1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
|
/***************************************************************************
* Copyright (C) 2009 by BUI Quang Minh *
* minh.bui@univie.ac.at *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#include "tree/phylotree.h"
#include "ratemeyerdiscrete.h"
//#include "kmeans/KMeans.h"
//#include "modeltest_wrapper.h"
/************************************************
Huy's k-means dynamic programming algorithm
************************************************/
void quicksort(double arr[], int weight[], int index[], int left, int right) {
int i = left, j = right, tmp2;
double tmp;
double pivot = arr[(left + right) / 2];
/* partition */
while (i <= j) {
while (arr[i] < pivot)
i++;
while (arr[j] > pivot)
j--;
if (i <= j) {
tmp = arr[i];
arr[i] = arr[j];
arr[j] = tmp;
tmp2 = index[i];
index[i] = index[j];
index[j] = tmp2;
tmp2 = weight[i];
weight[i] = weight[j];
weight[j] = tmp2;
i++;
j--;
}
};
/* recursion */
if (left < j)
quicksort(arr, weight, index, left, j);
if (i < right)
quicksort(arr, weight, index, i, right);
}
double mean_sum(int l, int r, double *sumA, double *sumAsquare, int *sumW) {
/* double mean = (sumA[r]-sumA[l-1])/(r-l+1);
return sumAsquare[r]-sumAsquare[l-1]- 2*(sumA[r]- sumA[l-1])*mean + mean*mean*(r-l+1);*/
double sum = (sumA[r]- sumA[l-1]);
return sumAsquare[r]-sumAsquare[l-1] - sum*sum/(sumW[r] - sumW[l-1]);
/*
double mean = (sumA[r]-sumA[l-1]);
return sumAsquare[r]-sumAsquare[l-1]- 2*(sumA[r]- sumA[l-1])*mean + mean*mean*(r-l+1);*/
}
// Runs k-means on the given set of points.
// - n: The number of points in the data set
// - k: The number of clusters to look for
// - d: The number of dimensions that the data set lives in
// - points: An array of size n*d where points[d*i + j] gives coordinate j of poi
// - attempts: The number of times to independently run k-means with different starting centers.
// The best result is always returned (as measured by the cost function).
// - centers: This can either be null or an array of size k*d. In the latter case, it will be
// filled with the locations of all final cluster centers. Specifically
// centers[d*i + j] will give coordinate j of center i. If the cluster is unused, it
// will contain NaN instead.
// - assignments: This can either be null or an array of size n. In the latter case, it will be
// filled with the cluster that each pois assigned to (an integer between 0
// and k-1 inclusive).
// The final cost of the clustering is also returned.
double RunKMeans1D(int n, int k, double *points, int *weights, double *centers, int *assignments) {
double *sumA;
double *sumAsquare;
int *sumW;
double **Cost;
int **trace;
sumA = new double[n+1];
sumAsquare = new double[n+1];
sumW = new int[n+1];
Cost = new double*[n+1];
for (int i=0; i<=n; i++) Cost[i] = new double[k+1];
trace = new int*[n+1];
for (int i=0; i<=n; i++) trace[i] = new int[k+1];
int *index = new int[n+1];
for (int i=0; i<n; i++) index[i] = i;
//for (int i=1; i<=n; i++) cout <<index[i] <<"\t" <<points[i] <<endl;
quicksort(points, weights, index, 0, n-1);
//for (int i=n; i>0; i--) {points[i] = points[i-1]; index[i] = index[i-1];}
//for (int i=1; i<=n; i++) cout <<index[i] <<"\t" <<points[i] <<endl;
//exit(1);
sumA[0] = 0; sumAsquare[0] =0; sumW[0] = 0;
for (int i=1; i<=n; i++) {
/*sumA[i] = sumA[i-1] + points[i-1];
sumAsquare[i] = sumAsquare[i-1] + points[i-1]*points[i-1];*/
sumA[i] = sumA[i-1] + points[i-1] * weights[i-1];
sumAsquare[i] = sumAsquare[i-1] + points[i-1]*points[i-1] * weights[i-1];
sumW[i] = sumW[i-1] + weights[i-1];
}
Cost[0][0] = 0;
for (int i=1; i<=n; i++) {
Cost[i][1] = mean_sum(1, i, sumA, sumAsquare, sumW);
trace[i][1] = 0;
for (int j=2; j<=(i<=k?i:k); j++) {
Cost[i][j] = Cost[j-1][j-1]+ mean_sum(j, i, sumA, sumAsquare, sumW);
trace[i][j] = j-1;
for (int _k=j; _k<=i-1; _k++) {
double temp = mean_sum(_k+1, i, sumA, sumAsquare, sumW);
if (Cost[i][j] >= Cost[_k][j-1]+ temp) {
Cost[i][j] = Cost[_k][j-1]+ temp;
trace[i][j] = _k;
}
}
}
}
double min_cost = Cost[n][k];
int i = n; int j = k;
while (i>0) {
int t= trace[i][j];
centers[j-1] = (sumA[i]-sumA[t])/(sumW[i]-sumW[t]);
//cout << "category " <<k-j<<endl;
for (int _i=t+1; _i<=i; _i++) {
//cout <<index[_i] << "\t" <<points[_i] <<endl;
assignments[index[_i-1]] = j-1; //points[_i] \in category k-j
}
i=t; j=j-1;
}
for (int i=n; i>=0; i--) delete [] trace[i];
delete [] trace;
for (int i=n; i>=0; i--) delete [] Cost[i];
delete [] Cost;
delete [] sumW;
delete [] sumAsquare;
delete [] sumA;
return min_cost;
}
/************************************************
RateMeyerDiscrete
************************************************/
RateMeyerDiscrete::RateMeyerDiscrete(int ncat, int cat_type, char *file_name, PhyloTree *tree, bool rate_type)
: RateMeyerHaeseler(file_name, tree, rate_type)
{
ncategory = ncat;
rates = NULL;
ptn_cat = NULL;
is_categorized = false;
mcat_type = cat_type;
if (ncat > 0) {
rates = new double[ncategory];
memset(rates, 0, sizeof(double) * ncategory);
}
name += convertIntToString(ncategory);
if (ncategory > 0)
full_name += " with " + convertIntToString(ncategory) + " categories";
else
full_name += "auto-detect #categories";
}
RateMeyerDiscrete::RateMeyerDiscrete() {
ncategory = 0;
rates = NULL;
ptn_cat = NULL;
is_categorized = false;
mcat_type = 0;
rates = NULL;
name = full_name = "";
rate_mh = true;
}
RateMeyerDiscrete::~RateMeyerDiscrete()
{
if (rates) delete [] rates;
}
bool RateMeyerDiscrete::isSiteSpecificRate() {
return !is_categorized;
}
int RateMeyerDiscrete::getNDiscreteRate() {
if (!is_categorized) return RateMeyerHaeseler::getNDiscreteRate();
ASSERT(ncategory > 0);
return ncategory;
}
double RateMeyerDiscrete::getRate(int category) {
if (!is_categorized) return RateMeyerHaeseler::getRate(category);
ASSERT(category < ncategory);
return rates[category];
}
int RateMeyerDiscrete::getPtnCat(int ptn) {
if (!is_categorized) return RateMeyerHaeseler::getPtnCat(ptn);
ASSERT(ptn_cat);
return ptn_cat[ptn];
}
double RateMeyerDiscrete::getPtnRate(int ptn) {
if (!is_categorized) return RateMeyerHaeseler::getPtnRate(ptn);
ASSERT(ptn_cat && rates);
return rates[ptn_cat[ptn]];
}
int RateMeyerDiscrete::computePatternRates(DoubleVector &pattern_rates, IntVector &pattern_cat) {
pattern_rates.insert(pattern_rates.begin(), begin(), end());
pattern_cat.insert(pattern_cat.begin(), ptn_cat, ptn_cat + size());
return ncategory;
}
/*double RateMeyerDiscrete::optimizeParameters() {
if (is_categorized) {
is_categorized = false;
phylo_tree->clearAllPartialLh();
return phylo_tree->computeLikelihood();
}
double tree_lh = RateMeyerHaeseler::optimizeParameters();
return tree_lh;
}*/
double RateMeyerDiscrete::optimizeParameters(double epsilon) {
if (!is_categorized) return RateMeyerHaeseler::optimizeParameters(epsilon);
phylo_tree->calcDist(dist_mat);
for (int i = 0; i < ncategory; i++)
optimizeCatRate(i);
normalizeRates();
phylo_tree->clearAllPartialLH();
return phylo_tree->computeLikelihood();
//return phylo_tree->optimizeAllBranches(2);
}
double RateMeyerDiscrete::computeFunction(double value) {
if (!is_categorized) return RateMeyerHaeseler::computeFunction(value);
if (!rate_mh) {
if (value != cur_scale) {
ptn_tree->scaleLength(value/cur_scale);
cur_scale = value;
ptn_tree->clearAllPartialLH();
}
return -ptn_tree->computeLikelihood();
}
double lh = 0.0;
int nseq = phylo_tree->leafNum;
int nstate = phylo_tree->getModel()->num_states;
int i, j, k, state1, state2;
ModelSubst *model = phylo_tree->getModel();
int trans_size = nstate * nstate;
double *trans_mat = new double[trans_size];
int *pair_freq = new int[trans_size];
for (i = 0; i < nseq-1; i++)
for (j = i+1; j < nseq; j++) {
memset(pair_freq, 0, trans_size * sizeof(int));
for (k = 0; k < size(); k++) {
if (ptn_cat[k] != optimizing_cat) continue;
Pattern *pat = & phylo_tree->aln->at(k);
if ((state1 = pat->at(i)) < nstate && (state2 = pat->at(j)) < nstate)
pair_freq[state1*nstate + state2] += pat->frequency;
}
model->computeTransMatrix(value * dist_mat[i*nseq + j], trans_mat);
for (k = 0; k < trans_size; k++) if (pair_freq[k])
lh -= pair_freq[k] * log(trans_mat[k]);
}
delete [] pair_freq;
delete [] trans_mat;
return lh;
}
void RateMeyerDiscrete::computeFuncDerv(double value, double &df, double &ddf) {
if (!is_categorized) {
RateMeyerHaeseler::computeFuncDerv(value, df, ddf);
return;
}
// double lh = 0.0;
int nseq = phylo_tree->leafNum;
int nstate = phylo_tree->getModel()->num_states;
int i, j, k, state1, state2;
ModelSubst *model = phylo_tree->getModel();
int trans_size = nstate * nstate;
double *trans_mat = new double[trans_size];
double *trans_derv1 = new double[trans_size];
double *trans_derv2 = new double[trans_size];
df = ddf = 0.0;
int *pair_freq = new int[trans_size];
for (i = 0; i < nseq-1; i++)
for (j = i+1; j < nseq; j++) {
memset(pair_freq, 0, trans_size * sizeof(int));
for (k = 0; k < size(); k++) {
if (ptn_cat[k] != optimizing_cat) continue;
Pattern *pat = & phylo_tree->aln->at(k);
if ((state1 = pat->at(i)) < nstate && (state2 = pat->at(j)) < nstate)
pair_freq[state1*nstate + state2] += pat->frequency;
}
double dist = dist_mat[i*nseq + j];
double derv1 = 0.0, derv2 = 0.0;
model->computeTransDerv(value * dist, trans_mat, trans_derv1, trans_derv2);
for (k = 0; k < trans_size; k++) if (pair_freq[k]) {
double t1 = trans_derv1[k] / trans_mat[k];
double t2 = trans_derv2[k] / trans_mat[k];
trans_derv1[k] = t1;
trans_derv2[k] = (t2 - t1*t1);
// lh -= log(trans_mat[k]) * pair_freq[k];
derv1 += trans_derv1[k] * pair_freq[k];
derv2 += trans_derv2[k] * pair_freq[k];
}
df -= derv1 * dist;
ddf -= derv2 * dist * dist;
}
delete [] pair_freq;
delete [] trans_derv2;
delete [] trans_derv1;
delete [] trans_mat;
// return lh;
/* double lh = 0.0, derv1, derv2;
df = 0.0; ddf = 0.0;
for (int i = 0; i < size(); i++)
if (ptn_cat[i] == optimizing_cat) {
optimizing_pattern = i;
int freq = phylo_tree->aln->at(i).frequency;
lh += RateMeyerHaeseler::computeFuncDerv(value, derv1, derv2) * freq;
df += derv1 * freq;
ddf += derv2 * freq;
}
return lh;*/
}
double RateMeyerDiscrete::optimizeCatRate(int cat) {
optimizing_cat = cat;
double negative_lh;
double current_rate = rates[cat];
double ferror, optx;
if (!rate_mh) {
IntVector ptn_id;
for (int i = 0; i < size(); i++)
if (ptn_cat[i] == optimizing_cat)
ptn_id.push_back(i);
prepareRateML(ptn_id);
}
if (phylo_tree->optimize_by_newton && rate_mh) // Newton-Raphson method
{
optx = minimizeNewtonSafeMode(MIN_SITE_RATE, current_rate, MAX_SITE_RATE, TOL_SITE_RATE, negative_lh);
}
else {
optx = minimizeOneDimen(MIN_SITE_RATE, current_rate, MAX_SITE_RATE, TOL_SITE_RATE, &negative_lh, &ferror);
double fnew;
if ((optx < MAX_SITE_RATE) && (fnew = computeFunction(MAX_SITE_RATE)) <= negative_lh+TOL_SITE_RATE) {
optx = MAX_SITE_RATE;
negative_lh = fnew;
}
if ((optx > MIN_SITE_RATE) && (fnew = computeFunction(MIN_SITE_RATE)) <= negative_lh+TOL_SITE_RATE) {
optx = MIN_SITE_RATE;
negative_lh = fnew;
}
}
//negative_lh = brent(MIN_SITE_RATE, current_rate, max_rate, 1e-3, &optx);
if (optx > MAX_SITE_RATE*0.99) optx = MAX_SITE_RATE;
if (optx < MIN_SITE_RATE*2) optx = MIN_SITE_RATE;
rates[cat] = optx;
//#ifndef NDEBUG
//#endif
if (!rate_mh) completeRateML();
return optx;
}
void RateMeyerDiscrete::normalizeRates() {
double sum = 0.0, ok = 0.0;
int nptn = size();
int i;
for (i = 0; i < nptn; i++) {
//at(i) = rates[ptn_cat[i]];
if (getPtnRate(i) < MAX_SITE_RATE) {
sum += getPtnRate(i) * phylo_tree->aln->at(i).frequency;
ok += phylo_tree->aln->at(i).frequency;
}
}
if (fabs(sum - ok) > 1e-3) {
//cout << "Normalizing rates " << sum << " / " << ok << endl;
double scale_f = ok / sum;
for (i = 0; i < ncategory; i++)
if (rates[i] > 2*MIN_SITE_RATE && rates[i] < MAX_SITE_RATE)
rates[i] *= scale_f;
}
}
double RateMeyerDiscrete::classifyRatesKMeans() {
ASSERT(ncategory > 0);
int nptn = size();
// clustering the rates with k-means
//AddKMeansLogging(&cout, false);
double *points = new double[nptn];
int *weights = new int[nptn];
int i;
if (!ptn_cat) ptn_cat = new int[nptn];
for (i = 0; i < nptn; i++) {
points[i] = at(i);
if (mcat_type & MCAT_LOG) points[i] = log(points[i]);
weights[i] = 1;
if (!(mcat_type & MCAT_PATTERN))
weights[i] = phylo_tree->aln->at(i).frequency;
}
memset(rates, 0, sizeof(double) * ncategory);
//double cost = RunKMeansPlusPlus(nptn, ncategory, 1, points, sqrt(nptn), rates, ptn_cat);
double cost = RunKMeans1D(nptn, ncategory, points, weights, rates, ptn_cat);
// assign the categorized rates
if (mcat_type & MCAT_LOG)
for (i = 0; i < ncategory; i++) rates[i] = exp(rates[i]);
if (rates[0] < MIN_SITE_RATE) rates[0] = MIN_SITE_RATE;
if (rates[ncategory-1] > MAX_SITE_RATE - 1e-6) rates[ncategory-1] = MAX_SITE_RATE;
if (verbose_mode >= VB_MED) {
cout << "K-means cost: " << cost << endl;
for (i = 0; i < ncategory; i++) cout << rates[i] << " ";
cout << endl;
}
normalizeRates();
phylo_tree->clearAllPartialLH();
double cur_lh = phylo_tree->computeLikelihood();
delete [] weights;
delete [] points;
if (mcat_type & MCAT_MEAN)
return cur_lh;
return phylo_tree->getModelFactory()->optimizeParameters(false,false, TOL_LIKELIHOOD);
// optimize category rates again by ML
/* for (int k = 0; k < 100; k++) {
phylo_tree->calcDist(dist_mat);
for (i = 0; i < ncategory; i++)
optimizeCatRate(i);
normalizeRates();
phylo_tree->clearAllPartialLh();
double new_lh = phylo_tree->optimizeAllBranches(k+2);
if (new_lh > cur_lh + 1e-2) {
cur_lh = new_lh;
cout << "Current log-likelihood: " << cur_lh << endl;
} else {
cur_lh = new_lh;
break;
}
}
*/
return cur_lh;
}
double RateMeyerDiscrete::classifyRates(double tree_lh) {
if (is_categorized) return tree_lh;
double new_tree_lh;
is_categorized = true;
if (ncategory > 0) {
cout << endl << "Classifying rates into " << ncategory << " categories..." << endl;
return classifyRatesKMeans();
}
// identifying proper number of categories
int nptn = phylo_tree->aln->getNPattern();
rates = new double[nptn];
for (ncategory = 2; ; ncategory++) {
cout << endl << "Classifying rates into " << ncategory << " categories..." << endl;
new_tree_lh = classifyRatesKMeans();
new_tree_lh = phylo_tree->optimizeAllBranches();
cout << "For " << ncategory << " categories, LogL = " << new_tree_lh;
double lh_diff = 2*(tree_lh - new_tree_lh);
int df = (nptn - ncategory);
double pval = computePValueChiSquare(lh_diff, df);
cout << ", p-value = " << pval;
cout << endl;
//if (new_tree_lh > tree_lh - 3.0) break;
if (pval > 0.05) break;
}
cout << endl << "Number of categories is set to " << ncategory << endl;
return new_tree_lh;
}
void RateMeyerDiscrete::writeInfo(ostream &out) {
//out << "Number of categories: " << ncategory << endl;
}
|