1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
|
/*
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) 2012 BUI Quang Minh <email>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "modelset.h"
ModelSet::ModelSet(const char *model_name, PhyloTree *tree) : ModelMarkov(tree)
{
name = full_name = model_name;
name += "+SSF";
full_name += "+site-specific state-frequency model (unpublished)";
}
void ModelSet::computeTransMatrix(double time, double* trans_matrix, int mixture)
{
// TODO not working with vectorization
ASSERT(0);
for (iterator it = begin(); it != end(); it++) {
(*it)->computeTransMatrix(time, trans_matrix, mixture);
trans_matrix += (num_states * num_states);
}
}
void ModelSet::computeTransDerv(double time, double* trans_matrix, double* trans_derv1, double* trans_derv2, int mixture)
{
// TODO not working with vectorization
ASSERT(0);
for (iterator it = begin(); it != end(); it++) {
(*it)->computeTransDerv(time, trans_matrix, trans_derv1, trans_derv2, mixture);
trans_matrix += (num_states * num_states);
trans_derv1 += (num_states * num_states);
trans_derv2 += (num_states * num_states);
}
}
int ModelSet::getPtnModelID(int ptn)
{
ASSERT(ptn >= 0 && ptn < pattern_model_map.size());
ASSERT(pattern_model_map[ptn] >= 0 && pattern_model_map[ptn] < size());
return pattern_model_map[ptn];
}
double ModelSet::computeTrans(double time, int model_id, int state1, int state2) {
if (phylo_tree->vector_size == 1)
return at(model_id)->computeTrans(time, state1, state2);
// temporary fix problem with vectorized eigenvectors
int i;
int vsize = phylo_tree->vector_size;
int states_vsize = num_states*vsize;
int model_vec_id = model_id % vsize;
int start_ptn = model_id - model_vec_id;
double *evec = &eigenvectors[start_ptn*num_states*num_states + model_vec_id + state1*num_states*vsize];
double *inv_evec = &inv_eigenvectors[start_ptn*num_states*num_states + model_vec_id + state2*vsize];
double *eval = &eigenvalues[start_ptn*num_states + model_vec_id];
double trans_prob = 0.0;
for (i = 0; i < states_vsize; i+=vsize) {
double val = eval[i];
double trans = evec[i] * inv_evec[i*num_states] * exp(time * val);
trans_prob += trans;
}
return trans_prob;
}
double ModelSet::computeTrans(double time, int model_id, int state1, int state2, double &derv1, double &derv2) {
if (phylo_tree->vector_size == 1)
return at(model_id)->computeTrans(time, state1, state2, derv1, derv2);
// temporary fix problem with vectorized eigenvectors
int i;
int vsize = phylo_tree->vector_size;
int states_vsize = num_states*vsize;
int model_vec_id = model_id % vsize;
int start_ptn = model_id - model_vec_id;
double *evec = &eigenvectors[start_ptn*num_states*num_states + model_vec_id + state1*num_states*vsize];
double *inv_evec = &inv_eigenvectors[start_ptn*num_states*num_states + model_vec_id + state2*vsize];
double *eval = &eigenvalues[start_ptn*num_states + model_vec_id];
double trans_prob = 0.0;
derv1 = derv2 = 0.0;
for (i = 0; i < states_vsize; i+=vsize) {
double val = eval[i];
double trans = evec[i] * inv_evec[i*num_states] * exp(time * val);
double trans2 = trans * val;
trans_prob += trans;
derv1 += trans2;
derv2 += trans2 * val;
}
return trans_prob;
}
int ModelSet::getNDim()
{
ASSERT(size());
return front()->getNDim();
}
void ModelSet::writeInfo(ostream& out)
{
if (empty())
return;
if (verbose_mode >= VB_DEBUG) {
int i = 1;
for (iterator it = begin(); it != end(); it++, i++) {
out << "Partition " << i << ":" << endl;
(*it)->writeInfo(out);
}
} else {
front()->writeInfo(out);
}
}
void ModelSet::decomposeRateMatrix()
{
if (empty())
return;
for (iterator it = begin(); it != end(); it++)
(*it)->decomposeRateMatrix();
if (phylo_tree->vector_size == 1)
return;
// rearrange eigen to obey vector_size
size_t vsize = phylo_tree->vector_size;
size_t states2 = num_states*num_states;
size_t ptn, i, x;
size_t max_size = get_safe_upper_limit(size());
// copy dummy values
for (size_t m = size(); m < max_size; m++) {
memcpy(&eigenvalues[m*num_states], &eigenvalues[(m-1)*num_states], sizeof(double)*num_states);
memcpy(&eigenvectors[m*states2], &eigenvectors[(m-1)*states2], sizeof(double)*states2);
memcpy(&inv_eigenvectors[m*states2], &inv_eigenvectors[(m-1)*states2], sizeof(double)*states2);
}
double new_eval[num_states*vsize];
double new_evec[states2*vsize];
double new_inv_evec[states2*vsize];
for (ptn = 0; ptn < size(); ptn += vsize) {
double *eval_ptr = &eigenvalues[ptn*num_states];
double *evec_ptr = &eigenvectors[ptn*states2];
double *inv_evec_ptr = &inv_eigenvectors[ptn*states2];
for (i = 0; i < vsize; i++) {
for (x = 0; x < num_states; x++)
new_eval[x*vsize+i] = eval_ptr[x];
for (x = 0; x < states2; x++) {
new_evec[x*vsize+i] = evec_ptr[x];
new_inv_evec[x*vsize+i] = inv_evec_ptr[x];
}
eval_ptr += num_states;
evec_ptr += states2;
inv_evec_ptr += states2;
}
// copy new values
memcpy(&eigenvalues[ptn*num_states], new_eval, sizeof(double)*num_states*vsize);
memcpy(&eigenvectors[ptn*states2], new_evec, sizeof(double)*states2*vsize);
memcpy(&inv_eigenvectors[ptn*states2], new_inv_evec, sizeof(double)*states2*vsize);
}
}
bool ModelSet::getVariables(double* variables)
{
ASSERT(size());
bool changed = false;
for (iterator it = begin(); it != end(); it++)
changed |= (*it)->getVariables(variables);
return changed;
}
void ModelSet::setVariables(double* variables)
{
ASSERT(size());
front()->setVariables(variables);
}
ModelSet::~ModelSet()
{
for (reverse_iterator rit = rbegin(); rit != rend(); rit++) {
(*rit)->eigenvalues = NULL;
(*rit)->eigenvectors = NULL;
(*rit)->inv_eigenvectors = NULL;
delete (*rit);
}
}
void ModelSet::joinEigenMemory() {
size_t nmixtures = get_safe_upper_limit(size());
if (eigenvalues) aligned_free(eigenvalues);
if (eigenvectors) aligned_free(eigenvectors);
if (inv_eigenvectors) aligned_free(inv_eigenvectors);
size_t states2 = num_states*num_states;
eigenvalues = aligned_alloc<double>(num_states*nmixtures);
eigenvectors = aligned_alloc<double>(states2*nmixtures);
inv_eigenvectors = aligned_alloc<double>(states2*nmixtures);
// assigning memory for individual models
size_t m = 0;
for (iterator it = begin(); it != end(); it++, m++) {
// first copy memory for eigen stuffs
memcpy(&eigenvalues[m*num_states], (*it)->eigenvalues, num_states*sizeof(double));
memcpy(&eigenvectors[m*states2], (*it)->eigenvectors, states2*sizeof(double));
memcpy(&inv_eigenvectors[m*states2], (*it)->inv_eigenvectors, states2*sizeof(double));
// then delete
if ((*it)->eigenvalues) aligned_free((*it)->eigenvalues);
if ((*it)->eigenvectors) aligned_free((*it)->eigenvectors);
if ((*it)->inv_eigenvectors) aligned_free((*it)->inv_eigenvectors);
// if ((*it)->eigen_coeff) aligned_free((*it)->eigen_coeff);
// and assign new memory
(*it)->eigenvalues = &eigenvalues[m*num_states];
(*it)->eigenvectors = &eigenvectors[m*states2];
(*it)->inv_eigenvectors = &inv_eigenvectors[m*states2];
}
// copy dummy values
for (m = size(); m < nmixtures; m++) {
memcpy(&eigenvalues[m*num_states], &eigenvalues[(m-1)*num_states], sizeof(double)*num_states);
memcpy(&eigenvectors[m*states2], &eigenvectors[(m-1)*states2], sizeof(double)*states2);
memcpy(&inv_eigenvectors[m*states2], &inv_eigenvectors[(m-1)*states2], sizeof(double)*states2);
}
}
|