1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
|
/***************************************************************************
* Copyright (C) 2009-2015 by *
* BUI Quang Minh <minh.bui@univie.ac.at> *
* Lam-Tung Nguyen <nltung@gmail.com> *
* *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#include "split.h"
Split::Split()
: vector<UINT>()
{
ntaxa = 0;
weight = 0.0;
}
Split::Split(int antaxa, double aweight)
: vector<UINT>()
{
weight = aweight;
setNTaxa(antaxa);
}
Split::Split(const Split &sp)
: vector<UINT>(sp)
{
weight = sp.weight;
ntaxa = sp.ntaxa;
/*
setNTaxa(sp.ntaxa);
int i = 0;
for (iterator it = begin(); it != end(); it++, i++)
(*it) = sp[i];
*/
}
Split::Split(int antaxa, double aweight, vector<int> taxa_list)
: vector<UINT>()
{
ntaxa = antaxa;
weight = aweight;
vector<int>::iterator it;
// inverted mode: include the remaining part into the split
// if taxa_list contains more than half of taxa, turn on the inverted mode
/* if taxa_list contains exactly one haft of taxa, only turn on the inverted mode
if taxon 0 is not in the list */
/* bool inverted = (taxa_list.size()*2 > ntaxa);
if (taxa_list.size()*2 == ntaxa) {
inverted = true;
for (it = taxa_list.begin(); it != taxa_list.end(); it++)
if ((*it) == 0) {
inverted = false;
break;
}
}*/
// resize the split size
resize((ntaxa + UINT_BITS -1) / UINT_BITS, 0);
for (it = taxa_list.begin(); it != taxa_list.end(); it++)
{
int value = *it;
int bit_pos = value / UINT_BITS;
int bit_off = value % UINT_BITS;
(*this)[bit_pos] |= (UINT) (1 << bit_off);
}
//if (inverted) invert();
if (shouldInvert()) invert();
}
void Split::invert() {
for (iterator uit = begin(); uit != end(); uit++)
{
int num_bits = (uit+1 == end()) ? ntaxa % UINT_BITS : UINT_BITS;
*uit = (1 << (num_bits-1)) - 1 + (1 << (num_bits-1)) - (*uit);
}
}
bool Split::shouldInvert() {
int count = countTaxa();
if (count * 2 < ntaxa)
return false;
if (count * 2 > ntaxa)
return true;
return !containTaxon(0);
}
/**
set number of taxa
@param antaxa number of taxa
*/
void Split::setNTaxa(int antaxa)
{
ntaxa = antaxa;
resize((ntaxa + UINT_BITS - 1) / UINT_BITS, 0);
for (iterator it = begin(); it != end(); it++)
(*it) = 0;
}
int Split::countTaxa() const {
int count=0;
for (int i = 0; i < size(); i++)
for (UINT j = 0; j < UINT_BITS && (i*UINT_BITS+j < getNTaxa()); j++)
if ((*this)[i] & (1 << j))
{
count++;
}
return count;
}
void Split::report(ostream &out)
{
out << getWeight() << '\t';
for (int i = 0; i < size(); i++)
for (UINT j = 0; j < UINT_BITS && (i*UINT_BITS+j < getNTaxa()); j++)
if ((*this)[i] & (1 << j))
{
//out << i * UINT_BITS + j + 1 << " ";
out << i * UINT_BITS + j << " ";
}
out << endl;
}
int Split::firstTaxon() {
for (int i = 0; i < size(); i++)
if ((*this)[i] != 0) {
for (UINT j = 0; j < UINT_BITS && (i*UINT_BITS+j < getNTaxa()); j++)
if ((*this)[i] & (1 << j)) {
return (i * UINT_BITS + j);
}
}
return -1;
}
bool Split::isEmpty() {
for (iterator it = begin(); it != end(); it++)
if (*it != 0) return false;
return true;
}
/**
@param sp the other split
@return true if this split is compatible with sp
*/
bool Split::compatible(Split &sp)
{
// be sure that the two split has the same size
ASSERT(sp.size() == size() && sp.ntaxa == ntaxa);
UINT res = 0, res2 = 0, res3 = 0, res4 = 0;
for (iterator it = begin(), sit = sp.begin(); it != end(); it++, sit++)
{
int num_bits = (it+1 == end()) ? ntaxa % UINT_BITS : UINT_BITS;
UINT it2 = (1 << (num_bits-1)) - 1 + (1 << (num_bits-1)) - (*it);
UINT sit2 = (1 << (num_bits-1)) - 1 + (1 << (num_bits-1)) - (*sit);
res |= (*it) & (*sit);
res2 |= (it2) & (sit2);
res3 |= (*it) & (sit2);
res4 |= (it2) & (*sit);
if (res != 0 && res2 != 0 && res3 != 0 && res4 != 0)
return false;
//if (res != 0 && res != (*it) && res != (*sit) && res2 != 0)
//return false;
}
return true;
//return (res == 0) || (res2 == 0) || (res3 == 0) || (res4 == 0);
}
/**
@param taxa_set set of taxa
@return true if this split is preserved in the set taxa_set
*/
bool Split::preserved(Split &taxa_set)
{
// be sure that the two split has the same size
ASSERT(taxa_set.size() == size() && taxa_set.ntaxa == ntaxa);
int time_zero = 0, time_notzero = 0;
for (iterator it = begin(), sit = taxa_set.begin(); it != end(); it++, sit++)
{
UINT res = (*it) & (*sit);
if (res != 0 && res != (*sit))
return true;
if (*sit != 0) {
if (res == 0) time_zero++; else time_notzero++;
if (res == 0 && time_notzero > 0) return true;
if (res != 0 && time_zero > 0) return true;
}
}
return false;
}
int Split::trivial() {
/*
int num = countTaxa();
if (num == 1) {
// trivial split, fetch the first bit-1
int tax = 0;
for (iterator it = begin(); it != end(); it++) {
for (int i = 0; i < UINT_BITS && tax < ntaxa; i++, tax++)
if (((*it) & (1 << i)) != 0)
return tax;
}
} else if (num == ntaxa - 1) {
// trivial split, fetch the first bit-0
int tax = 0;
for (iterator it = begin(); it != end(); it++) {
for (int i = 0; i < UINT_BITS && tax < ntaxa; i++, tax++)
if (((*it) & (1 << i)) == 0)
return tax;
}
} else
// not a trivial split
return -1;
*/
int id0 = 0, id1 = 0, pos = 0;
int bit0s = 0, bit1s = 0;
for (iterator it = begin(); it != end(); it++, pos++) {
UINT content = *it;
int max_step;
if ((it + 1) == end()) {
max_step = ntaxa % UINT_BITS;
if (!max_step) max_step = UINT_BITS;
}
else
max_step = UINT_BITS;
for (int i = 0; i < max_step; i++) {
if ((content & ( 1 << i)) != 0) {
bit1s ++;
if (bit1s == 1)
id1 = pos * UINT_BITS + i;
}
else {
bit0s ++;
if (bit0s == 1)
id0 = pos * UINT_BITS + i;
}
// if both number of bit 0 and 1 greater than 1, return -1 (not trivial)
if (bit1s > 1 && bit0s > 1)
return -1;
}
}
if (bit1s == 1)
return id1;
else if (bit0s == 1)
return id0;
else
return -1;
}
/**
add a taxon into the split
@param tax_id id of taxon from 0..ntaxa-1
*/
void Split::addTaxon(int tax_id)
{
ASSERT(tax_id >= 0 && tax_id < ntaxa);
int pos = tax_id / UINT_BITS, off = tax_id % UINT_BITS;
(*this)[pos] |= 1 << off;
}
/**
remove a taxon from the split
@param tax_id id of taxon from 0..ntaxa-1
*/
void Split::removeTaxon(int tax_id)
{
ASSERT(tax_id >= 0 && tax_id < ntaxa);
int pos = tax_id / UINT_BITS, off = tax_id % UINT_BITS;
(*this)[pos] &= -1 - (1 << off);
}
/**
@param tax_id id of taxon from 0..ntaxa-1
@return true if tax_id is in the set
*/
bool Split::containTaxon(int tax_id)
{
ASSERT(tax_id >= 0 && tax_id < ntaxa);
int pos = tax_id / UINT_BITS, off = tax_id % UINT_BITS;
return ((*this)[pos] & ( 1 << off)) != 0;
}
void Split::getTaxaList(vector<int> &invec) {
int tax = 0;
invec.clear();
for (iterator it = begin(); it != end(); it++) {
for (int i = 0; i < UINT_BITS && tax < ntaxa; i++, tax++)
if (((*it) & (1 << i)) != 0) // inside the split
invec.push_back(tax);
}
}
void Split::getTaxaList(vector<int> &invec, vector<int> &outvec) {
int tax = 0;
invec.clear();
outvec.clear();
for (iterator it = begin(); it != end(); it++) {
for (int i = 0; i < UINT_BITS && tax < ntaxa; i++, tax++)
if (((*it) & (1 << i)) != 0) // inside the split
invec.push_back(tax);
else
outvec.push_back(tax);
}
}
bool Split::operator<(const Split &sp) const {
return countTaxa() < sp.countTaxa();
}
Split &Split::operator+=(Split &sp) {
ASSERT(sp.ntaxa == ntaxa);
iterator it1, it2;
for (it1 = begin(), it2 = sp.begin(); it1 != end(); it1++, it2++) {
(*it1) |= (*it2);
}
return *this;
}
Split &Split::operator*=(Split &sp) {
ASSERT(sp.ntaxa == ntaxa);
iterator it1, it2;
for (it1 = begin(), it2 = sp.begin(); it1 != end(); it1++, it2++) {
(*it1) &= (*it2);
}
return *this;
}
Split &Split::operator-=(Split &sp) {
ASSERT(sp.ntaxa == ntaxa);
iterator it1, it2;
for (it1 = begin(), it2 = sp.begin(); it1 != end(); it1++, it2++) {
(*it1) -= (*it1) & (*it2);
}
return *this;
}
bool Split::operator==(const Split &sp) const{
if (ntaxa != sp.ntaxa) return false;
for (const_iterator it = begin(), it2 = sp.begin(); it != end(); it++, it2++)
if ((*it) != (*it2))
return false;
return true;
}
bool Split::subsetOf (Split &sp) {
ASSERT(ntaxa == sp.ntaxa);
for (iterator it = begin(), it2 = sp.begin(); it != end(); it++, it2++)
if ( ((*it) & (*it2)) != (*it) )
return false;
return true;
}
Split &Split::operator= (const Split &sp) {
ASSERT(ntaxa == sp.ntaxa);
vector<UINT>::operator= (sp);
weight = sp.weight;
return *this;
}
/*
void Split::copy(const Split &sp) {
assert(ntaxa == sp.ntaxa);
for (iterator it = begin(), it2 = sp.begin(); it != end(); it++, it2++)
(*it) = (*it2);
weight = sp.weight;
}
*/
void Split::randomize(int size) {
ASSERT(size < ntaxa);
int num = countTaxa();
int cnt;
// repeat at most 10 times
const int MAX_STEP = 20;
const int PROB_STEP = 5;
for (int step = 0; step < MAX_STEP && num < size; step++) {
// probability of including a taxon
double prob = (double)(size - num) / ntaxa;
// increase the probability if passing too many iterations
if (step >= PROB_STEP) prob *= 2.0;
if (step >= PROB_STEP*2) prob *= 2.0;
if (step == MAX_STEP - 1) prob = 1.0;
// now scan through all elements, pick up at random
for (cnt = 0; cnt < ntaxa && num < size; cnt++)
if (!containTaxon(cnt) && ( random_double() <= prob )) {
addTaxon(cnt);
num++;
}
}
//report(cout);
if (num >= size) return;
cerr << "WARNING: random set has less than " << size << "taxa." << endl;
}
bool Split::overlap(Split &sp) {
ASSERT(ntaxa == sp.ntaxa);
iterator it, it2;
for (it = begin(), it2 = sp.begin(); it != end(); it++, it2++)
if ((*it) & (*it2)) return true;
return false;
}
Split::~Split()
{}
bool Split::containAny(IntVector &tax_id) {
for (IntVector::iterator it = tax_id.begin(); it != tax_id.end(); it++)
if (containTaxon(*it)) return true;
return false;
}
Split *Split::extractSubSplit(Split &taxa_mask) {
ASSERT(taxa_mask.getNTaxa() == getNTaxa());
Split *sp = new Split(taxa_mask.countTaxa());
int id = 0;
for (int tax = 0; tax < ntaxa; tax++)
if (taxa_mask.containTaxon(tax)) {
if (containTaxon(tax))
sp->addTaxon(id);
id++;
}
ASSERT(id == sp->getNTaxa());
return sp;
}
/**
Solve k-means problem for one-dimensional data with dynamic programming
@param n number of data points
@param ncat number of clusters
@param data data point of size n: x[0..n-1]
@param center (OUT) output k centers of k clusters: center[0...k-1] will be filled
@param cluster (OUT) cluster assignments for each data point: cluster[0...n-1] will be filled
@return the minimum sum of squares over all k clusters
*/
double kMeansOneDim(int n, int ncat, double *data, double *center, int *cluster) {
int i, j, m, k = ncat;
if (ncat == 0) k = n;
/**
dynamic programming cost matrix, c[i][j] = cost of i clusters for {x1...xj}
*/
double **c = (double**) new double[k];
/**
id is used to trace back the minimal solution
*/
double **id = (double**) new double[k];
/**
c1[i][j] = cost of 1 cluster for {xi...xj}
*/
double **c1 = (double**) new double[n];
/**
m1[i][j] = mean of {xi...xj}
*/
double **m1 = (double**) new double[n];
double *x = new double[n]; // sorted data points
double *h = new double[n]; // Hartigan index
// allocate memory
for (i = 0; i < k; i++) c[i] = new double[n];
for (i = 0; i < k; i++) id[i] = new double[n];
for (i = 0; i < n; i++) c1[i] = new double[n];
for (i = 0; i < n; i++) m1[i] = new double[n];
// first sort data into x
memmove(x, data, sizeof(double)*n);
std::sort(x, x+n);
// first compute c1 matrix
for (i = 0; i < n; i++) {
double sum = 0.0;
for (j = i; j < n; j++) {
sum += x[j];
double mean = sum / (j-i+1);
m1[i][j] = mean;
double ss = 0;
for (m = i; m <= j; m++)
ss += (x[m]-mean)*(x[m]-mean); // sum of squared difference
//ss += fabs(x[m]-mean); // sum of absolute difference
c1[i][j] = ss;
}
}
/* now compute dynamic programming matrix */
// initialize the 1st row
for (j = 0; j < n; j++) {
c[0][j] = c1[0][j];
id[0][j] = -1;
}
for (i = 1; i < k; i++) {
// no i clusters exist for less than i data points
for (j = 0; j < i; j++) { c[i][j] = INFINITY; id[i][j] = -1; }
for (j = i; j < n; j++) {
c[i][j] = INFINITY;
for (m = i-1; m < j; m++)
if (c[i][j] > c[i-1][m] + c1[m+1][j]) {
c[i][j] = c[i-1][m] + c1[m+1][j];
id[i][j] = m;
}
}
// compute Hartigan index
h[i-1] = (n-i-1)*(c[i-1][n-1]-c[i][n-1]) / c[i][n-1];
//cout << i << " clusters " << h[i-1] << endl;
}
double min_cost = c[k-1][n-1];
int *bound = new int[k+1];
// now trace back
bound[k] = n-1;
for (i = k-1; i >= 0; i--) {
bound[i] = id[i][bound[i+1]];
}
for (i = 0; i < k; i++) {
center[i] = m1[bound[i]+1][bound[i+1]];
for (j = 0; j < n; j++)
if (data[j] <= x[bound[i+1]] && data[j] >= x[bound[i]+1])
cluster[j] = i;
}
// free memory
delete [] bound;
for (i = n-1; i >= 0; i--) delete [] m1[i];
for (i = n-1; i >= 0; i--) delete [] c1[i];
for (i = k-1; i >= 0; i--) delete [] id[i];
for (i = k-1; i >= 0; i--) delete [] c[i];
delete [] h;
delete [] x;
delete [] m1;
delete [] c1;
delete [] id;
delete [] c;
return min_cost;
}
|