File: modelset.cpp

package info (click to toggle)
iqtree 1.6.12%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 12,140 kB
  • sloc: cpp: 111,752; ansic: 53,619; python: 242; sh: 195; makefile: 52
file content (239 lines) | stat: -rw-r--r-- 8,282 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
/*
    <one line to give the program's name and a brief idea of what it does.>
    Copyright (C) 2012  BUI Quang Minh <email>

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/


#include "modelset.h"

ModelSet::ModelSet(const char *model_name, PhyloTree *tree) : ModelMarkov(tree)
{
	name = full_name = model_name;
	name += "+SSF";
	full_name += "+site-specific state-frequency model (unpublished)";
}

void ModelSet::computeTransMatrix(double time, double* trans_matrix, int mixture)
{
    // TODO not working with vectorization
    ASSERT(0);
	for (iterator it = begin(); it != end(); it++) {
		(*it)->computeTransMatrix(time, trans_matrix, mixture);
		trans_matrix += (num_states * num_states);
	}
}

void ModelSet::computeTransDerv(double time, double* trans_matrix, double* trans_derv1, double* trans_derv2, int mixture)
{
    // TODO not working with vectorization
    ASSERT(0);
	for (iterator it = begin(); it != end(); it++) {
		(*it)->computeTransDerv(time, trans_matrix, trans_derv1, trans_derv2, mixture);
		trans_matrix += (num_states * num_states);
		trans_derv1 += (num_states * num_states);
		trans_derv2 += (num_states * num_states);
	}
}

int ModelSet::getPtnModelID(int ptn)
{
	ASSERT(ptn >= 0 && ptn < pattern_model_map.size());
	ASSERT(pattern_model_map[ptn] >= 0 && pattern_model_map[ptn] < size());
    return pattern_model_map[ptn];
}


double ModelSet::computeTrans(double time, int model_id, int state1, int state2) {
    if (phylo_tree->vector_size == 1)
        return at(model_id)->computeTrans(time, state1, state2);
	// temporary fix problem with vectorized eigenvectors
	int i;
    int vsize = phylo_tree->vector_size;
    int states_vsize = num_states*vsize;
    int model_vec_id = model_id % vsize;
    int start_ptn = model_id - model_vec_id;
    double *evec = &eigenvectors[start_ptn*num_states*num_states + model_vec_id + state1*num_states*vsize];
    double *inv_evec = &inv_eigenvectors[start_ptn*num_states*num_states + model_vec_id + state2*vsize];
    double *eval = &eigenvalues[start_ptn*num_states + model_vec_id];
	double trans_prob = 0.0;
	for (i = 0; i < states_vsize; i+=vsize) {
        double val = eval[i];
		double trans = evec[i] * inv_evec[i*num_states] * exp(time * val);
		trans_prob += trans;
	}
	return trans_prob;
}

double ModelSet::computeTrans(double time, int model_id, int state1, int state2, double &derv1, double &derv2) {
    if (phylo_tree->vector_size == 1)
        return at(model_id)->computeTrans(time, state1, state2, derv1, derv2);

	// temporary fix problem with vectorized eigenvectors
	int i;
    int vsize = phylo_tree->vector_size;
    int states_vsize = num_states*vsize;
    int model_vec_id = model_id % vsize;
    int start_ptn = model_id - model_vec_id;
    double *evec = &eigenvectors[start_ptn*num_states*num_states + model_vec_id + state1*num_states*vsize];
    double *inv_evec = &inv_eigenvectors[start_ptn*num_states*num_states + model_vec_id + state2*vsize];
    double *eval = &eigenvalues[start_ptn*num_states + model_vec_id];
	double trans_prob = 0.0;
	derv1 = derv2 = 0.0;
	for (i = 0; i < states_vsize; i+=vsize) {
        double val = eval[i];
		double trans = evec[i] * inv_evec[i*num_states] * exp(time * val);
		double trans2 = trans * val;
		trans_prob += trans;
		derv1 += trans2;
		derv2 += trans2 * val;
	}
	return trans_prob;
}

int ModelSet::getNDim()
{
	ASSERT(size());
    return front()->getNDim();
}

void ModelSet::writeInfo(ostream& out)
{
    if (empty())
        return;
	if (verbose_mode >= VB_DEBUG) {
		int i = 1;
		for (iterator it = begin(); it != end(); it++, i++) {
			out << "Partition " << i << ":" << endl;
			(*it)->writeInfo(out);
		}
	} else {
		front()->writeInfo(out);
	}
}

void ModelSet::decomposeRateMatrix()
{
    if (empty())
        return;
	for (iterator it = begin(); it != end(); it++)
		(*it)->decomposeRateMatrix();
	if (phylo_tree->vector_size == 1)
		return;
	// rearrange eigen to obey vector_size
	size_t vsize = phylo_tree->vector_size;
	size_t states2 = num_states*num_states;
	size_t ptn, i, x;

    size_t max_size = get_safe_upper_limit(size());

    // copy dummy values
    for (size_t m = size(); m < max_size; m++) {
        memcpy(&eigenvalues[m*num_states], &eigenvalues[(m-1)*num_states], sizeof(double)*num_states);
        memcpy(&eigenvectors[m*states2], &eigenvectors[(m-1)*states2], sizeof(double)*states2);
        memcpy(&inv_eigenvectors[m*states2], &inv_eigenvectors[(m-1)*states2], sizeof(double)*states2);
    }

    double new_eval[num_states*vsize];
    double new_evec[states2*vsize];
    double new_inv_evec[states2*vsize];

	for (ptn = 0; ptn < size(); ptn += vsize) {
		double *eval_ptr = &eigenvalues[ptn*num_states];
		double *evec_ptr = &eigenvectors[ptn*states2];
		double *inv_evec_ptr = &inv_eigenvectors[ptn*states2];
		for (i = 0; i < vsize; i++) {
			for (x = 0; x < num_states; x++)
				new_eval[x*vsize+i] = eval_ptr[x];
			for (x = 0; x < states2; x++) {
				new_evec[x*vsize+i] = evec_ptr[x];
				new_inv_evec[x*vsize+i] = inv_evec_ptr[x];
			}
			eval_ptr += num_states;
			evec_ptr += states2;
			inv_evec_ptr += states2;
		}
		// copy new values
        memcpy(&eigenvalues[ptn*num_states], new_eval, sizeof(double)*num_states*vsize);
        memcpy(&eigenvectors[ptn*states2], new_evec, sizeof(double)*states2*vsize);
        memcpy(&inv_eigenvectors[ptn*states2], new_inv_evec, sizeof(double)*states2*vsize);
	}
}


bool ModelSet::getVariables(double* variables)
{
	ASSERT(size());
    bool changed = false;
	for (iterator it = begin(); it != end(); it++)
		changed |= (*it)->getVariables(variables);
    return changed;
}

void ModelSet::setVariables(double* variables)
{
	ASSERT(size());
	front()->setVariables(variables);
}


ModelSet::~ModelSet()
{
	for (reverse_iterator rit = rbegin(); rit != rend(); rit++) {
		(*rit)->eigenvalues = NULL;
		(*rit)->eigenvectors = NULL;
		(*rit)->inv_eigenvectors = NULL;
		delete (*rit);
	}
}

void ModelSet::joinEigenMemory() {
    size_t nmixtures = get_safe_upper_limit(size());
	if (eigenvalues) aligned_free(eigenvalues);
	if (eigenvectors) aligned_free(eigenvectors);
	if (inv_eigenvectors) aligned_free(inv_eigenvectors);

    size_t states2 = num_states*num_states;

	eigenvalues = aligned_alloc<double>(num_states*nmixtures);
	eigenvectors = aligned_alloc<double>(states2*nmixtures);
	inv_eigenvectors = aligned_alloc<double>(states2*nmixtures);

	// assigning memory for individual models
	size_t m = 0;
	for (iterator it = begin(); it != end(); it++, m++) {
        // first copy memory for eigen stuffs
        memcpy(&eigenvalues[m*num_states], (*it)->eigenvalues, num_states*sizeof(double));
        memcpy(&eigenvectors[m*states2], (*it)->eigenvectors, states2*sizeof(double));
        memcpy(&inv_eigenvectors[m*states2], (*it)->inv_eigenvectors, states2*sizeof(double));
        // then delete
		if ((*it)->eigenvalues) aligned_free((*it)->eigenvalues);
		if ((*it)->eigenvectors) aligned_free((*it)->eigenvectors);
		if ((*it)->inv_eigenvectors) aligned_free((*it)->inv_eigenvectors);
//		if ((*it)->eigen_coeff) aligned_free((*it)->eigen_coeff);

        // and assign new memory
		(*it)->eigenvalues = &eigenvalues[m*num_states];
		(*it)->eigenvectors = &eigenvectors[m*states2];
		(*it)->inv_eigenvectors = &inv_eigenvectors[m*states2];
	}

    // copy dummy values
    for (m = size(); m < nmixtures; m++) {
        memcpy(&eigenvalues[m*num_states], &eigenvalues[(m-1)*num_states], sizeof(double)*num_states);
        memcpy(&eigenvectors[m*states2], &eigenvectors[(m-1)*states2], sizeof(double)*states2);
        memcpy(&inv_eigenvectors[m*states2], &inv_eigenvectors[(m-1)*states2], sizeof(double)*states2);
    }
}