1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
|
//
// rateheterotachy.cpp
// iqtree
//
// Created by Minh Bui on 11/8/16.
//
//
#include "tree/phylotree.h"
#include "rateheterotachy.h"
RateHeterotachy::RateHeterotachy(int ncat, string params, PhyloTree *tree) : RateHeterogeneity() {
phylo_tree = tree;
prop = NULL;
fix_params = 0;
optimize_steps = 0;
setNCategory(ncat);
if (params.empty()) return;
DoubleVector params_vec;
try {
convert_double_vec(params.c_str(), params_vec);
if (params_vec.size() != ncategory)
outError("Number of parameters for rate heterotachy model must equal number of categories");
int i;
double sum_prop;
for (i = 0, sum_prop = 0.0; i < ncategory; i++) {
prop[i] = params_vec[i];
sum_prop += prop[i];
}
if (fabs(sum_prop-1.0) > 1e-5)
outError("Sum of category proportions not equal to 1");
// Minh: Please double check this one. It isn't quite so
// clear what fix_params is doing, as it seems to take values
// 0, 1 or 2. -- MDW
//BQM: that OK
if (!(tree->params->optimize_from_given_params)) {
fix_params = 1;
} // else fix_params == 0 still.
} catch (string &str) {
outError(str);
}
}
/**
destructor
*/
RateHeterotachy::~RateHeterotachy() {
if (prop)
delete [] prop;
prop = NULL;
}
void RateHeterotachy::setNCategory(int ncat) {
ncategory = ncat;
if (optimize_steps == 0)
optimize_steps = ncat*100;
// initialize with gamma rates
if (prop) delete [] prop;
prop = new double[ncategory];
int i;
for (i = 0; i < ncategory; i++)
prop[i] = (1.0-getPInvar())/ncategory;
name = "+H";
name += convertIntToString(ncategory);
full_name = "Rate heterotachy";
full_name += " with " + convertIntToString(ncategory) + " categories";
}
void RateHeterotachy::startCheckpoint() {
checkpoint->startStruct("RateHeterotachy" + convertIntToString(ncategory));
}
/**
save object into the checkpoint
*/
void RateHeterotachy::saveCheckpoint() {
startCheckpoint();
CKP_ARRAY_SAVE(ncategory, prop);
endCheckpoint();
RateHeterogeneity::saveCheckpoint();
}
/**
restore object from the checkpoint
*/
void RateHeterotachy::restoreCheckpoint() {
RateHeterogeneity::restoreCheckpoint();
startCheckpoint();
CKP_ARRAY_RESTORE(ncategory, prop);
endCheckpoint();
}
int RateHeterotachy::getNDim() {
if (fix_params) return 0;
return ncategory-1;
}
/**
* @return model name with parameters in form of e.g. GTR{a,b,c,d,e,f}
*/
string RateHeterotachy::getNameParams() {
stringstream str;
str << "+H" << ncategory << "{";
for (int i = 0; i < ncategory; i++) {
if (i > 0) str << ",";
str << prop[i];
}
str << "}";
return str.str();
}
void RateHeterotachy::writeInfo(ostream &out) {
if (fix_params != 2) {
out << "Heterotachy weights: ";
for (int i = 0; i < ncategory; i++)
out << " " << prop[i];
out << endl;
}
DoubleVector lenvec;
phylo_tree->treeLengths(lenvec);
out << "Heterotachy tree lengths:";
for (int j = 0; j < lenvec.size(); j++)
out << " " << lenvec[j];
out << endl;
}
void RateHeterotachy::writeParameters(ostream &out) {
for (int i = 0; i < ncategory; i++)
out << "\t" << prop[i];
}
/**
optimize parameters. Default is to optimize gamma shape
@return the best likelihood
*/
double RateHeterotachy::optimizeParameters(double gradient_epsilon) {
if (fix_params)
return phylo_tree->computeLikelihood();
if (verbose_mode >= VB_MED)
cout << "Optimizing " << name << " model parameters by EM algorithm..." << endl;
return optimizeWithEM();
}
double RateHeterotachy::optimizeWithEM() {
// first compute _pattern_lh_cat
phylo_tree->computePatternLhCat(WSL_RATECAT);
size_t ptn, c;
size_t nptn = phylo_tree->aln->getNPattern();
size_t nmix = ncategory;
double *new_prop = aligned_alloc<double>(nmix);
double *ratio_prop = aligned_alloc<double>(nmix);
// EM algorithm loop described in Wang, Li, Susko, and Roger (2008)
for (int step = 0; step < optimize_steps; step++) {
// E-step
if (step > 0) {
// convert _pattern_lh_cat taking into account new weights
for (ptn = 0; ptn < nptn; ptn++) {
double *this_lk_cat = phylo_tree->_pattern_lh_cat + ptn*nmix;
for (c = 0; c < nmix; c++) {
this_lk_cat[c] *= ratio_prop[c];
}
}
}
memset(new_prop, 0, nmix*sizeof(double));
for (ptn = 0; ptn < nptn; ptn++) {
double *this_lk_cat = phylo_tree->_pattern_lh_cat + ptn*nmix;
double lk_ptn = phylo_tree->ptn_invar[ptn];
for (c = 0; c < nmix; c++) {
lk_ptn += this_lk_cat[c];
}
ASSERT(lk_ptn != 0.0);
lk_ptn = phylo_tree->ptn_freq[ptn] / lk_ptn;
for (c = 0; c < nmix; c++) {
new_prop[c] += this_lk_cat[c] * lk_ptn;
}
}
bool converged = true;
double new_pinvar = 0.0;
for (c = 0; c < nmix; c++) {
new_prop[c] /= phylo_tree->getAlnNSite();
// Make sure that probabilities do not get zero
if (new_prop[c] < 1e-10) new_prop[c] = 1e-10;
// check for convergence
converged = converged && (fabs(prop[c]-new_prop[c]) < 1e-4);
ratio_prop[c] = new_prop[c] / prop[c];
if (std::isnan(ratio_prop[c])) {
cerr << "BUG: " << new_prop[c] << " " << prop[c] << " " << ratio_prop[c] << endl;
}
prop[c] = new_prop[c];
new_pinvar += prop[c];
}
new_pinvar = fabs(1.0 - new_pinvar);
if (new_pinvar > 1e-6) {
converged = converged && (fabs(getPInvar()-new_pinvar) < 1e-4);
// TODO fix p_pinvar
setPInvar(new_pinvar);
// phylo_tree->getRate()->setOptimizePInvar(false);
phylo_tree->computePtnInvar();
phylo_tree->clearAllPartialLH();
}
if (converged) break;
}
aligned_free(ratio_prop);
aligned_free(new_prop);
// aligned_free(lk_ptn);
return phylo_tree->computeLikelihood();
/*
size_t ptn, c;
size_t nptn = phylo_tree->aln->getNPattern();
size_t nmix = ncategory;
const double MIN_PROP = 1e-4;
double new_prop[nmix];
// EM algorithm loop described in Wang, Li, Susko, and Roger (2008)
// first compute _pattern_lh_cat
double score;
score = phylo_tree->computePatternLhCat(WSL_RATECAT);
memset(new_prop, 0, nmix*sizeof(double));
// E-step
// decoupled weights (prop) from _pattern_lh_cat to obtain L_ci and compute pattern likelihood L_i
for (ptn = 0; ptn < nptn; ptn++) {
double *this_lk_cat = phylo_tree->_pattern_lh_cat + ptn*nmix;
double lk_ptn = phylo_tree->ptn_invar[ptn];
for (c = 0; c < nmix; c++) {
lk_ptn += this_lk_cat[c];
}
assert(lk_ptn != 0.0);
lk_ptn = phylo_tree->ptn_freq[ptn] / lk_ptn;
// transform _pattern_lh_cat into posterior probabilities of each category
for (c = 0; c < nmix; c++) {
this_lk_cat[c] *= lk_ptn;
new_prop[c] += this_lk_cat[c];
}
}
// M-step, update weights according to (*)
int maxpropid = 0;
double new_pinvar = 0.0;
for (c = 0; c < nmix; c++) {
new_prop[c] = new_prop[c] / phylo_tree->getAlnNSite();
if (new_prop[c] > new_prop[maxpropid])
maxpropid = c;
}
// regularize prop
bool zero_prop = false;
for (c = 0; c < nmix; c++) {
if (new_prop[c] < MIN_PROP) {
new_prop[maxpropid] -= (MIN_PROP - new_prop[c]);
new_prop[c] = MIN_PROP;
zero_prop = true;
}
}
double sum_prop = 0.0;
for (c = 0; c < nmix; c++) {
// check for convergence
sum_prop += new_prop[c];
prop[c] = new_prop[c];
new_pinvar += new_prop[c];
}
new_pinvar = 1.0 - new_pinvar;
if (new_pinvar > 1e-4 && getPInvar() != 0.0) {
setPInvar(new_pinvar);
// setOptimizePInvar(false);
phylo_tree->computePtnInvar();
}
assert(fabs(sum_prop+new_pinvar-1.0) < MIN_PROP);
// sort the rates in increasing order
if (sorted_rates) {
// TODO sort tree lengths per category
}
return phylo_tree->computeLikelihood();
*/
}
|