1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
|
//
// C++ Interface: substmodel
//
// Description:
//
//
// Author: BUI Quang Minh, Steffen Klaere, Arndt von Haeseler <minh.bui@univie.ac.at>, (C) 2008
//
// Copyright: See COPYING file that comes with this distribution
//
//
#ifndef SUBSTMODEL_H
#define SUBSTMODEL_H
#include <string>
#include "utils/tools.h"
#include "utils/optimization.h"
#include "utils/checkpoint.h"
using namespace std;
/**
Substitution model abstract class
@author BUI Quang Minh, Steffen Klaere, Arndt von Haeseler <minh.bui@univie.ac.at>
*/
class ModelSubst: public Optimization, public CheckpointFactory
{
friend class ModelFactory;
public:
/**
constructor
@param nstates number of states, e.g. 4 for DNA, 20 for proteins.
*/
ModelSubst(int nstates);
/**
@return the number of dimensions
*/
virtual int getNDim() { return 0; }
/**
@return the number of dimensions corresponding to state frequencies
*/
virtual int getNDimFreq() { return 0; }
/**
* @return model name
*/
virtual string getName() { return name; }
/**
* @return model name with parameters in form of e.g. GTR{a,b,c,d,e,f}
*/
virtual string getNameParams() { return name; }
/**
@return TRUE if model is time-reversible, FALSE otherwise
*/
virtual bool isReversible() { return true; };
/**
* @return TRUE if this is a site-specific model, FALSE otherwise
*/
virtual bool isSiteSpecificModel() { return false; }
/**
* @return TRUE if this is a mixture model, FALSE otherwise
*/
virtual bool isMixture() { return false; }
/**
* Confer to modelpomo.h.
*
* @return TRUE if PoMo is being used, FALSE otherise.
*/
virtual bool isPolymorphismAware() { return false; }
/**
* @return the number of mixture model components
*/
virtual int getNMixtures() { return 1; }
/**
* @param cat mixture class
* @return weight of a mixture model component
*/
virtual double getMixtureWeight(int cat) { return 1.0; }
/**
* @param cat mixture class
* @return weight of a mixture model component
*/
virtual void setMixtureWeight(int cat, double weight) {}
/**
* @param cat mixture class
* @return weight of a mixture model component
*/
virtual void setFixMixtureWeight(bool fix_prop) {}
/**
* @param cat mixture class ID
* @return corresponding mixture model component
*/
virtual ModelSubst* getMixtureClass(int cat) { return NULL; }
/**
* @param cat mixture class ID
* @param m mixture model class to set
*/
virtual void setMixtureClass(int cat, ModelSubst* m) { }
/**
@return the number of rate entries, equal to the number of elements
in the upper-diagonal of the rate matrix (since model is reversible)
*/
virtual int getNumRateEntries() { return num_states*(num_states-1)/2; }
/**
* get the size of transition matrix, default is num_states*num_states.
* can be changed for e.g. site-specific model
*/
virtual int getTransMatrixSize() { return num_states * num_states; }
/**
compute the transition probability matrix. One should override this function when defining new model.
The default is the Juke-Cantor model, valid for all kind of data (DNA, AA, Codon, etc)
@param time time between two events
@param mixture (optional) class for mixture model
@param trans_matrix (OUT) the transition matrix between all pairs of states.
Assume trans_matrix has size of num_states * num_states.
*/
virtual void computeTransMatrix(double time, double *trans_matrix, int mixture = 0);
/**
compute the transition probability between two states.
One should override this function when defining new model.
The default is the Juke-Cantor model, valid for all kind of data (DNA, AA, Codon, etc)
@param time time between two events
@param state1 first state
@param state2 second state
*/
virtual double computeTrans(double time, int state1, int state2);
/**
compute the transition probability between two states at a specific model ID, useful for partition model
One should override this function when defining new model.
The default is the Juke-Cantor model, valid for all kind of data (DNA, AA, Codon, etc)
@param time time between two events
@param model_id model ID
@param state1 first state
@param state2 second state
*/
virtual double computeTrans(double time, int model_id, int state1, int state2);
/**
compute the transition probability and its 1st and 2nd derivatives between two states.
One should override this function when defining new model.
The default is the Juke-Cantor model, valid for all kind of data (DNA, AA, Codon, etc)
@param time time between two events
@param state1 first state
@param state2 second state
@param derv1 (OUT) 1st derivative
@param derv2 (OUT) 2nd derivative
*/
virtual double computeTrans(double time, int state1, int state2, double &derv1, double &derv2);
/**
compute the transition probability and its 1st and 2nd derivatives between two states at a specific model ID
One should override this function when defining new model.
The default is the Juke-Cantor model, valid for all kind of data (DNA, AA, Codon, etc)
@param time time between two events
@param model_id model ID
@param state1 first state
@param state2 second state
@param derv1 (OUT) 1st derivative
@param derv2 (OUT) 2nd derivative
*/
virtual double computeTrans(double time, int model_id, int state1, int state2, double &derv1, double &derv2);
/**
* @return pattern ID to model ID map, useful for e.g., partition model
* @param ptn pattern ID of the alignment
*/
virtual int getPtnModelID(int ptn) { return 0; }
/**
* Get the rate parameters like a,b,c,d,e,f for DNA model!!!
Get the above-diagonal entries of the rate matrix, assuming that the last element is 1.
ONE SHOULD OVERRIDE THIS FUNCTION WHEN DEFINING NEW MODEL!!!
The default is equal rate of 1 (JC Model), valid for all kind of data.
@param rate_mat (OUT) upper-triangle rate matrix. Assume rate_mat has size of num_states*(num_states-1)/2
*/
virtual void getRateMatrix(double *rate_mat);
/**
Get the rate matrix Q. One should override this function when defining new model.
The default is equal rate of 1 (JC Model), valid for all kind of data.
@param rate_mat (OUT) upper-triagle rate matrix. Assume rate_mat has size of num_states*(num_states-1)/2
*/
virtual void getQMatrix(double *q_mat);
/**
compute the state frequency vector. One should override this function when defining new model.
The default is equal state sequency, valid for all kind of data.
@param mixture (optional) class for mixture model
@param state_freq (OUT) state frequency vector. Assume state_freq has size of num_states
*/
virtual void getStateFrequency(double *state_freq, int mixture = 0);
/**
get frequency type
@return frequency type
*/
virtual StateFreqType getFreqType() { return FREQ_EQUAL; }
/**
allocate memory for a transition matrix. One should override this function when defining new model
such as Gamma model. The default is to allocate a double vector of size num_states * num_states. This
is equivalent to the memory needed by a square matrix.
@return the pointer to the newly allocated transition matrix
*/
virtual double *newTransMatrix();
/**
compute the transition probability matrix.and the derivative 1 and 2
@param time time between two events
@param mixture (optional) class for mixture model
@param trans_matrix (OUT) the transition matrix between all pairs of states.
Assume trans_matrix has size of num_states * num_states.
@param trans_derv1 (OUT) the 1st derivative matrix between all pairs of states.
@param trans_derv2 (OUT) the 2nd derivative matrix between all pairs of states.
*/
virtual void computeTransDerv(double time, double *trans_matrix,
double *trans_derv1, double *trans_derv2, int mixture = 0);
/**
decompose the rate matrix into eigenvalues and eigenvectors
*/
virtual void decomposeRateMatrix() {}
/**
set number of optimization steps
@param opt_steps number of optimization steps
*/
virtual void setOptimizeSteps(int optimize_steps) { }
/**
optimize model parameters. One should override this function when defining new model.
The default does nothing since it is a Juke-Cantor type model, hence no parameters involved.
@param epsilon accuracy of the parameters during optimization
@return the best likelihood
*/
virtual double optimizeParameters(double gradient_epsilon) { return 0.0; }
/**
* @return TRUE if parameters are at the boundary that may cause numerical unstability
*/
virtual bool isUnstableParameters() { return false; }
/**
write information
@param out output stream
*/
virtual void writeInfo(ostream &out) {}
/**
report model
@param out output stream
*/
virtual void report(ostream &out) {}
virtual double *getEigenvalues() const {
return NULL;
}
virtual double *getEigenvectors() const {
return NULL;
}
virtual double *getInverseEigenvectors() const {
return NULL;
}
/**
* compute the memory size for the model, can be large for site-specific models
* @return memory size required in bytes
*/
virtual uint64_t getMemoryRequired() {
return num_states*sizeof(double);
}
/**
* get the underlying mutation model, used with PoMo model
*/
virtual ModelSubst *getMutationModel() { return this; }
/*****************************************************
Checkpointing facility
*****************************************************/
/**
start structure for checkpointing
*/
virtual void startCheckpoint();
/**
save object into the checkpoint
*/
virtual void saveCheckpoint();
/**
restore object from the checkpoint
*/
virtual void restoreCheckpoint();
/**
number of states
*/
int num_states;
/**
name of the model
*/
string name;
/**
full name of the model
*/
string full_name;
/**
state frequencies
*/
double *state_freq;
/**
state frequency type
*/
StateFreqType freq_type;
/**
destructor
*/
virtual ~ModelSubst();
protected:
/**
this function is served for the multi-dimension optimization. It should pack the model parameters
into a vector that is index from 1 (NOTE: not from 0)
@param variables (OUT) vector of variables, indexed from 1
*/
virtual void setVariables(double *variables) {}
/**
this function is served for the multi-dimension optimization. It should assign the model parameters
from a vector of variables that is index from 1 (NOTE: not from 0)
@param variables vector of variables, indexed from 1
@return TRUE if parameters are changed, FALSE otherwise (2015-10-20)
*/
virtual bool getVariables(double *variables) { return false; }
};
#endif
|