1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
|
//
// modelpomomixture.cpp
// iqtree
//
// Created by Minh Bui on 7/22/16.
//
//
#include "modelpomomixture.h"
#include "rategamma.h"
#include "utils/tools.h"
ModelPoMoMixture::ModelPoMoMixture(const char *model_name,
string model_params,
StateFreqType freq_type,
string freq_params,
PhyloTree *tree,
string pomo_params, string pomo_rate_str)
:
ModelMarkov(tree),
ModelPoMo(model_name, model_params, freq_type, freq_params, tree, pomo_params),
ModelMixture(tree)
{
opt_mode = OPT_NONE;
// get number of categories
int m, num_rate_cats = 4;
if (pomo_rate_str.length() > 2 && isdigit(pomo_rate_str[2])) {
int end_pos;
num_rate_cats = convert_int(pomo_rate_str.substr(2).c_str(), end_pos);
if (num_rate_cats < 1) outError("Wrong number of rate categories");
}
// initialize rate heterogeneity
ratehet = new RateGamma(num_rate_cats, Params::getInstance().gamma_shape, Params::getInstance().gamma_median, tree);
// Adjust name.
// this->name += pomo_rate_str;
// this->full_name += " Gamma rate heterogeneity with " + convertIntToString(num_rate_cats) + " components;";
this->name += ratehet->name;
this->full_name += ratehet->full_name;
// initialize mixture
prop = aligned_alloc<double>(num_rate_cats);
// creating mixture components
for (m = 0; m < num_rate_cats; m++) {
ModelMarkov* model = new ModelMarkov(tree);
model->init(FREQ_USER_DEFINED);
// model->total_num_subst = ratehet->getRate(m);
push_back(model);
prop[m] = ratehet->getProp(m);
}
// allocate memory for mixture components so that they are continuous in RAM
initMem();
// TODO: why calling this here?
ModelMarkov::init(freq_type);
}
string ModelPoMoMixture::getName() {
return ModelPoMo::getName();
}
ModelPoMoMixture::~ModelPoMoMixture() {
}
void ModelPoMoMixture::setCheckpoint(Checkpoint *checkpoint) {
ModelPoMo::setCheckpoint(checkpoint);
ratehet->setCheckpoint(checkpoint);
}
void ModelPoMoMixture::startCheckpoint() {
checkpoint->startStruct("ModelPoMoMixture");
}
void ModelPoMoMixture::saveCheckpoint() {
ModelPoMo::saveCheckpoint();
startCheckpoint();
ratehet->saveCheckpoint();
endCheckpoint();
}
void ModelPoMoMixture::restoreCheckpoint() {
// ratehet needs to be restored first, so that decomposeRateMatrix works properly
startCheckpoint();
ratehet->restoreCheckpoint();
endCheckpoint();
ModelPoMo::restoreCheckpoint();
}
int ModelPoMoMixture::getNDim() {
if (opt_mode == OPT_RATEHET)
return ratehet->getNDim();
else if (opt_mode == OPT_POMO)
return ModelPoMo::getNDim();
else return ratehet->getNDim()+ModelPoMo::getNDim();
}
int ModelPoMoMixture::getNDimFreq() {
return ModelPoMo::getNDimFreq();
}
double ModelPoMoMixture::targetFunk(double x[]) {
if (opt_mode == OPT_RATEHET) {
getVariables(x);
phylo_tree->clearAllPartialLH();
return -phylo_tree->computeLikelihood();
}
return ModelPoMo::targetFunk(x);
}
void ModelPoMoMixture::setBounds(double *lower_bound, double *upper_bound, bool *bound_check) {
if (opt_mode == OPT_RATEHET) {
// ratehet->setBounds(lower_bound, upper_bound, bound_check);
lower_bound[1] = POMO_GAMMA_MIN;
upper_bound[1] = POMO_GAMMA_MAX;
// Boundary checking is the preferred solution to warn the user if the
// shape parameter hits the boundary, but it seems to be too verbose.
bound_check[1] = false;
return;
}
ModelPoMo::setBounds(lower_bound, upper_bound, bound_check);
}
void ModelPoMoMixture::writeInfo(ostream &out) {
ModelPoMo::writeInfo(out);
}
void ModelPoMoMixture::decomposeRateMatrix() {
// propagate eigenvalues and eigenvectors
int m, nmix = getNMixtures(), num_states_2 = num_states*num_states;
double saved_mutation_rate_matrix[n_alleles*n_alleles];
memcpy(saved_mutation_rate_matrix, mutation_rate_matrix, sizeof(double)*n_alleles*n_alleles);
// trick: reverse loop to retain eigenvalues and eigenvectors of the 0th mixture class
for (m = nmix-1; m >= 0; m--) {
// rescale mutation_rates
setScale(ratehet->getRate(m));
ModelPoMo::decomposeRateMatrix();
// TODO Check! TEST: copy state frequency
ModelPoMo::getStateFrequency(at(m)->state_freq);
// copy eigenvalues and eigenvectors
if (m > 0) {
memcpy(eigenvalues+m*num_states, eigenvalues, sizeof(double)*num_states);
memcpy(eigenvectors+m*num_states_2, eigenvectors, sizeof(double)*num_states_2);
memcpy(inv_eigenvectors+m*num_states_2, inv_eigenvectors, sizeof(double)*num_states_2);
}
// restore mutation_rate matrix
memcpy(mutation_rate_matrix, saved_mutation_rate_matrix, sizeof(double)*n_alleles*n_alleles);
}
// // Reset scale.
setScale(1.0);
updatePoMoStatesAndRateMatrix();
ModelPoMo::getStateFrequency(state_freq);
}
void ModelPoMoMixture::setVariables(double *variables) {
if (opt_mode == OPT_RATEHET) {
ratehet->setVariables(variables);
return;
}
ModelPoMo::setVariables(variables);
}
bool ModelPoMoMixture::getVariables(double *variables) {
if (opt_mode == OPT_RATEHET) {
bool changed = ratehet->getVariables(variables);
if (changed) {
decomposeRateMatrix();
}
return changed;
}
return ModelPoMo::getVariables(variables);
}
double ModelPoMoMixture::optimizeParameters(double gradient_epsilon) {
// first optimize pomo model parameters
opt_mode = OPT_POMO;
double score = ModelPoMo::optimizeParameters(gradient_epsilon);
opt_mode = OPT_NONE;
// then optimize rate heterogeneity
if (ratehet->getNDim() > 0) {
opt_mode = OPT_RATEHET;
double score_ratehet = ModelPoMo::optimizeParameters(gradient_epsilon);
if (verbose_mode >= VB_MIN) {
double shape = ratehet->getGammaShape();
if (shape <= POMO_GAMMA_MIN)
outWarning("The shape parameter of the gamma rate heterogeneity is hitting the lower boundary.");
ratehet->writeInfo(cout);
}
opt_mode = OPT_NONE;
ASSERT(score_ratehet >= score-0.1);
return score_ratehet;
}
return score;
}
void reportRate(ostream &out, PhyloTree &tree);
void ModelPoMoMixture::report(ostream &out) {
ModelPoMo::report(out);
RateHeterogeneity *saved_rate = phylo_tree->getRate();
phylo_tree->setRate(ratehet);
reportRate(out, *phylo_tree);
phylo_tree->setRate(saved_rate);
}
int ModelPoMoMixture::get_num_states_total() {
// We assume that all mixture model components have the same number of states.
return num_states * getNMixtures();
}
void ModelPoMoMixture::update_eigen_pointers(double *eval, double *evec, double *inv_evec) {
eigenvalues = eval;
eigenvectors = evec;
inv_eigenvectors = inv_evec;
// We assume that all mixture model components have the same number of states.
int m = 0;
for (iterator it = begin(); it != end(); it++, m++) {
(*it)->update_eigen_pointers(eval + m*num_states,
evec + m*num_states*num_states,
inv_evec + m*num_states*num_states);
}
return;
}
bool ModelPoMoMixture::isUnstableParameters() {
if (ModelPoMo::isUnstableParameters())
return true;
if (ModelMixture::isUnstableParameters())
return true;
return false;
}
// I had to write this function because of a compiler error. ModelPoMoMixture is
// inheriting functions from ModelMixture and from ModelPoMo. I defined
// computeTransMatrix for ModelPoMo because I thought that the Modelmarkov
// version did not work for non-reversible substitution models. However, this
// led to a clash because then computeTransMatrix is defined in both,
// ModelMixture and ModelPoMo and inheritance is flawed.
void ModelPoMoMixture::computeTransMatrix(double time, double *trans_matrix, int mixture) {
ASSERT(mixture < getNMixtures());
at(mixture)->computeTransMatrix(time, trans_matrix);
}
|