File: modelmarkov.h

package info (click to toggle)
iqtree 1.6.12%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 12,140 kB
  • sloc: cpp: 111,752; ansic: 53,619; python: 242; sh: 195; makefile: 52
file content (489 lines) | stat: -rw-r--r-- 15,121 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
/***************************************************************************
 *   Copyright (C) 2009 by BUI Quang Minh   *
 *   minh.bui@univie.ac.at   *
 *                                                                         *
 *   This program is free software; you can redistribute it and/or modify  *
 *   it under the terms of the GNU General Public License as published by  *
 *   the Free Software Foundation; either version 2 of the License, or     *
 *   (at your option) any later version.                                   *
 *                                                                         *
 *   This program is distributed in the hope that it will be useful,       *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
 *   GNU General Public License for more details.                          *
 *                                                                         *
 *   You should have received a copy of the GNU General Public License     *
 *   along with this program; if not, write to the                         *
 *   Free Software Foundation, Inc.,                                       *
 *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
 ***************************************************************************/
#ifndef MODELMARKOV_H
#define MODELMARKOV_H

#include "tree/phylotree.h"
#include "modelsubst.h"
#include "utils/optimization.h"
#include "alignment/alignment.h"
#include "utils/eigendecomposition.h"
#include <complex>

const double MIN_RATE = 1e-4;
const double TOL_RATE = 1e-4;
const double MAX_RATE = 100;

string freqTypeString(StateFreqType freq_type, SeqType seq_type, bool full_str);

/**
General Markov model of substitution (reversible or non-reversible)
This works for all kind of data

	@author BUI Quang Minh <minh.bui@univie.ac.at>
*/
class ModelMarkov : public ModelSubst, public EigenDecomposition
{
	
	friend class ModelSet;
	friend class ModelMixture;
    friend class ModelPoMo;
	
public:
	/**
		constructor
		@param tree associated tree for the model
        @param reversible TRUE (default) for reversible model, FALSE for non-reversible
	*/
    ModelMarkov(PhyloTree *tree, bool reversible = true);

	/**
		@return TRUE if model is time-reversible, FALSE otherwise
	*/
	virtual bool isReversible() { return is_reversible; };

    /**
        set the reversibility of the model
        @param reversible TRUE to make model reversible, FALSE otherwise
    */
    virtual void setReversible(bool reversible);


	/**
		init the model and decompose the rate matrix. This function should always be called
		after creating the class. Otherwise it will not work properly.
		@param freq_type state frequency type, can be FREQ_USER_DEFINED, FREQ_EQUAL, FREQ_EMPIRICAL, or FREQ_ESTIMATE
	*/
	void init(StateFreqType freq_type);

	/**
	   initializes ModelSubst::freq_type array according to freq_type
           (can be FREQ_USER_DEFINED, FREQ_EQUAL, FREQ_EMPIRICAL, or FREQ_ESTIMATE)
	 */
	void init_state_freq(StateFreqType freq_type);

	/**
		this function is served for ModelDNA and ModelProtein
		@param model_name name of the model
		@param freq_type state frequency type, can be FREQ_USER_DEFINED, FREQ_EQUAL, FREQ_EMPIRICAL, or FREQ_ESTIMATE
	*/
	virtual void init(const char *model_name, string model_params, StateFreqType freq, string freq_params) {}

	/**
		destructor
	*/
    virtual ~ModelMarkov();

    /**
        start structure for checkpointing
    */
    virtual void startCheckpoint();

    /** 
        save object into the checkpoint
    */
    virtual void saveCheckpoint();

    /** 
        restore object from the checkpoint
    */
    virtual void restoreCheckpoint();

	/**
	 * @return model name
	 */
	virtual string getName();

	/**
	 * @return model name with parameters in form of e.g. GTR{a,b,c,d,e,f}
	 */
	virtual string getNameParams();

    /**
        internal function: return string for frequency
        @param retname output stream
    */
    void getNameParamsFreq(ostream &retname);

	/**
		@return the number of rate entries, equal to the number of non-diagonal elements
			of the rate matrix (since model is NOT reversible)
	*/
	virtual int getNumRateEntries();

	/**
		set the associated tree
		@param tree the associated tree
	*/
    void setTree(PhyloTree *tree);

	/**
		Read the upper-triangle rate matrix from an input stream. 
		It will throw error messages if failed
		@param in input stream
	*/
	virtual void readRates(istream &in) throw(const char*, string);

	/**
		Read the rate parameters from a comma-separated string
		It will throw error messages if failed
		@param in input stream
	*/
	virtual void readRates(string str) throw(const char*);

	/**
		Read state frequencies from an input stream. 
		It will throw error messages if failed
		@param in input stream
	*/
	virtual void readStateFreq(istream &in) throw(const char*);

	/**
		Read state frequencies from comma-separated string
		It will throw error messages if failed
		@param str input string
	*/
	virtual void readStateFreq(string str) throw(const char*);

	/**
		read model parameters from a file
		@param file_name file containing rate matrix and state frequencies
	*/
	void readParameters(const char *file_name);

	/**
		read model parameters from a string
		@param model_str string containing rate matrix and state frequencies
	*/
	void readParametersString(string &model_str);

	/**
		compute the transition probability matrix.
		@param time time between two events
        @param mixture (optional) class for mixture model
		@param trans_matrix (OUT) the transition matrix between all pairs of states.
			Assume trans_matrix has size of num_states * num_states.
	*/
	virtual void computeTransMatrix(double time, double *trans_matrix, int mixture = 0);

	/**
		compute the transition probability between two states
		@param time time between two events
		@param state1 first state
		@param state2 second state
	*/
	virtual double computeTrans(double time, int state1, int state2);

	/**
		compute the transition probability between two states
		@param time time between two events
		@param state1 first state
		@param state2 second state
		@param derv1 (OUT) 1st derivative
		@param derv2 (OUT) 2nd derivative
	*/
	virtual double computeTrans(double time, int state1, int state2, double &derv1, double &derv2);

	/**
		Get the rate matrix.
		@param rate_mat (OUT) upper-triagle rate matrix. Assume rate_mat has size of num_states*(num_states-1)/2
	*/
	virtual void getRateMatrix(double *rate_mat);

	/**
		Set the rate matrix.
		@param rate_mat upper-triagle rate matrix. Assume rate_mat has size of num_states*(num_states-1)/2
	*/
	virtual void setRateMatrix(double *rate_mat);

	/**
		compute the state frequency vector
        @param mixture (optional) class for mixture model
		@param state_freq (OUT) state frequency vector. Assume state_freq has size of num_states
	*/
	virtual void getStateFrequency(double *state_freq, int mixture = 0);

	/**
		set the state frequency vector
		@param state_freq (IN) state frequency vector. Assume state_freq has size of num_states
	*/
	virtual void setStateFrequency(double *state_freq);

	/**
	 * compute Q matrix 
	 * @param q_mat (OUT) Q matrix, assuming of size num_states * num_states
	 */
	virtual void getQMatrix(double *q_mat);

	/**
		rescale the state frequencies
		@param sum_one TRUE to make frequencies sum to 1, FALSE to make last entry equal to 1
	*/
	void scaleStateFreq(bool sum_one);

	/**
		get frequency type
		@return frequency type
	*/
	virtual StateFreqType getFreqType() { return freq_type; }


	/**
		compute the transition probability matrix.and the derivative 1 and 2
		@param time time between two events
        @param mixture (optional) class for mixture model
		@param trans_matrix (OUT) the transition matrix between all pairs of states.
			Assume trans_matrix has size of num_states * num_states.
		@param trans_derv1 (OUT) the 1st derivative matrix between all pairs of states. 
		@param trans_derv2 (OUT) the 2nd derivative matrix between all pairs of states. 
	*/
	virtual void computeTransDerv(double time, double *trans_matrix, 
		double *trans_derv1, double *trans_derv2, int mixture = 0);

	/**
		@return the number of dimensions
	*/
	virtual int getNDim();

	/**
		@return the number of dimensions corresponding to state frequencies, which is 
            not counted in getNDim(). This serves e.g. for computing AIC, BIC score
	*/
	virtual int getNDimFreq();
	

	/**
		the target function which needs to be optimized
		@param x the input vector x
		@return the function value at x
	*/
	virtual double targetFunk(double x[]);

	/**
	 * setup the bounds for joint optimization with BFGS
	 */
	virtual void setBounds(double *lower_bound, double *upper_bound, bool *bound_check);

	/**
		optimize model parameters
		@return the best likelihood 
	*/
	virtual double optimizeParameters(double gradient_epsilon);

	/**
	 * @return TRUE if parameters are at the boundary that may cause numerical unstability
	 */
	virtual bool isUnstableParameters();

  // A simple helper function that prints the rates in a nice way and can be
  // reused by children. The title is necessary, because, e.g., for PoMo, the
  // rates are mutation rates and not substitution rates, and also
  // exchangeabilities may be reported.
  void report_rates(ostream &out, string title, double *r);

  // Report the stationary frequencies state_freq or custom_state_freq (if
  // given) to output stream out.
  void report_state_freqs(ostream &out, double *custom_state_freq=NULL);

	/**
		write information
		@param out output stream
	*/
	virtual void writeInfo(ostream &out);

	/**
		write parameters, used with modeltest
		@param out output stream
	*/
	virtual void writeParameters(ostream &out){}


	/**
		decompose the rate matrix into eigenvalues and eigenvectors
	*/
	virtual void decomposeRateMatrix();

//	double *getEigenCoeff() const;

	virtual double *getEigenvalues() const;

	virtual double *getEigenvectors() const;
	virtual double *getInverseEigenvectors() const;

//	void setEigenCoeff(double *eigenCoeff);

	void setEigenvalues(double *eigenvalues);

	void setEigenvectors(double *eigenvectors);

	void setInverseEigenvectors(double *inv_eigenvectors);

    /**
     * compute the memory size for the model, can be large for site-specific models
     * @return memory size required in bytes
     */
    virtual uint64_t getMemoryRequired() {
    	return ModelSubst::getMemoryRequired() + sizeof(double)*num_states*num_states*3;
    }

    /** default TRUE: store only upper half of the rate matrix */
    bool half_matrix;

    /****************************************************/
    /*      NON-REVERSIBLE STUFFS                       */
    /****************************************************/

    /**
     * Return a model of type given by model_name. (Will be some subclass of ModelMarkov.)
     */
    static ModelMarkov* getModelByName(string model_name, PhyloTree *tree, string model_params, StateFreqType freq_type, string freq_params);

    /**
     * true if model_name is the name of some known non-reversible model
     */
    static bool validModelName(string model_name);

  // Mon Jul 3 14:47:08 BST 2017; added by Dominik. I had problems with mixture
  // models together with PoMo and rate heterogeneity. E.g., a model
  // "MIX{HKY+P+N9+G2,GTR+P+N9+G2}" leads to segmentation faults because the
  // `ModelPoMoMixture` reports a /wrong/ number of states (i.e., it reports 52
  // instead of 104). Consequently, the `initMem()` function of ModelMixture,
  // messes up the `eigenvalues`, etc., variables of the `ModelPoMoMixture`s. I
  // circumvent this, by adding this virtual function; for normal models, it
  // just returns `num_states`, however, for mixture models, it returns
  // `num_states*nmixtures`.
  virtual int get_num_states_total();

  // Mon Jul 3 15:53:00 BST 2017; added by Dominik. Same problem as with
  // `get_num_states_total()`. The pointers to the eigenvalues and eigenvectors
  // need to be updated recursively, if the model is a mixture model. For a
  // normal Markov model, only the standard pointers are set. This was done in
  // `ModelMixture::initMem()` before.
  virtual void update_eigen_pointers(double *eval, double *evec, double *inv_evec);

protected:

	/**
		this function is served for the multi-dimension optimization. It should pack the model parameters 
		into a vector that is index from 1 (NOTE: not from 0)
		@param variables (OUT) vector of variables, indexed from 1
	*/
	virtual void setVariables(double *variables);

	/**
		this function is served for the multi-dimension optimization. It should assign the model parameters 
		from a vector of variables that is index from 1 (NOTE: not from 0)
		@param variables vector of variables, indexed from 1
		@return TRUE if parameters are changed, FALSE otherwise (2015-10-20)
	*/
	virtual bool getVariables(double *variables);


	/**
	 * Called from getVariables to update the rate matrix for the new
	 * model parameters.
	 */
	virtual void setRates();

    /**
        free all allocated memory
    */
	virtual void freeMem();

    /** TRUE if model is reversible */
    bool is_reversible;

	/**
		phylogenetic tree associated
	*/
	PhyloTree *phylo_tree;

    /**
		rates between pairs of states of the unit rate matrix Q.
		In order A-C, A-G, A-T, C-G, C-T (rate G-T = 1 always)
	*/
	double *rates;

	/**
		the number of free rate parameters
	*/
	int num_params;

	/**
		eigenvalues of the rate matrix Q
	*/
	double *eigenvalues;

	/**
		eigenvectors of the rate matrix Q 
	*/
	double *eigenvectors;

	/**
		inverse eigenvectors of the rate matrix Q 
	*/
	double *inv_eigenvectors;

	/**
		coefficient cache, served for fast computation of the P(t) matrix
	*/
//	double *eigen_coeff;

	/** state with highest frequency, used when optimizing state frequencies +FO */
	int highest_freq_state;

    /****************************************************/
    /*      NON-REVERSIBLE STUFFS                       */
    /****************************************************/

	/**
		compute the transition probability matrix using (complex) eigenvalues
		@param time time between two events
		@param trans_matrix (OUT) the transition matrix between all pairs of states.
			Assume trans_matrix has size of num_states * num_states.
	*/
	void computeTransMatrixEigen(double time, double *trans_matrix);

	/** true to fix parameters, otherwise false */
	bool fixed_parameters;

	/**
		unrestricted Q matrix. Note that Q is normalized to 1 and has row sums of 0.
		no state frequencies are involved here since Q is a general matrix.
	*/
	double *rate_matrix;

	/** imaginary part of eigenvalues */
	double *eigenvalues_imag;
	
	/**
		temporary working space
	*/
	double *temp_space;
    
    /**
        complex eigenvalues and eigenvectors, pointing to the same pointer 
        to the previous double *eigenvalues and double *eigenvectors
    */
    std::complex<double> *ceval, *cevec, *cinv_evec;

};

#endif