] - rate_matrix[0] - e2 + e1)*0.5;
a = (-rate_matrix[0] -d1 + e1)/3.;
a2 = -rate_matrix[4] + a + e1;
double deno511a = 2.* a + a2 - d1 + e2;
double deno2 = 2.*a + a2 +d1;
double deno3 = 2.*a + a2 - d1;
if (abs(deno511a) < 1.0e-7 || abs(deno2) < 1.0e-7 || abs(deno3) < 1.0e-7 || abs(e1) < 1.0e-7) {
nondiagonalizable = true;
} else {
nondiagonalizable = false;
/******** eigenvalues REPASAR *********/
//Eigenvalues = {0, -4 (a - a2), -2 (2 a + a2 - d1), -2 (2 a + a2 + d1)}
ceval[0] = 0.0; ceval[1] = -4.0*(a - a2); ceval[2] = -2.0*(2.0*a + a2 - d1); ceval[3] = ceval[2] - 4.*d1;
/******** right eigenvectors *********/
//{{1, 1, 1, 1},
//{-1, 1, -1, 1},
//{e2/(2 a + a2 - d1 + e2), -((2 a + a2 - d1 - e2)/(2 a + a2 - d1 + e2)), e2/(2 a + a2 - d1 + e2), 1},
//{-((2 a + a2 + d1 - e1)/e1), 1, -((-2 a - a2 - d1 - e1)/e1), 1}}
//v0
cevec[0] = cevec[1] = cevec[2] = cevec[3] = 1.0;
//v1
cevec[4] = -1.0;
cevec[5] = 1.0;
cevec[6] = -1.0;
cevec[7] = 1.0;
//v2
cevec[8] = e2/deno511a;
cevec[9] =-1. + 2.*cevec[8];
cevec[10] = cevec[8];
cevec[11] = 1.0;
//v3
double aux511a = 2.* a + a2 + d1;
cevec[12] = 1.- aux511a/e1;
cevec[13] = 1.0;
cevec[14] = -cevec[12] +2.;
cevec[15] = 1.0;
/*INVERSE*/
cinv_evec[2] =cinv_evec[10] = 0.;
cinv_evec[5] =cinv_evec[13] = 0.25;
cinv_evec[1] =cinv_evec[9] = -0.25;
cinv_evec[3] =-0.5*e1/(2.*a + a2 +d1);
cinv_evec[0] = 0.25 -cinv_evec[3];
cinv_evec[4] = 0.25 + 0.5*e2/(2.*a + a2 - d1);
cinv_evec[6] = -cinv_evec[4] - 0.25;
cinv_evec[8] = -cinv_evec[0] + 0.5;
cinv_evec[12] = -cinv_evec[4] + 0.5;
cinv_evec[11] = -cinv_evec[3];
cinv_evec[14] = -cinv_evec[6];
}
} else if (name.find("5.11b") != string::npos) {
f2 = (rate_matrix[1] - rate_matrix[3])*0.5;
f1 = (rate_matrix[6] - rate_matrix[4])*0.5;
a = -(rate_matrix[0] + rate_matrix[5] -f1 + f2)/6.;
a2 = -rate_matrix[1] + f2 + a;
d1 = -rate_matrix[0] - 3.*a + f1;
double deno1 = 3.* a2 - d1 - f2;
if (abs(deno1) < 1.0e-7 || abs(f1) < 1.0e-7|| abs(3.*a2 -d1) < 1.0e-7 || abs(3.*a2 + d1) < 1.0e-7) {
nondiagonalizable = true;
} else {
nondiagonalizable = false;
/******** eigenvalues *********/
//Eigenvalues = {0, -4 (a - a2), -2 (2 a + a2 - d1), -2 (2 a + a2 + d1)}
ceval[0] = 0.0; ceval[1] = -4.0*(a - a2); ceval[2] = -2.0*(2.0*a + a2 - d1); ceval[3] = ceval[2] - 4.0*d1;
/******** right eigenvectors *********/
// {{1, 1, 1, 1},
// {-1, 1, -1, 1},
// {f2/(3 a2 - d1 - f2), -((3 a2 - d1 + f2)/(3 a2 - d1 - f2)), f2/(3 a2 - d1 - f2), 1},
// {-((-3 a2 - d1 + f1)/f1), 1, -((3 a2 + d1 + f1)/f1), 1}}
//v0
cevec[0] = cevec[1] = cevec[2] = cevec[3] = 1.0;
//v1
cevec[4] = -1.0;
cevec[5] = 1.0;
cevec[6] = -1.0;
cevec[7] = 1.0;
//v2
cevec[8] = f2/deno1;
cevec[9] = -(1. + 2.* f2/deno1);
cevec[10] = cevec[8];
cevec[11] = 1.0;
//v3
cevec[12] = (3.0*a2 + d1)/f1 -1.;
cevec[13] = 1.0;
cevec[14] = -cevec[12]-2.;
cevec[15] = 1.0;
/*INVERSE*/
cinv_evec[0] =cinv_evec[4] =cinv_evec[8] =cinv_evec[12] = 0.25;
cinv_evec[2] =cinv_evec[7] =cinv_evec[10] =cinv_evec[15] = 0.0;
cinv_evec[3] = 0.5*f1/(3.*a2 + d1);
cinv_evec[1] = - cinv_evec[3] - 0.25;
cinv_evec[11] =-cinv_evec[3];
cinv_evec[9] =cinv_evec[3] - 0.25;
double auxf2 = 0.5*f2/(3.*a2 -d1);
cinv_evec[5] = 0.25 - auxf2;
cinv_evec[6] = -0.5 + auxf2;
cinv_evec[13] = 0.25 + auxf2;
cinv_evec[14] = 0.5 - auxf2;
}
} else if (name.find("5.11c") != string::npos) {
g1 = (rate_matrix[0] - rate_matrix[10])*0.5;
g2 = (rate_matrix[15] - rate_matrix[5])*0.5;
d1 =(rate_matrix[5] - rate_matrix[0] + g2 + g1)*0.5;
a = (-rate_matrix[0] - d1 + g1)/3.;
a2 = -rate_matrix[1] + a -g1;
double auxdeno1 = 3.*a2 + d1;
double auxnum1 = auxdeno1 - 2.*d1;
double auxdeno2 = auxnum1 + 2.*g2;
double deno2 = 3.*a2 - d1;
double deno3 = 3.*a2 + d1;
if (abs(auxdeno1) < 1.0e-7 || abs(auxdeno2) < 1.0e-7 || abs(deno2) < 1.0e-7 || abs(deno3) < 1.0e-7) {
nondiagonalizable = true;
} else {
nondiagonalizable = false;
double deno = 1/(auxdeno1 * auxdeno2);
/*cout <<"The parameters are a = " << a << " a2 = " << a2 << " d1 = " << d1 << " g1 = " << g1 << " g2 = " << g2 << endl;*/
/******** eigenvalues *********/
//Eigenvalues = {0, -4 (a - a2), -2 (2 a + a2 - d1), -2 (2 a + a2 + d1)}
ceval[0] = 0.0; ceval[1] = -4.0*(a - a2); ceval[2] = -2.0*(2.0*a + a2 - d1); ceval[3] = ceval[2] - 4.0*d1;
/******** right eigenvectors *********/
// {{1, 1, 1, 1},
// {-(((3 a2 - d1) (3 a2 + d1 + 2 g1))/((3 a2 + d1) (3 a2 - d1 + 2 g2))),
//-((-3 a2 + d1 + 2 g2)/(3 a2 - d1 + 2 g2)),
//(-9 a2^2 + d1 (d1 - 2 g1) + 6 a2 g1)/((3 a2 + d1) (3 a2 - d1 + 2 g2)),
//1},
//0, -1, 0, 1},
//{-1, 0, 1, 0}}
//v0
cevec[0] = cevec[1] = cevec[2] = cevec[3] = 1.0;
//v1
cevec[4] = -auxnum1*(auxdeno1 + 2.*g1)*deno;
cevec[5] = -(-auxnum1 + 2.*g2)/auxdeno2;
cevec[6] = (-auxdeno1 + 2.*g1)*auxnum1*deno;
cevec[7] = 1.0;
//v2
cevec[8] = 0.0;
cevec[9] = -1.0;
cevec[10] = 0.0;
cevec[11] = 1.0;
//v3
cevec[12] = -1.0;
cevec[13] = 0.0;
cevec[14] = 1.0;
cevec[15] = 0.0;
/*INVERSE*/
cinv_evec[0] =cinv_evec[4] =cinv_evec[8] =cinv_evec[12] = 0.25;
cinv_evec[2] =cinv_evec[10] = 0.5*g2 /deno2;
cinv_evec[7] =cinv_evec[15] = -0.5*g1 /deno3;
cinv_evec[1] = cinv_evec[9] = -0.25 - cinv_evec[2];
cinv_evec[3] = -0.5 -cinv_evec[7];
cinv_evec[11] = 0.5 - cinv_evec[7];
cinv_evec[5] = cinv_evec[13] = 0.25 + cinv_evec[2];
cinv_evec[6] = -0.5 -cinv_evec[2];
cinv_evec[14] = 0.5 - cinv_evec[2];
}
} else if (name.find("5.16") != string::npos) {
g1 = (rate_matrix[0] - rate_matrix[10])*0.5;
g2 = (rate_matrix[15] - rate_matrix[5])*0.5;
d = (-rate_matrix[5] + rate_matrix[0] - g2 - g1)*0.5;
a = (-rate_matrix[0] + d + g1)/3.;
a2 = -rate_matrix[1] + a - d - g1;
double aux516r1 = 3.*a2*(a -a2);
double aux516r2 = 2.*g1*(a -a2);
double aux516r3 = 2.*g2*(a -a2);
double aux513r4 = 3.*a2*d;
double deno516r = aux516r1 + aux513r4 + aux516r3;
if (abs(deno516r) < 1.0e-7 || abs(a2) < 1.0e-7 || abs(a-a2) < 1.0e-7) {
nondiagonalizable = true;
} else {
/*cout <<"The parameters are a = " << a << " a2 = " << a2 << " d = " << d << " g1 = " << g1 << " g2 = " << g2 << endl;*/
/******** eigenvalues *********/
//Eigenvalues = {0, -4 (a - a2), -2 (2 a + a2), -2 (2 a + a2)}
ceval[0] = 0.0; ceval[1] = -4.0*(a - a2); ceval[2] = -2.0*(2.0*a + a2); ceval[3] = ceval[2];
/******** right eigenvectors *********/
// {{1, 1, 1, 1},
// {-((3 a a2 - 3 a2^2 - 3 a2 d + 2 a g1 - 2 a2 g1)/(3 a a2 - 3 a2^2 + 3 a2 d + 2 a g2 - 2 a2 g2)),
// (3 a a2 - 3 a2^2 + 3 a2 d - 2 a g2 + 2 a2 g2)/(3 a a2 - 3 a2^2 + 3 a2 d + 2 a g2 - 2 a2 g2),
// -((3 a a2 - 3 a2^2 - 3 a2 d - 2 a g1 + 2 a2 g1)/(3 a a2 - 3 a2^2 + 3 a2 d + 2 a g2 - 2 a2 g2)),
// 1},
// {0, -1, 0, 1},
// {-1, 0, 1, 0}}
//v0
cevec[0] = cevec[1] = cevec[2] = cevec[3] = 1.0;
//v1
cevec[4] = -(aux516r1 - aux513r4 + aux516r2)/deno516r;
cevec[5] = (aux516r1 + aux513r4 - aux516r3)/deno516r;
cevec[6] = -(aux516r1 - aux513r4 - aux516r2)/deno516r;
cevec[7] = 1.0;
//v2
cevec[8] = 0.0;
cevec[9] = -1.0;
cevec[10] = 0.0;
cevec[11] = 1.0;
//v3
cevec[12] = -1.0;
cevec[13] = 0.0;
cevec[14] = 1.0;
cevec[15] = 0.0;
/***INVERSE***/
double auxg1 = g1/(6.*a2); double auxg2 = g2/(6.*a2);
cinv_evec[0] =cinv_evec[8] = 0.25 + 0.25*d/(a-a2);
cinv_evec[4] =cinv_evec[12] = 0.5 - cinv_evec[0];
cinv_evec[2] =cinv_evec[10] =auxg2;
cinv_evec[6] = -0.5 - auxg2;
cinv_evec[14] = 0.5 - auxg2;
cinv_evec[3] = -0.5 + auxg1;
cinv_evec[11] = 0.5 + auxg1;
cinv_evec[7] =cinv_evec[15] = - auxg1;
cinv_evec[1] =cinv_evec[9] = -cinv_evec[0] -cinv_evec[2];
cinv_evec[13] =cinv_evec[5] =-cinv_evec[1];
}
}
else {
cout << "This line should not appear." << endl;
}
if (nondiagonalizable == false) {
/* check eigenvalue equation*/
std::complex<double> zero;
int error = 0;
for (j = 0; j < num_states; j++) {
for (i = 0, zero = 0.0; i < num_states; i++) {
for (int k = 0; k < num_states; k++)
zero += rate_matrix[i*num_states+k] * cevec[j*num_states+k];
zero -= ceval[j] * cevec[j*num_states+i];
if (abs(zero) > 1.0e-5) {
cout << "too large error[" << i << "," << j << "]: " << zero << endl;
error = 1;
break;
}
}
}
for (i = 0; i < num_states; i++) {
for (j = 0, zero = 0.0; j < num_states; j++) {
for (int k = 0; k < num_states; k++)
zero += cinv_evec[i*num_states+k] * cevec[k*num_states+j];
double deltaij = 0;
if (i == j) deltaij = 1;
zero -= deltaij;
if (abs(zero) > 1.0e-5) {
cout << "too large inv_error[" << i << "," << j << "]: " << zero << endl;
error = 1;
break;
}
}
}
if (error) {
cerr << "\nERROR: Eigensystem doesn't satisfy eigenvalue equation!\n";
cerr << "Rate matrix Q: " << endl;
for (i = 0; i < num_states; i++) {
for (j = 0; j < num_states; j++) cout << rate_matrix[i*num_states+j] << " ";
cerr << endl;
}
cout << "State frequencies: " << endl;
for (i = 0; i < num_states; i++) cout << state_freq[i] << " ";
cout << endl;
cout << "Here we start: complex eigenvalues:";
for (i = 0; i < 4; i++)
cout << " " << ceval[i];
cout << endl;
cout << "complex eigenvectors: " << endl;
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++)
cout << " " << cevec[i*4+j];
cout << endl;
}
cout << "complex inv_eigenvectors: " << endl;
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++)
cout << " " << cinv_evec[i*4+j];
cout << endl;
}
}
}
}
void ModelLieMarkov::computeTransMatrix(double time, double *trans_matrix, int mixture) {
#ifdef USE_EIGEN3
MatrixExpTechnique technique = phylo_tree->params->matrix_exp_technique;
if (technique == MET_SCALING_SQUARING || nondiagonalizable ) {
Matrix4d A = Map<Matrix4d>(rate_matrix);
A = (A.transpose() * time).exp();
Map<Matrix4d> P(trans_matrix);
P = A.transpose();
int i, j;
for (i = 0; i < 4; i++) {
double sum = 0.0;
for (j = 0; j < 4; j++)
sum += (trans_matrix[i*4+j]);
ASSERT(fabs(sum-1.0) < 1e-4);
}
} else if (technique == MET_EIGEN3LIB_DECOMPOSITION || technique == MET_LIE_MARKOV_DECOMPOSITION) {
// and nondiagonalizable == false, else we used scaled squaring
int i;
Vector4cd ceval_exp;
for (i = 0; i < 4; i++)
ceval_exp(i) = exp(ceval[i]*time);
Matrix4cd cevectors(cevec);
Matrix4cd cinv_evectors(cinv_evec);
Matrix4cd res = cevectors * ceval_exp.asDiagonal() * cinv_evectors;
// if assertions fail, it may be due to cevec having near-zero
// determinant, and a fix could be to relax the test for
// nondiagonalizable in ModelLieMarkov::decomposeRateMatrixEigen3lib()
if (technique == MET_EIGEN3LIB_DECOMPOSITION) {
for (i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
trans_matrix[i*4+j] = res(j, i).real();
ASSERT(fabs(res(j,i).imag()) < 1e-6);
ASSERT(trans_matrix[i*4+j] >= -0.000001);
ASSERT(trans_matrix[i*4+j] <= 1.000001);
if (trans_matrix[i*4+j] < 0)
trans_matrix[i*4+j] = 0.0;
if (trans_matrix[i*4+j] > 1)
trans_matrix[i*4+j] = 1.0;
}
ASSERT(fabs(trans_matrix[i*4]+trans_matrix[i*4+1]+trans_matrix[i*4+2]+trans_matrix[i*4+3]-1.0) < 1e-4);
}
} else {
for (i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
trans_matrix[i*4+j] = res(i,j).real();
ASSERT(fabs(res(j,i).imag()) < 1e-6);
ASSERT(trans_matrix[i*4+j] >= -0.000001);
ASSERT(trans_matrix[i*4+j] <= 1.000001);
if (trans_matrix[i*4+j] < 0)
trans_matrix[i*4+j] = 0.0;
if (trans_matrix[i*4+j] > 1)
trans_matrix[i*4+j] = 1.0;
}
ASSERT(fabs(trans_matrix[i*4]+trans_matrix[i*4+1]+trans_matrix[i*4+2]+trans_matrix[i*4+3]-1.0) < 1e-4);
}
}
} else
ModelMarkov::computeTransMatrix(time, trans_matrix);
#else
ModelMarkov::computeTransMatrix(time, trans_matrix);
#endif
}
|