File: modelmixture.h

package info (click to toggle)
iqtree 1.6.12%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 12,140 kB
  • sloc: cpp: 111,752; ansic: 53,619; python: 242; sh: 195; makefile: 52
file content (291 lines) | stat: -rw-r--r-- 7,833 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
/*
 * modelmixture.h
 *
 *  Created on: Nov 29, 2014
 *      Author: minh
 */

#ifndef MODELMIXTURE_H_
#define MODELMIXTURE_H_

#include "tree/phylotree.h"
#include "modelsubst.h"
#include "modelmarkov.h"
#include "nclextra/modelsblock.h"


const char OPEN_BRACKET = '{';
const char CLOSE_BRACKET = '}';

extern const char* builtin_mixmodels_definition;

/**
 * create a substitution model
 * @param model_str model nme
 * @param freq_type state frequency type
 * @param freq_params frequency parameters
 * @param tree associated phylo tree
 * @param count_rates TRUE to assign rates counted from alignment, FALSE to not initialize rates
 * @return substitution model created
 */
ModelSubst *createModel(string model_str, ModelsBlock *models_block, StateFreqType freq_type, string freq_params,
                        PhyloTree *tree);


/**
 * mixture model
 */
class ModelMixture: virtual public ModelMarkov, public vector<ModelMarkov*> {
public:
    
	/**
		constructor
		@param model_name model name, e.g., JC, HKY.
		@param freq state frequency type
		@param tree associated phylogenetic tree
	*/
    ModelMixture(string orig_model_name, string model_name, string model_list, ModelsBlock *models_block,
    		StateFreqType freq, string freq_params, PhyloTree *tree, bool optimize_weights);

    void initMixture(string orig_model_name, string model_name, string model_list, ModelsBlock *models_block,
    		StateFreqType freq, string freq_params, PhyloTree *tree, bool optimize_weights);

    void initMem();

    /**
		constructor
		@param tree associated tree for the model
	*/
    ModelMixture(PhyloTree *tree);


    virtual ~ModelMixture();

    /**
        set checkpoint object
        @param checkpoint
    */
    virtual void setCheckpoint(Checkpoint *checkpoint);

    /**
        start structure for checkpointing
    */
    virtual void startCheckpoint();

    /**
        save object into the checkpoint
    */
    virtual void saveCheckpoint();

    /**
        restore object from the checkpoint
    */
    virtual void restoreCheckpoint();


	/**
	 * @return TRUE if this is a mixture model, FALSE otherwise
	 */
	virtual bool isMixture() { return true; }


	/**
	 * @return the number of mixture model components
	 */
	virtual int getNMixtures() {return size(); }

 	/**
	 * @param cat mixture class
	 * @return weight of a mixture model component
	 */
	virtual double getMixtureWeight(int cat) { return prop[cat]; }

	/**
	 * @param cat mixture class
	 * @return weight of a mixture model component
	 */
	virtual void setMixtureWeight(int cat, double weight) { prop[cat] = weight; }

	/**
	 * @param cat mixture class
	 * @return weight of a mixture model component
	 */
	virtual void setFixMixtureWeight(bool fix_prop) { this->fix_prop = fix_prop; }

	/**
	 * @param cat mixture class ID
	 * @return corresponding mixture model component
	 */
    virtual ModelSubst* getMixtureClass(int cat) { return at(cat); }

	/**
	 * @param cat mixture class ID
	 * @param m mixture model class to set
	 */
    virtual void setMixtureClass(int cat, ModelSubst* m) { at(cat) = (ModelMarkov*)m; }

	/**
		compute the state frequency vector
        @param mixture (optional) class for mixture model. 
            -1 to get weighted sum of class state frequency vector
		@param state_freq (OUT) state frequency vector. Assume state_freq has size of num_states
	*/
	virtual void getStateFrequency(double *state_freq, int mixture = 0);

	/**
		compute the transition probability matrix. One should override this function when defining new model.
		The default is the Juke-Cantor model, valid for all kind of data (DNA, AA, Codon, etc)
		@param time time between two events
        @param mixture (optional) class for mixture model
		@param trans_matrix (OUT) the transition matrix between all pairs of states. 
			Assume trans_matrix has size of num_states * num_states.
	*/
	virtual void computeTransMatrix(double time, double *trans_matrix, int mixture = 0);


	/**
		compute the transition probability matrix.and the derivative 1 and 2
		@param time time between two events
        @param mixture (optional) class for mixture model
		@param trans_matrix (OUT) the transition matrix between all pairs of states.
			Assume trans_matrix has size of num_states * num_states.
		@param trans_derv1 (OUT) the 1st derivative matrix between all pairs of states. 
		@param trans_derv2 (OUT) the 2nd derivative matrix between all pairs of states. 
	*/
	virtual void computeTransDerv(double time, double *trans_matrix, 
		double *trans_derv1, double *trans_derv2, int mixture = 0);

	/**
		@return the number of dimensions
	*/
	virtual int getNDim();

	/**
		@return the number of dimensions corresponding to state frequencies
	*/
	virtual int getNDimFreq();
	
	/**
		the target function which needs to be optimized
		@param x the input vector x
		@return the function value at x
	*/
	virtual double targetFunk(double x[]);

    /** 
        optimize mixture weights using EM algorithm 
        @return log-likelihood of optimized weights
    */
    double optimizeWeights();

    /** 
        optimize rate parameters using EM algorithm
        @param gradient_epsilon
        @return log-likelihood of optimized parameters
    */
    double optimizeWithEM(double gradient_epsilon);


    /** 
        set number of optimization steps
        @param opt_steps number of optimization steps
    */
    virtual void setOptimizeSteps(int optimize_steps) { this->optimize_steps = optimize_steps; }

    /** @return true if model is fused with site_rate */
    bool isFused();

	/**
		optimize model parameters
		@return the best likelihood
	*/
	virtual double optimizeParameters(double gradient_epsilon);

	/**
	 * @return TRUE if parameters are at the boundary that may cause numerical unstability
	 */
	virtual bool isUnstableParameters();

	/**
		decompose the rate matrix into eigenvalues and eigenvectors
	*/
	virtual void decomposeRateMatrix();

	/**
	 * setup the bounds for joint optimization with BFGS
	 */
	virtual void setBounds(double *lower_bound, double *upper_bound, bool *bound_check);

	/**
		write information
		@param out output stream
	*/
	virtual void writeInfo(ostream &out);

	/**
		write parameters, used with modeltest
		@param out output stream
	*/
	virtual void writeParameters(ostream &out);

	/**
	 * @return model name
	 */
	virtual string getName();

	/**
	 * @return model name with parameters in form of e.g. GTR{a,b,c,d,e,f}
	 */
	virtual string getNameParams();

    /**
     * compute the memory size for the model, can be large for site-specific models
     * @return memory size required in bytes
     */
    virtual uint64_t getMemoryRequired() {
    	uint64_t mem = ModelMarkov::getMemoryRequired();
    	for (iterator it = begin(); it != end(); it++)
    		mem += (*it)->getMemoryRequired();
    	return mem;
    }

	/**
		rates of mixture components
	*/
//	double *mix_rates;

	/**
	 * weight of each sub-model (must sum to 1)
	 */
	double *prop;

	/**
	 * TRUE to fix model weights
	 */
	bool fix_prop;

protected:

	bool optimizing_submodels;

    /** number of optimization steps, default: ncategory*2 */
    int optimize_steps;    

	/**
		this function is served for the multi-dimension optimization. It should pack the model parameters
		into a vector that is index from 1 (NOTE: not from 0)
		@param variables (OUT) vector of variables, indexed from 1
	*/
	virtual void setVariables(double *variables);

	/**
		this function is served for the multi-dimension optimization. It should assign the model parameters
		from a vector of variables that is index from 1 (NOTE: not from 0)
		@param variables vector of variables, indexed from 1
		@return TRUE if parameters are changed, FALSE otherwise (2015-10-20)
	*/
	virtual bool getVariables(double *variables);

};

#endif /* MODELMIXTURE_H_ */