File: rategamma.cpp

package info (click to toggle)
iqtree 1.6.12%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 12,140 kB
  • sloc: cpp: 111,752; ansic: 53,619; python: 242; sh: 195; makefile: 52
file content (479 lines) | stat: -rw-r--r-- 15,331 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
/***************************************************************************
 *   Copyright (C) 2009-2015 by                                            *
 *   BUI Quang Minh <minh.bui@univie.ac.at>                                *
 *   Lam-Tung Nguyen <nltung@gmail.com>                                    *
 *                                                                         *
 *                                                                         *
 *   This program is free software; you can redistribute it and/or modify  *
 *   it under the terms of the GNU General Public License as published by  *
 *   the Free Software Foundation; either version 2 of the License, or     *
 *   (at your option) any later version.                                   *
 *                                                                         *
 *   This program is distributed in the hope that it will be useful,       *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
 *   GNU General Public License for more details.                          *
 *                                                                         *
 *   You should have received a copy of the GNU General Public License     *
 *   along with this program; if not, write to the                         *
 *   Free Software Foundation, Inc.,                                       *
 *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
 ***************************************************************************/
#include "tree/phylotree.h"
#include "rategamma.h"
#include <cmath>



RateGamma::RateGamma(int ncat, double shape, bool median, PhyloTree *tree) : RateHeterogeneity()
{
	ncategory = ncat;
	phylo_tree = tree;
	cut_median = median;
	//gamma_shape = MAX_GAMMA_SHAPE-1.0;
	gamma_shape = max(tree->params->min_gamma_shape, fabs(shape));
	fix_gamma_shape = false;
	rates = NULL;
	if (shape > 0.0) {
		// true unless -optfromgiven cmd line option
		fix_gamma_shape = !(Params::getInstance().optimize_from_given_params);
	} else if (shape == 0.0) {
		gamma_shape = max(tree->params->min_gamma_shape*5.0, random_double());
		cout << "Randomize initial gamma shape (alpha): " << gamma_shape << endl;
	}
	setNCategory(ncat);
}

void RateGamma::startCheckpoint() {
    checkpoint->startStruct("RateGamma");
}

void RateGamma::saveCheckpoint() {
    startCheckpoint();
    CKP_SAVE(gamma_shape);
//    CKP_SAVE(fix_gamma_shape);
//    CKP_SAVE(cut_median);
//    CKP_SAVE(ncategory);
    endCheckpoint();
    RateHeterogeneity::saveCheckpoint();
}

void RateGamma::restoreCheckpoint() {
    RateHeterogeneity::restoreCheckpoint();
    startCheckpoint();
    CKP_RESTORE(gamma_shape);
//    CKP_RESTORE(fix_gamma_shape);
//    CKP_RESTORE(cut_median);
//    CKP_RESTORE(ncategory);
    endCheckpoint();
    // necessary compute rates after restoring gamma_shape
	computeRates();
}

void RateGamma::setNCategory(int ncat) {
	ncategory = ncat;
	if (rates) delete [] rates;
	rates = new double[ncategory];
    for (int cat = 0; cat < ncategory; cat++)
        rates[cat] = 1.0;
	name = "+G" + convertIntToString(ncategory);
	full_name = "Gamma with " + convertIntToString(ncategory) + " categories";
	computeRates();
}


string RateGamma::getNameParams() {
	ostringstream str;
	str << "+G" << ncategory << '{' << gamma_shape << '}';
	return str.str();
}

RateGamma::~RateGamma()
{
	if (rates) delete [] rates;
	rates = NULL;
}

void RateGamma::computeRates() {
	int cat; /* category id */
	double sum_rates = 0.0;

	if (ncategory == 1) {
		rates[0] = 1.0;
		return;
	}

    double curScale = 0.0;
    for (cat = 0; cat < ncategory; cat++)
        curScale += rates[cat];

	if (!cut_median) {
		computeRatesMean();
	} else {
		for (cat = 0; cat < ncategory; cat ++) {
			double prob = ( 2.0 * cat + 1 ) / (2.0 * ncategory);
			double perPoint_ = cmpPointChi2 (prob, 2.0 * gamma_shape) / (2.0 * gamma_shape);
			perPoint_ = perPoint_ < 0.0 ? -perPoint_ : perPoint_;
			rates[ cat ] = perPoint_;
		}

		//rescale in order to make mean equal to 1.0


		for (cat = 0; cat < ncategory; cat ++)
			sum_rates += rates[ cat];

		for (cat = 0; cat < ncategory; cat ++)
			rates[ cat ] = rates[ cat ] * ncategory / sum_rates;
	}

	/* BQM 2015-02-25: Testing if RAxML forgot this rate rescaling step */
	if (phylo_tree && phylo_tree->params && phylo_tree->params->no_rescale_gamma_invar)
		return;

    double newScale = 0.0;
    for (cat = 0; cat < ncategory; cat++)
        newScale += rates[cat];

    if (newScale != curScale) {
        for (cat = 0; cat < ncategory; cat++)
            rates[cat] *= curScale/newScale;    
    }

	/* if invariable sites are present */
//	if (Params::getInstance().optimize_alg_gammai != "EM") {
//		double p_inv = getPInvar();
//		for (cat = 0; cat < ncategory; cat++)
//			rates[cat] = rates[cat]/(1.0 - p_inv);
//	}

	/* check for very small rates */
//	for (cat = 0; cat < ncategory; cat ++)
//		if (rates[cat] < MIN_GAMMA_RATE)
//			rates[cat] = MIN_GAMMA_RATE;
}

/*double RateGamma::cmpPerPointGamma (const double prob, const double shape) {
}*/

void RateGamma::computeRatesMean () {
	int i;
	double lnga1=cmpLnGamma(gamma_shape+1);
	double *freqK = new double[ncategory];
	for (i=0; i<ncategory-1; i++) /* cutting points, Eq. 9 */
		freqK[i]=cmpPointChi2((i+1.0)/ncategory, 2.0 * gamma_shape) / (2.0 * gamma_shape);
	for (i=0; i<ncategory-1; i++) /* Eq. 10 */
		freqK[i]=cmpIncompleteGamma(freqK[i]*gamma_shape, gamma_shape+1, lnga1);

	rates[0] = freqK[0]*ncategory;
	rates[ncategory-1] = (1-freqK[ncategory-2])*ncategory;
	for (i=1; i<ncategory-1; i++)  rates[i] = (freqK[i]-freqK[i-1])*ncategory;
	delete [] freqK;
}

void RateGamma::setGammaShape(double gs) {
	gamma_shape = gs;
    computeRates();
}

double RateGamma::computeFunction(double shape) {
	if (gamma_shape != shape) {
		gamma_shape = shape;
		computeRates();
		phylo_tree->clearAllPartialLH();
	}
	return -phylo_tree->computeLikelihood();
}

double RateGamma::targetFunk(double x[]) {
	getVariables(x);
	phylo_tree->clearAllPartialLH();
	return -phylo_tree->computeLikelihood();
}

void RateGamma::setBounds(double *lower_bound, double *upper_bound, bool *bound_check) {
	if (getNDim() == 0) return;
	lower_bound[1] = phylo_tree->params->min_gamma_shape;
	upper_bound[1] = MAX_GAMMA_SHAPE;
	bound_check[1] = false;
}

void RateGamma::setVariables(double *variables) {
	if (getNDim() == 0) return;
	variables[1] = gamma_shape;
}

bool RateGamma::getVariables(double *variables) {
	if (getNDim() == 0) return false;
    bool changed = (gamma_shape != variables[1]);
	gamma_shape = variables[1];
    if (changed)
        computeRates();
    return changed;
}

double RateGamma::optimizeParameters(double gradient_epsilon, double min_gamma, double max_gamma) {
	if (fix_gamma_shape)
		return phylo_tree->computeLikelihood();
	if (verbose_mode >= VB_MAX)
		cout << "Optimizing gamma shape..." << endl;
	double negative_lh;
	double current_shape = gamma_shape;
	double ferror, optx;
	optx = minimizeOneDimen(min_gamma, current_shape, max_gamma, max(gradient_epsilon, TOL_GAMMA_SHAPE), &negative_lh, &ferror);
//	if (gamma_shape != optx) {
//		gamma_shape = optx;
//		computeRates();
//		phylo_tree->clearAllPartialLH();
//	}
//	return phylo_tree->computeLikelihood();
	return -computeFunction(optx);
}

double RateGamma::optimizeParameters(double gradient_epsilon) {
	if (fix_gamma_shape)
		return phylo_tree->computeLikelihood();
	if (verbose_mode >= VB_MAX)
		cout << "Optimizing gamma shape..." << endl;
	double negative_lh;
	double current_shape = gamma_shape;
	double ferror, optx;
	optx = minimizeOneDimen(phylo_tree->params->min_gamma_shape, current_shape, MAX_GAMMA_SHAPE, max(gradient_epsilon, TOL_GAMMA_SHAPE), &negative_lh, &ferror);
//	gamma_shape = optx;
//	computeRates();
//	phylo_tree->clearAllPartialLH();
//	return -negative_lh;
	return -computeFunction(optx);
}

void RateGamma::writeInfo(ostream &out) {
	out << "Gamma shape alpha: " << gamma_shape << endl;
	//out << " (" << (cut_median ? "median" : "mean") << " rate per category)" << endl;
	//out << "Number of categories: " << ncategory << endl;
}

void RateGamma::writeParameters(ostream &out) {
	out << "\t" << gamma_shape;
}

int RateGamma::computePatternRates(DoubleVector &pattern_rates, IntVector &pattern_cat) {
	//cout << "Computing Gamma site rates by empirical Bayes..." << endl;

	phylo_tree->computePatternLhCat(WSL_RATECAT);

	int npattern = phylo_tree->aln->getNPattern();
	pattern_rates.resize(npattern);
	pattern_cat.resize(npattern);

	double *lh_cat = phylo_tree->_pattern_lh_cat;
	for (int i = 0; i < npattern; i++) {
		double sum_rate = 0.0, sum_lh = 0.0;
		int best = 0;
		for (int c = 0; c < ncategory; c++) {
			sum_rate += rates[c] * lh_cat[c];
			sum_lh += lh_cat[c];
			if (lh_cat[c] > lh_cat[best] || (lh_cat[c] == lh_cat[best] && random_double()<0.5))  // break tie at random
                best = c;
		}
		pattern_rates[i] = sum_rate / sum_lh;
		pattern_cat[i] = best;
		lh_cat += ncategory;
	}
    return ncategory;

//	pattern_rates.clear();
//	pattern_rates.insert(pattern_rates.begin(), ptn_rates, ptn_rates + npattern);
//	pattern_cat.resize(npattern, 0);
//	for (int i = 0; i < npattern; i++)
//		for (int j = 1; j < ncategory; j++)
//			if (fabs(rates[j] - ptn_rates[i]) < fabs(rates[pattern_cat[i]] - ptn_rates[i]))
//				pattern_cat[i] = j;
//	delete [] ptn_rates;
}


/*NUMERICAL SUBROUTINES
**************************************************************************************

**************************************************************************************
**************************************************************************************
**************************************************************************************
**************************************************************************************/

/* THE FOLLOWING CODE COMES FROM tools.c in Yang's PAML package */

//----------------------------------------------------------------------------------------
double RateGamma::cmpLnGamma (double alpha) {
	/* returns ln(gamma(alpha)) for alpha>0, accurate to 10 decimal places.
	   Stirling's formula is used for the central polynomial part of the procedure.
	   Pike MC & Hill ID (1966) Algorithm 291: Logarithm of the gamma function.
	   Communications of the Association for Computing Machinery, 9:684
	*/
	double x=alpha, f=0, z;

	if (x<7) {
		f=1;  z=x-1;
		while (++z<7)  f*=z;
		x=z;   f=-log(f);
	}
	z = 1/(x*x);
	return  f + (x-0.5)*log(x) - x + .918938533204673
	        + (((-.000595238095238*z+.000793650793651)*z-.002777777777778)*z
	           +.083333333333333)/x;
} //end of function cmpLnGamma

//----------------------------------------------------------------------------------------
double RateGamma::cmpIncompleteGamma (double x, double alpha, double ln_gamma_alpha) {
	/* returns the incomplete gamma ratio I(x,alpha) where x is the upper
		   limit of the integration and alpha is the shape parameter.
	   returns (-1) if in error
	   (1) series expansion     if (alpha>x || x<=1)
	   (2) continued fraction   otherwise

	   RATNEST FORTRAN by
	   Bhattacharjee GP (1970) The incomplete gamma integral.  Applied Statistics,
	   19: 285-287 (AS32)
	*/

	int i;
	double p=alpha, g=ln_gamma_alpha;
	double accurate=1e-8, overflow=1e30;
	double factor, gin=0, rn=0, a=0,b=0,an=0,dif=0, term=0, pn[6];

	if (x==0) return (0);
	if (x<0 || p<=0) return (-1);

	factor=exp(p*log(x)-x-g);
	if (x>1 && x>=p) goto l30;
	/* (1) series expansion */
	gin=1;  term=1;  rn=p;
l20:
	rn++;
	term*=x/rn;   gin+=term;

	if (term > accurate) goto l20;

	gin*=factor/p;
	goto l50;
l30:

	/* (2) continued fraction */
	a=1-p;   b=a+x+1;  term=0;
	pn[0]=1;  pn[1]=x;  pn[2]=x+1;  pn[3]=x*b;
	gin=pn[2]/pn[3];
l32:
	a++;  b+=2;  term++;   an=a*term;
	for (i=0; i<2; i++) pn[i+4]=b*pn[i+2]-an*pn[i];
	if (pn[5] == 0) goto l35;
	rn=pn[4]/pn[5];   dif=fabs(gin-rn);
	if (dif>accurate) goto l34;
	if (dif<=accurate*rn) goto l42;
l34:
	gin=rn;
l35:
	for (i=0; i<4; i++) pn[i]=pn[i+2];
	if (fabs(pn[4]) < overflow) goto l32;
	for (i=0; i<4; i++) pn[i]/=overflow;
	goto l32;
l42:
	gin=1-factor*gin;

l50:
	return (gin);
} //end of function cmpIncompleteGamma


//----------------------------------------------------------------------------------------
/* functions concerning the CDF and percentage points of the gamma and
   Chi2 distribution
*/
double RateGamma::cmpPointNormal (double prob) {
	/* returns z so that Prob{x<z}=prob where x ~ N(0,1) and (1e-12)<prob<1-(1e-12)
	   returns (-9999) if in error
	   Odeh RE & Evans JO (1974) The percentage points of the normal distribution.
	   Applied Statistics 22: 96-97 (AS70)

	   Newer methods:
	     Wichura MJ (1988) Algorithm AS 241: the percentage points of the
	       normal distribution.  37: 477-484.
	     Beasley JD & Springer SG  (1977).  Algorithm AS 111: the percentage
	       points of the normal distribution.  26: 118-121.

	*/
	double a0=-.322232431088, a1=-1, a2=-.342242088547, a3=-.0204231210245;
	double a4=-.453642210148e-4, b0=.0993484626060, b1=.588581570495;
	double b2=.531103462366, b3=.103537752850, b4=.0038560700634;
	double y, z=0, p=prob, p1;

	p1 = (p<0.5 ? p : 1-p);

	if (p1<1e-20) return (-9999);

	y = sqrt (log(1/(p1*p1)));
	z = y + ((((y*a4+a3)*y+a2)*y+a1)*y+a0) / ((((y*b4+b3)*y+b2)*y+b1)*y+b0);
	return (p<0.5 ? -z : z);
} //end of function cmpPointNormal



//----------------------------------------------------------------------------------------

double RateGamma::cmpPointChi2 (double prob, double v) {
	/* returns z so that Prob{x<z}=prob where x is Chi2 distributed with df=v
	   returns -1 if in error.   0.000002<prob<0.999998
	   RATNEST FORTRAN by
	       Best DJ & Roberts DE (1975) The percentage points of the
	       Chi2 distribution.  Applied Statistics 24: 385-388.  (AS91)
	   Converted into C by Ziheng Yang, Oct. 1993.
	*/
	double e=.5e-6, aa=.6931471805, p=prob, g;
	double xx, c, ch, a=0,q=0,p1=0,p2=0,t=0,x=0,b=0,s1,s2,s3,s4,s5,s6;

	if (p<.000002 || p>.999998 || v<=0) return (-1);

	g = cmpLnGamma (v/2);
	xx=v/2;   c=xx-1;
	if (v >= -1.24*log(p)) goto l1;

	ch=pow((p*xx*exp(g+xx*aa)), 1/xx);
	if (ch-e<0) return (ch);
	goto l4;
l1:
	if (v>.32) goto l3;
	ch=0.4;   a=log(1-p);
l2:
	q=ch;  p1=1+ch*(4.67+ch);  p2=ch*(6.73+ch*(6.66+ch));
	t=-0.5+(4.67+2*ch)/p1 - (6.73+ch*(13.32+3*ch))/p2;
	ch-=(1-exp(a+g+.5*ch+c*aa)*p2/p1)/t;
	if (fabs(q/ch-1)-.01 <= 0) goto l4;
	else                       goto l2;

l3:
	x=cmpPointNormal (p);
	p1=0.222222/v;   ch=v*pow((x*sqrt(p1)+1-p1), 3.0);
	if (ch>2.2*v+6)  ch=-2*(log(1-p)-c*log(.5*ch)+g);
l4:

	do {
		q=ch;   p1=.5*ch;
		if ((t=cmpIncompleteGamma (p1, xx, g))<0) {
			return (-1);
		}
		p2=p-t;
		t=p2*exp(xx*aa+g+p1-c*log(ch));
		b=t/ch;  a=0.5*t-b*c;

		s1=(210+a*(140+a*(105+a*(84+a*(70+60*a))))) / 420;
		s2=(420+a*(735+a*(966+a*(1141+1278*a))))/2520;
		s3=(210+a*(462+a*(707+932*a)))/2520;
		s4=(252+a*(672+1182*a)+c*(294+a*(889+1740*a)))/5040;
		s5=(84+264*a+c*(175+606*a))/2520;
		s6=(120+c*(346+127*c))/5040;
		ch+=t*(1+0.5*t*s1-b*c*(s1-b*(s2-b*(s3-b*(s4-b*(s5-b*s6))))));
	} while (fabs(q/ch-1) > e);

	return (ch);
} //end of function cmpPointChi2


/* THE END OF THE CODES COMMING FROM tools.c in Yang's PAML package */