File: ratemeyerhaeseler.cpp

package info (click to toggle)
iqtree 1.6.12%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 12,140 kB
  • sloc: cpp: 111,752; ansic: 53,619; python: 242; sh: 195; makefile: 52
file content (496 lines) | stat: -rw-r--r-- 15,185 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
/***************************************************************************
 *   Copyright (C) 2009 by BUI Quang Minh   *
 *   minh.bui@univie.ac.at   *
 *                                                                         *
 *   This program is free software; you can redistribute it and/or modify  *
 *   it under the terms of the GNU General Public License as published by  *
 *   the Free Software Foundation; either version 2 of the License, or     *
 *   (at your option) any later version.                                   *
 *                                                                         *
 *   This program is distributed in the hope that it will be useful,       *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
 *   GNU General Public License for more details.                          *
 *                                                                         *
 *   You should have received a copy of the GNU General Public License     *
 *   along with this program; if not, write to the                         *
 *   Free Software Foundation, Inc.,                                       *
 *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
 ***************************************************************************/
#include "tree/phylotree.h"
#include "ratemeyerhaeseler.h"



RateMeyerHaeseler::RateMeyerHaeseler(char *file_name, PhyloTree *tree, bool rate_type)
 : RateHeterogeneity()
{
	name = "+M";
	full_name = "Meyer & von Haeseler (2003)";
	dist_mat = NULL;
	setTree(tree);
	rate_file = file_name;
	rate_mh = rate_type;
	if (!rate_mh) {
		name="+CAT";
		full_name = "Stamatakis (2007) experimental";
	}
}

RateMeyerHaeseler::RateMeyerHaeseler()
 : RateHeterogeneity()
{
	name = "+M";
	full_name = "Meyer & von Haeseler (2003)";
	dist_mat = NULL;
	phylo_tree = NULL;
	rate_file = NULL;
	rate_mh = true;
}

void RateMeyerHaeseler::readRateFile(char *rate_file) {
	cout << "Reading site-specific rate file " << rate_file << " ..." << endl;
	try {
		ifstream in;
		in.exceptions(ios::failbit | ios::badbit);
		in.open(rate_file);
		char line[256];
		int site, i;
		double rate;
		int nsites = phylo_tree->aln->getNSite();
		resize(phylo_tree->aln->getNPattern(), -1.0);
		int saturated_sites = 0, saturated_ptn = 0;

		in.getline(line, sizeof(line));
		//if (strncmp(line, "Site", 4) != 0) throw "Wrong header line";

		for (i = 0; i < nsites; i++) {
			in.getline(line, sizeof(line));
			stringstream ss(line);
			string tmp;
			ss >> tmp;
			site = convert_int(tmp.c_str());
			if (site <= 0 || site > nsites) throw "Wrong site number (must be between 1 and #sites)";
			site--;
			ss >> tmp;
			rate = convert_double(tmp.c_str());
			if (rate < 0.0) throw "Negative rate not allowed";
			if (rate <= 0.0) rate = MIN_SITE_RATE;
			int ptn = phylo_tree->aln->getPatternID(site);
			if (rate >= MAX_SITE_RATE) {
				rate = MAX_SITE_RATE; 
				saturated_sites += phylo_tree->aln->at(ptn).frequency; 
				saturated_ptn ++;
			}
			at(ptn) = rate;
		}
		in.clear();
		// set the failbit again
		in.exceptions(ios::failbit | ios::badbit);
		in.close();

		for (i = 0; i < size(); i++)
			if (at(i) < 0.0) throw "Some site has no rate information";

		if (saturated_sites) {
			stringstream str;
			str << saturated_sites << " sites (" << saturated_ptn << " patterns) show too high rates (>=" << MAX_SITE_RATE << ")";
			outWarning(str.str());
		}
	} catch (const char *str) {
		outError(str);
	} catch (string str) {
		outError(str);
	} catch(ios::failure) {
		outError(ERR_READ_INPUT);
	}
}

RateMeyerHaeseler::~RateMeyerHaeseler()
{
	if (dist_mat) delete [] dist_mat;
}

int RateMeyerHaeseler::getNDim() {
	if (phylo_tree) 
		return phylo_tree->aln->getNPattern()-1;
	if (empty()) return 0;
	return size()-1; 
}

/*
double RateMeyerHaeseler::getRate(int category) {
	if (category < size())
		return at(category);

	return 1.0;
}*/

double RateMeyerHaeseler::getPtnRate(int ptn) {
	if (ptn < size())
		return at(ptn);

	return 1.0;
}

int RateMeyerHaeseler::computePatternRates(DoubleVector &pattern_rates, IntVector &pattern_cat) {
	pattern_rates.insert(pattern_rates.begin(), begin(), end());
    return size();
}

void RateMeyerHaeseler::getRates(DoubleVector &rates) {
	rates.clear();
	if (empty()) {
		rates.resize(phylo_tree->aln->size(), 1.0);
	} else {
		rates.insert(rates.begin(), begin(), end());
	} 
}

void RateMeyerHaeseler::setRates(DoubleVector &rates) {
	clear();
	insert(begin(), rates.begin(), rates.end());
}

void RateMeyerHaeseler::initializeRates() {

	int i, j, rate_id = 0, state1, state2;
	int nseq = phylo_tree->leafNum;
	int nstate = phylo_tree->getModel()->num_states;

	if (nseq < 25) 
		outWarning("Meyer & von Haeseler model is not recommended for < 25 sequences\n");

	resize(phylo_tree->aln->getNPattern(), 1.0);

	for (Alignment::iterator pat = phylo_tree->aln->begin(); pat != phylo_tree->aln->end(); pat++, rate_id++) {
		int diff = 0, total = 0;
		for (i = 0; i < nseq-1; i++) if ((state1 = pat->at(i)) < nstate)
			for (j = i+1; j < nseq; j++) if ((state2 = pat->at(j)) < nstate) {
				//total += dist_mat[state1 * nstate + state2];
				//if (state1 != state2) diff += dist_mat[state1 * nstate + state2];
				total++;
				if (state1 != state2) diff++;
		}
		if (diff == 0) diff = 1;
		if (total == 0) total = 1;
		double obs_diff = double(diff) / total;
		double tolog = 1.0 - obs_diff*nstate/(nstate-1);
		if (tolog > 0.0) {
			at(rate_id) = -log(tolog) * (nstate-1) / nstate;
		} else at(rate_id) = obs_diff;
		
	}
}

void RateMeyerHaeseler::prepareRateML(IntVector &ptn_id) {
	Alignment *aln = new Alignment();
	aln->extractPatterns(phylo_tree->aln, ptn_id);
	ptn_tree = new PhyloTree(aln);
	stringstream ss;
	phylo_tree->printTree(ss);
	ptn_tree->readTree(ss, phylo_tree->rooted);
	ptn_tree->setAlignment(aln);
	ptn_tree->setModelFactory(phylo_tree->getModelFactory());
	ptn_tree->setModel(phylo_tree->getModelFactory()->model);
	ptn_tree->setRate(new RateHeterogeneity());
	ptn_tree->computeLikelihood();
	//cout << optimizing_pattern << " " << lh << endl;
	cur_scale = 1.0;
}

void RateMeyerHaeseler::completeRateML() {
	ptn_tree->setModelFactory(NULL);
	ptn_tree->setModel(NULL);
	//ptn_tree->setRate(NULL);
	delete ptn_tree->aln;
	delete ptn_tree;
	ptn_tree = NULL;
}

double RateMeyerHaeseler::optimizeRate(int pattern) {
	optimizing_pattern = pattern;

	double max_rate = MAX_SITE_RATE;

	double minf = INFINITY, minx = 0;
	double negative_lh;
	double current_rate = at(pattern);
	double ferror, optx;
	/* constant site alway have ZERO rates */
	if (phylo_tree->aln->at(pattern).isConst()) {
		return (at(pattern) = MIN_SITE_RATE);
	}

	if (!rate_mh) {	
		IntVector ptn_id;
		ptn_id.push_back(optimizing_pattern);
		prepareRateML(ptn_id);
	}

    if (phylo_tree->optimize_by_newton && rate_mh) // Newton-Raphson method 
	{
    	optx = minimizeNewtonSafeMode(MIN_SITE_RATE, current_rate, max_rate, TOL_SITE_RATE, negative_lh);
		if (optx > MAX_SITE_RATE*0.99 || (optx < MIN_SITE_RATE*2 && !phylo_tree->aln->at(pattern).isConst())) 
		{
			double optx2, negative_lh2;
			optx2 = minimizeOneDimen(MIN_SITE_RATE, current_rate, max_rate, TOL_SITE_RATE, &negative_lh2, &ferror);
			if (negative_lh2 < negative_lh - 1e-4) {
				cout << "+++NEWTON IS WRONG for pattern " << pattern << ": " << optx2 << " " << 
				negative_lh2 << " (Newton: " << optx << " " << negative_lh <<")" << endl;
			}
			if (negative_lh < negative_lh2 - 1e-4 && verbose_mode >= VB_MED) {
				cout << "Brent is wrong for pattern " << pattern << ": " << optx2 << " " << 
				negative_lh2 << " (Newton: " << optx << " " << negative_lh <<")" << endl;
			}
		}
    }
    else {
		optx = minimizeOneDimen(MIN_SITE_RATE, current_rate, max_rate, TOL_SITE_RATE, &negative_lh, &ferror);
		double fnew;
		if ((optx < max_rate) && (fnew = computeFunction(max_rate)) <= negative_lh+TOL_SITE_RATE) {
			optx = max_rate;
			negative_lh = fnew;
		}
		if ((optx > MIN_SITE_RATE) && (fnew = computeFunction(MIN_SITE_RATE)) <= negative_lh+TOL_SITE_RATE) {
			optx = MIN_SITE_RATE;
			negative_lh = fnew;
		}
	}
	//negative_lh = brent(MIN_SITE_RATE, current_rate, max_rate, 1e-3, &optx);
	if (optx > max_rate*0.99) optx = MAX_SITE_RATE;
	if (optx < MIN_SITE_RATE*2) optx = MIN_SITE_RATE;
	at(pattern) = optx;

	if (!rate_mh) { 
		completeRateML(); 
		return optx; 
	}

//#ifndef NDEBUG		
	if (optx == MAX_SITE_RATE || (optx == MIN_SITE_RATE && !phylo_tree->aln->at(pattern).isConst())) {
		ofstream out;
	
		if (verbose_mode >= VB_MED)  {
			cout << "Checking pattern " << pattern << " (" << current_rate << ", " << optx << ")" << endl;
			out.open("x", ios::app);
			out << pattern;
		}
		for (double val=0.1; val <= 100; val += 0.1) {
			double f = computeFunction(val);
			
			if (verbose_mode >= VB_MED) out << " " << f;
			if (f < minf) { minf = f; minx = val; }
			if (verbose_mode < VB_MED && minf < negative_lh) break;
		}
		if (verbose_mode >= VB_MED) { 
			out << endl;
			out.close();
		}
		//cout << "minx: " << minx << " " << minf << endl;
		if (negative_lh > minf+1e-3) {
			optx = minimizeOneDimen(MIN_SITE_RATE, minx, max_rate, 1e-3, &negative_lh, &ferror);
			at(pattern) = optx;
			if (verbose_mode >= VB_MED)
				cout << "FIX rate: " << minx << " , " << optx << endl;
		}
	}
//#endif

	return optx;
}


void RateMeyerHaeseler::optimizeRates() {
	if (!dist_mat) {
		dist_mat = new double[phylo_tree->leafNum * phylo_tree->leafNum];
	}
	// compute the distance based on the path lengths between taxa of the tree
	phylo_tree->calcDist(dist_mat);
	IntVector ok_ptn;
	ok_ptn.resize(size(), 0);
	double sum = 0.0;
	int i;
	int ok_sites = 0;
	int saturated_sites = 0, saturated_ptn = 0;
	int invar_sites = 0;
	int ambiguous_sites = 0;
	int nseq = phylo_tree->leafNum;
	int nstates = phylo_tree->aln->num_states;
	for (i = 0; i < size(); i++) {
		int freq = phylo_tree->aln->at(i).frequency;
		if (phylo_tree->aln->at(i).computeAmbiguousChar(nstates) <= nseq-2) {
			optimizeRate(i);
			if (at(i) == MIN_SITE_RATE) invar_sites += freq; 
			if (at(i) == MAX_SITE_RATE) {
				saturated_sites += freq; 
				saturated_ptn ++;
			}
		} else { at(i) = MIN_SITE_RATE; ambiguous_sites += freq; }
		if (at(i) < MAX_SITE_RATE) 
		{
			if (at(i) > MIN_SITE_RATE) sum += at(i) * freq;
			ok_ptn[i] = 1;
			ok_sites += freq;
		}
	} 

	// now scale such that the mean of rates is 1
	double scale_f = ok_sites / sum;
	for (i = 0; i < size(); i++) {
		if (ok_ptn[i] && at(i) > MIN_SITE_RATE) at(i) = at(i) * scale_f;
	}

	if (ambiguous_sites) {
		stringstream str;
		str << ambiguous_sites << " sites contain too many gaps or ambiguous characters";
		outWarning(str.str());
	}
	if (saturated_sites) {
		stringstream str;
		str << saturated_sites << " sites (" << saturated_ptn << " patterns) show too high rates (>=" << MAX_SITE_RATE << ")";
		outWarning(str.str());
	}
	//cout << invar_sites << " sites have zero rate" << endl;

}

double RateMeyerHaeseler::optimizeParameters(double epsilon) {
	ASSERT(phylo_tree);
	double tree_lh = phylo_tree->computeLikelihood();

	DoubleVector prev_rates;
	getRates(prev_rates);

	if (empty()) {
		if (rate_file) {
			readRateFile(rate_file);
			phylo_tree->clearAllPartialLH();
			return phylo_tree->optimizeAllBranches();
		}
		initializeRates();
	}

	optimizeRates();

	
	phylo_tree->clearAllPartialLH();

	stringstream best_tree_string;
	phylo_tree->printTree(best_tree_string, WT_BR_LEN + WT_TAXON_ID);
	double new_tree_lh = phylo_tree->optimizeAllBranches(1);
	//double new_tree_lh = phylo_tree->computeLikelihood();

	if (new_tree_lh < tree_lh - 1e-5) {
		cout << "Worse likelihood (" << new_tree_lh << "), roll back site rates..." << endl;
		setRates(prev_rates);
		phylo_tree->rollBack(best_tree_string);
		//phylo_tree->clearAllPartialLh();
		new_tree_lh = phylo_tree->computeLikelihood();
		//cout << "Backup log-likelihood: " << new_tree_lh << endl;
		new_tree_lh = tree_lh;
	}
	
	return new_tree_lh;
}


double RateMeyerHaeseler::computeFunction(double value) {
	if (!rate_mh) {
		if (value != cur_scale) {
			ptn_tree->scaleLength(value/cur_scale);
			cur_scale = value;
			ptn_tree->clearAllPartialLH();
		}
		return -ptn_tree->computeLikelihood();
	}
	int nseq = phylo_tree->leafNum;
	int nstate = phylo_tree->getModel()->num_states;
	int i, j, state1, state2;
	double lh = 0.0;
	ModelSubst *model = phylo_tree->getModel();
	Pattern *pat = & phylo_tree->aln->at(optimizing_pattern);
	
	for (i = 0; i < nseq-1; i++) if ((state1 = pat->at(i)) < nstate) 
		for (j = i+1; j < nseq; j++) if ((state2 = pat->at(j)) < nstate) 
			lh -= log(model->computeTrans(value * dist_mat[i*nseq + j], state1, state2));
	return lh;
}

void RateMeyerHaeseler::computeFuncDerv(double value, double &df, double &ddf) {
	int nseq = phylo_tree->leafNum;
	int nstate = phylo_tree->getModel()->num_states;
	int i, j, state1, state2;
//	double lh = 0.0;
	double trans, derv1, derv2;
	ModelSubst *model = phylo_tree->getModel();
	Pattern *pat = & phylo_tree->aln->at(optimizing_pattern);
	df = ddf = 0.0;
	for (i = 0; i < nseq-1; i++) if ((state1 = pat->at(i)) < nstate) 
		for (j = i+1; j < nseq; j++) if ((state2 = pat->at(j)) < nstate) {
			double dist = dist_mat[i*nseq + j];
			trans = model->computeTrans(value * dist, state1, state2, derv1, derv2);
//			lh -= log(trans);
			double t1 = derv1 / trans;
			double t2 = derv2 / trans;
			df -= t1 * dist;
			ddf -= dist * dist * (t2 - t1*t1);
		}
//	return lh;
}


void RateMeyerHaeseler::runIterativeProc(Params &params, IQTree &tree) {
	int i;
	if (verbose_mode >= VB_MED) {
		ofstream out("x");
		out.close();
	}
	setTree(&tree);
	RateHeterogeneity *backup_rate = tree.getRate();
	if (backup_rate->getGammaShape() > 0 ) {
		IntVector pattern_cat;
		backup_rate->computePatternRates(*this, pattern_cat);
		double sum = 0.0;
		for (i = 0; i < size(); i++)
			sum += at(i) * phylo_tree->aln->at(i).frequency;
		sum /=  phylo_tree->aln->getNSite();
		if (fabs(sum - 1.0) > 0.0001) {
			if (verbose_mode >= VB_MED)
				cout << "Normalizing Gamma rates (" << sum << ")" << endl;
			for (i = 0; i < size(); i++)
				at(i) /= sum;
		}
	}
	tree.getModelFactory()->site_rate = this;
	tree.setRate(this);

	
	//if  (empty()) initializeRates();

	//setRates(prev_rates);
	//string rate_file = params.out_prefix;
	//rate_file += ".mhrate";
	double prev_lh = tree.getCurScore();
	string dist_file = params.out_prefix;
	dist_file += ".tdist";
	tree.getModelFactory()->stopStoringTransMatrix();

	for (i = 2; i < 100; i++) {
		//DoubleVector prev_rates;
		//getRates(prev_rates);
		//writeSiteRates(prev_rates, rate_file.c_str());
		tree.setCurScore(optimizeParameters(0.0));
		//phylo_tree->aln->printDist(dist_file.c_str(), dist_mat);
		tree.setCurScore(tree.optimizeAllBranches(i));
		cout << "Current Log-likelihood: " << tree.getCurScore() << endl;
		if (tree.getCurScore() <= prev_lh + 1e-4) {
			break;
		}
		prev_lh = tree.getCurScore();
	}
	cout << "Optimization took " << i-1 << " rounds to finish" << endl;
	tree.getModelFactory()->startStoringTransMatrix();
	//tree.getModelFactory()->site_rate = backup_rate;
	//tree.setRate(backup_rate);
}