1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
//
// C++ Implementation: substmodel
//
// Description:
//
//
// Author: BUI Quang Minh, Steffen Klaere, Arndt von Haeseler <minh.bui@univie.ac.at>, (C) 2008
//
// Copyright: See COPYING file that comes with this distribution
//
//
#include "modelsubst.h"
#include "utils/tools.h"
ModelSubst::ModelSubst(int nstates) : Optimization(), CheckpointFactory()
{
num_states = nstates;
name = "JC";
full_name = "JC (Juke and Cantor, 1969)";
state_freq = new double[num_states];
for (int i = 0; i < num_states; i++)
state_freq[i] = 1.0 / num_states;
freq_type = FREQ_EQUAL;
}
void ModelSubst::startCheckpoint() {
checkpoint->startStruct("ModelSubst");
}
void ModelSubst::saveCheckpoint() {
startCheckpoint();
// CKP_SAVE(num_states);
// CKP_SAVE(name);
// CKP_SAVE(full_name);
// CKP_SAVE(freq_type);
if (freq_type == FREQ_ESTIMATE)
CKP_ARRAY_SAVE(num_states, state_freq);
endCheckpoint();
CheckpointFactory::saveCheckpoint();
}
void ModelSubst::restoreCheckpoint() {
CheckpointFactory::restoreCheckpoint();
startCheckpoint();
// CKP_RESTORE(num_states);
// CKP_RESTORE(name);
// CKP_RESTORE(full_name);
// int freq_type = this->freq_type;
// CKP_RESTORE(freq_type);
// this->freq_type = (StateFreqType)freq_type;
if (freq_type == FREQ_ESTIMATE)
CKP_ARRAY_RESTORE(num_states, state_freq);
endCheckpoint();
decomposeRateMatrix();
}
// here the simplest Juke-Cantor model is implemented, valid for all kind of data (DNA, AA,...)
void ModelSubst::computeTransMatrix(double time, double *trans_matrix, int mixture) {
double non_diagonal = (1.0 - exp(-time*num_states/(num_states - 1))) / num_states;
double diagonal = 1.0 - non_diagonal * (num_states - 1);
int nstates_sqr = num_states * num_states;
for (int i = 0; i < nstates_sqr; i++)
if (i % (num_states+1) == 0)
trans_matrix[i] = diagonal;
else
trans_matrix[i] = non_diagonal;
}
double ModelSubst::computeTrans(double time, int state1, int state2) {
double expt = exp(-time * num_states / (num_states-1));
if (state1 != state2) {
return (1.0 - expt) / num_states;
}
return (1.0 + (num_states-1)*expt) / num_states;
/* double non_diagonal = (1.0 - exp(-time*num_states/(num_states - 1))) / num_states;
if (state1 != state2)
return non_diagonal;
return 1.0 - non_diagonal * (num_states - 1);*/
}
double ModelSubst::computeTrans(double time, int model_id, int state1, int state2) {
return computeTrans(time, state1, state2);
}
double ModelSubst::computeTrans(double time, int state1, int state2, double &derv1, double &derv2) {
double coef = -double(num_states) / (num_states-1);
double expt = exp(time * coef);
if (state1 != state2) {
derv1 = expt / (num_states-1);
derv2 = derv1 * coef;
return (1.0 - expt) / num_states;
}
derv1 = -expt;
derv2 = derv1 * coef;
return (1.0 + (num_states-1)*expt) / num_states;
}
double ModelSubst::computeTrans(double time, int model_id, int state1, int state2, double &derv1, double &derv2) {
return computeTrans(time, state1, state2, derv1, derv2);
}
void ModelSubst::getRateMatrix(double *rate_mat) {
int nrate = getNumRateEntries();
for (int i = 0; i < nrate; i++)
rate_mat[i] = 1.0;
}
void ModelSubst::getQMatrix(double *q_mat) {
int i, j, k;
for (i = 0, k = 0; i < num_states; i++)
for (j = 0; j < num_states; j++, k++)
if (i == j) q_mat[k] = -1.0; else q_mat[k] = 1.0/3;
}
void ModelSubst::getStateFrequency(double *state_freq, int mixture) {
double freq = 1.0 / num_states;
for (int i = 0; i < num_states; i++)
state_freq[i] = freq;
}
void ModelSubst::computeTransDerv(double time, double *trans_matrix,
double *trans_derv1, double *trans_derv2, int mixture)
{
double expf = exp(-time*num_states/(num_states - 1));
double non_diag = (1.0 - expf) / num_states;
double diag = 1.0 - non_diag * (num_states - 1);
double derv1_non_diag = expf / (num_states-1);
double derv1_diag = -expf;
double derv2_non_diag = -derv1_non_diag*num_states/(num_states-1);
double derv2_diag = -derv1_diag*num_states/(num_states-1);
int nstates_sqr = num_states * num_states;
int i;
for (i = 0; i < nstates_sqr; i++)
if (i % (num_states+1) == 0) {
trans_matrix[i] = diag;
trans_derv1[i] = derv1_diag;
trans_derv2[i] = derv2_diag;
} else {
trans_matrix[i] = non_diag;
trans_derv1[i] = derv1_non_diag;
trans_derv2[i] = derv2_non_diag;
}
// DEBUG
/*int j;
if (verbose_mode == VB_DEBUG) {
cout.precision(4);
cout << "time = " << time << endl;
for (i = 0; i < num_states; i++, cout << endl) {
for (j = 0; j < num_states; j++) {
cout.width(8);
cout << right << trans_matrix[i*num_states+j] << " ";
}
cout << "| ";
for (j = 0; j < num_states; j++) {
cout << right << trans_derv1[i*num_states+j] << " ";
cout.width(8);
}
cout << "| ";
for (j = 0; j < num_states; j++) {
cout.width(8);
cout << right << trans_derv2[i*num_states+j] << " ";
}
}
cout.precision(10);
}*/
}
double *ModelSubst::newTransMatrix() {
return new double[num_states * num_states];
}
ModelSubst::~ModelSubst()
{
if (state_freq) delete [] state_freq;
}
|