1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341
|
/**************************** vectorf256.h *******************************
* Author: Agner Fog
* Date created: 2012-05-30
* Last modified: 2017-07-27
* Version: 1.30
* Project: vector classes
* Description:
* Header file defining 256-bit floating point vector classes as interface
* to intrinsic functions in x86 microprocessors with AVX instruction set.
*
* Instructions:
* Use Gnu, Intel or Microsoft C++ compiler. Compile for the desired
* instruction set, which must be at least AVX.
*
* The following vector classes are defined here:
* Vec8f Vector of 8 single precision floating point numbers
* Vec8fb Vector of 8 Booleans for use with Vec8f
* Vec4d Vector of 4 double precision floating point numbers
* Vec4db Vector of 4 Booleans for use with Vec4d
*
* Each vector object is represented internally in the CPU as a 256-bit register.
* This header file defines operators and functions for these vectors.
*
* For example:
* Vec4d a(1., 2., 3., 4.), b(5., 6., 7., 8.), c;
* c = a + b; // now c contains (6., 8., 10., 12.)
*
* For detailed instructions, see VectorClass.pdf
*
* (c) Copyright 2012-2017 GNU General Public License http://www.gnu.org/licenses
*****************************************************************************/
// check combination of header files
#if defined (VECTORF256_H)
#if VECTORF256_H != 2
#error Two different versions of vectorf256.h included
#endif
#else
#define VECTORF256_H 2
#if INSTRSET < 7 // AVX required
#error Please compile for the AVX instruction set or higher
#endif
#include "vectorf128.h" // Define 128-bit vectors
#ifdef VCL_NAMESPACE
namespace VCL_NAMESPACE {
#endif
/*****************************************************************************
*
* select functions
*
*****************************************************************************/
// Select between two __m256 sources, element by element. Used in various functions
// and operators. Corresponds to this pseudocode:
// for (int i = 0; i < 8; i++) result[i] = s[i] ? a[i] : b[i];
// Each element in s must be either 0 (false) or 0xFFFFFFFF (true).
static inline __m256 selectf (__m256 const & s, __m256 const & a, __m256 const & b) {
return _mm256_blendv_ps (b, a, s);
}
// Same, with two __m256d sources.
// and operators. Corresponds to this pseudocode:
// for (int i = 0; i < 4; i++) result[i] = s[i] ? a[i] : b[i];
// Each element in s must be either 0 (false) or 0xFFFFFFFFFFFFFFFF (true). No other
// values are allowed.
static inline __m256d selectd (__m256d const & s, __m256d const & a, __m256d const & b) {
return _mm256_blendv_pd (b, a, s);
}
/*****************************************************************************
*
* Generate compile-time constant vector
*
*****************************************************************************/
// Generate a constant vector of 8 integers stored in memory,
// load as __m256
template <int i0, int i1, int i2, int i3, int i4, int i5, int i6, int i7>
static inline __m256 constant8f() {
static const union {
int i[8];
__m256 ymm;
} u = {{i0,i1,i2,i3,i4,i5,i6,i7}};
return u.ymm;
}
/*****************************************************************************
*
* Join two 128-bit vectors
*
*****************************************************************************/
#define set_m128r(lo,hi) _mm256_insertf128_ps(_mm256_castps128_ps256(lo),(hi),1)
// _mm256_set_m128(hi,lo); // not defined in all versions of immintrin.h
/*****************************************************************************
*
* Vec8fb: Vector of 8 Booleans for use with Vec8f
*
*****************************************************************************/
class Vec8fb {
protected:
__m256 ymm; // Float vector
public:
// Default constructor:
Vec8fb() {
}
// Constructor to build from all elements:
Vec8fb(bool b0, bool b1, bool b2, bool b3, bool b4, bool b5, bool b6, bool b7) {
#if INSTRSET >= 8 // AVX2
ymm = _mm256_castsi256_ps(_mm256_setr_epi32(-(int)b0, -(int)b1, -(int)b2, -(int)b3, -(int)b4, -(int)b5, -(int)b6, -(int)b7));
#else
__m128 blo = _mm_castsi128_ps(_mm_setr_epi32(-(int)b0, -(int)b1, -(int)b2, -(int)b3));
__m128 bhi = _mm_castsi128_ps(_mm_setr_epi32(-(int)b4, -(int)b5, -(int)b6, -(int)b7));
ymm = set_m128r(blo,bhi);
#endif
}
// Constructor to build from two Vec4fb:
Vec8fb(Vec4fb const & a0, Vec4fb const & a1) {
ymm = set_m128r(a0, a1);
}
// Constructor to convert from type __m256 used in intrinsics:
Vec8fb(__m256 const & x) {
ymm = x;
}
// Assignment operator to convert from type __m256 used in intrinsics:
Vec8fb & operator = (__m256 const & x) {
ymm = x;
return *this;
}
// Constructor to broadcast the same value into all elements:
Vec8fb(bool b) {
#if INSTRSET >= 8 // AVX2
ymm = _mm256_castsi256_ps(_mm256_set1_epi32(-(int)b));
#else
__m128 b1 = _mm_castsi128_ps(_mm_set1_epi32(-(int)b));
//ymm = _mm256_set_m128(b1,b1);
ymm = set_m128r(b1,b1);
#endif
}
// Assignment operator to broadcast scalar value:
Vec8fb & operator = (bool b) {
*this = Vec8fb(b);
return *this;
}
private: // Prevent constructing from int, etc.
Vec8fb(int b);
Vec8fb & operator = (int x);
public:
// Type cast operator to convert to __m256 used in intrinsics
operator __m256() const {
return ymm;
}
#if defined (VECTORI256_H)
#if VECTORI256_H >= 2 // AVX2 version
// Constructor to convert from type Vec8ib used as Boolean for integer vectors
Vec8fb(Vec8ib const & x) {
ymm = _mm256_castsi256_ps(x);
}
// Assignment operator to convert from type Vec8ib used as Boolean for integer vectors
Vec8fb & operator = (Vec8ib const & x) {
ymm = _mm256_castsi256_ps(x);
return *this;
}
#ifndef FIX_CLANG_VECTOR_ALIAS_AMBIGUITY
// Type cast operator to convert to type Vec8ib used as Boolean for integer vectors
operator Vec8ib() const {
return _mm256_castps_si256(ymm);
}
#endif
#else
// Constructor to convert from type Vec8ib used as Boolean for integer vectors
Vec8fb(Vec8ib const & x) {
ymm = set_m128r(_mm_castsi128_ps(x.get_low()), _mm_castsi128_ps(x.get_high()));
}
// Assignment operator to convert from type Vec8ib used as Boolean for integer vectors
Vec8fb & operator = (Vec8ib const & x) {
ymm = set_m128r(_mm_castsi128_ps(x.get_low()), _mm_castsi128_ps(x.get_high()));
return *this;
}
// Type cast operator to convert to type Vec8ib used as Boolean for integer vectors
operator Vec8ib() const {
return Vec8i(_mm_castps_si128(get_low()), _mm_castps_si128(get_high()));
}
#endif
#endif // VECTORI256_H
// Member function to change a single element in vector
// Note: This function is inefficient. Use load function if changing more than one element
Vec8fb const & insert(uint32_t index, bool value) {
static const int32_t maskl[16] = {0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0};
__m256 mask = _mm256_loadu_ps((float const*)(maskl+8-(index & 7))); // mask with FFFFFFFF at index position
if (value) {
ymm = _mm256_or_ps(ymm,mask);
}
else {
ymm = _mm256_andnot_ps(mask,ymm);
}
return *this;
}
// Member function extract a single element from vector
bool extract(uint32_t index) const {
union {
float f[8];
int32_t i[8];
} u;
_mm256_storeu_ps(u.f, ymm);
return u.i[index & 7] != 0;
}
// Extract a single element. Operator [] can only read an element, not write.
bool operator [] (uint32_t index) const {
return extract(index);
}
// Member functions to split into two Vec4fb:
Vec4fb get_low() const {
return _mm256_castps256_ps128(ymm);
}
Vec4fb get_high() const {
return _mm256_extractf128_ps(ymm,1);
}
static int size () {
return 8;
}
};
/*****************************************************************************
*
* Operators for Vec8fb
*
*****************************************************************************/
// vector operator & : bitwise and
static inline Vec8fb operator & (Vec8fb const & a, Vec8fb const & b) {
return _mm256_and_ps(a, b);
}
static inline Vec8fb operator && (Vec8fb const & a, Vec8fb const & b) {
return a & b;
}
// vector operator &= : bitwise and
static inline Vec8fb & operator &= (Vec8fb & a, Vec8fb const & b) {
a = a & b;
return a;
}
// vector operator | : bitwise or
static inline Vec8fb operator | (Vec8fb const & a, Vec8fb const & b) {
return _mm256_or_ps(a, b);
}
static inline Vec8fb operator || (Vec8fb const & a, Vec8fb const & b) {
return a | b;
}
// vector operator |= : bitwise or
static inline Vec8fb & operator |= (Vec8fb & a, Vec8fb const & b) {
a = a | b;
return a;
}
// vector operator ^ : bitwise xor
static inline Vec8fb operator ^ (Vec8fb const & a, Vec8fb const & b) {
return _mm256_xor_ps(a, b);
}
// vector operator ^= : bitwise xor
static inline Vec8fb & operator ^= (Vec8fb & a, Vec8fb const & b) {
a = a ^ b;
return a;
}
// vector operator ~ : bitwise not
static inline Vec8fb operator ~ (Vec8fb const & a) {
return _mm256_xor_ps(a, constant8f<-1,-1,-1,-1,-1,-1,-1,-1>());
}
// vector operator ! : logical not
// (operator ! is less efficient than operator ~. Use only where not
// all bits in an element are the same)
static inline Vec8fb operator ! (Vec8fb const & a) {
return Vec8fb( !Vec8ib(a));
}
// Functions for Vec8fb
// andnot: a & ~ b
static inline Vec8fb andnot(Vec8fb const & a, Vec8fb const & b) {
return _mm256_andnot_ps(b, a);
}
/*****************************************************************************
*
* Horizontal Boolean functions
*
*****************************************************************************/
// horizontal_and. Returns true if all bits are 1
static inline bool horizontal_and (Vec8fb const & a) {
return _mm256_testc_ps(a,constant8f<-1,-1,-1,-1,-1,-1,-1,-1>()) != 0;
}
// horizontal_or. Returns true if at least one bit is 1
static inline bool horizontal_or (Vec8fb const & a) {
return ! _mm256_testz_ps(a,a);
}
/*****************************************************************************
*
* Vec4db: Vector of 4 Booleans for use with Vec4d
*
*****************************************************************************/
class Vec4db {
protected:
__m256d ymm; // double vector
public:
// Default constructor:
Vec4db() {
}
// Constructor to build from all elements:
Vec4db(bool b0, bool b1, bool b2, bool b3) {
#if INSTRSET >= 8 // AVX2
ymm = _mm256_castsi256_pd(_mm256_setr_epi64x(-(int64_t)b0, -(int64_t)b1, -(int64_t)b2, -(int64_t)b3));
#else
__m128 blo = _mm_castsi128_ps(_mm_setr_epi32(-(int)b0, -(int)b0, -(int)b1, -(int)b1));
__m128 bhi = _mm_castsi128_ps(_mm_setr_epi32(-(int)b2, -(int)b2, -(int)b3, -(int)b3));
ymm = _mm256_castps_pd(set_m128r(blo, bhi));
#endif
}
// Constructor to build from two Vec2db:
Vec4db(Vec2db const & a0, Vec2db const & a1) {
ymm = _mm256_castps_pd(set_m128r(_mm_castpd_ps(a0),_mm_castpd_ps(a1)));
//ymm = _mm256_set_m128d(a1, a0);
}
// Constructor to convert from type __m256d used in intrinsics:
Vec4db(__m256d const & x) {
ymm = x;
}
// Assignment operator to convert from type __m256d used in intrinsics:
Vec4db & operator = (__m256d const & x) {
ymm = x;
return *this;
}
// Constructor to broadcast the same value into all elements:
Vec4db(bool b) {
#if INSTRSET >= 8 // AVX2
ymm = _mm256_castsi256_pd(_mm256_set1_epi64x(-(int64_t)b));
#else
__m128 b1 = _mm_castsi128_ps(_mm_set1_epi32(-(int)b));
ymm = _mm256_castps_pd(set_m128r(b1,b1));
#endif
}
// Assignment operator to broadcast scalar value:
Vec4db & operator = (bool b) {
ymm = _mm256_castsi256_pd(_mm256_set1_epi32(-int32_t(b)));
return *this;
}
private: // Prevent constructing from int, etc.
Vec4db(int b);
Vec4db & operator = (int x);
public:
// Type cast operator to convert to __m256d used in intrinsics
operator __m256d() const {
return ymm;
}
#ifdef VECTORI256_H
#if VECTORI256_H == 2 // 256 bit integer vectors are available, AVX2
// Constructor to convert from type Vec4qb used as Boolean for integer vectors
Vec4db(Vec4qb const & x) {
ymm = _mm256_castsi256_pd(x);
}
// Assignment operator to convert from type Vec4qb used as Boolean for integer vectors
Vec4db & operator = (Vec4qb const & x) {
ymm = _mm256_castsi256_pd(x);
return *this;
}
#ifndef FIX_CLANG_VECTOR_ALIAS_AMBIGUITY
// Type cast operator to convert to type Vec4qb used as Boolean for integer vectors
operator Vec4qb() const {
return _mm256_castpd_si256(ymm);
}
#endif
#else // 256 bit integer vectors emulated without AVX2
// Constructor to convert from type Vec4qb used as Boolean for integer vectors
Vec4db(Vec4qb const & x) {
*this = Vec4db(_mm_castsi128_pd(x.get_low()), _mm_castsi128_pd(x.get_high()));
}
// Assignment operator to convert from type Vec4qb used as Boolean for integer vectors
Vec4db & operator = (Vec4qb const & x) {
*this = Vec4db(_mm_castsi128_pd(x.get_low()), _mm_castsi128_pd(x.get_high()));
return *this;
}
// Type cast operator to convert to type Vec4qb used as Boolean for integer vectors
operator Vec4qb() const {
return Vec4q(_mm_castpd_si128(get_low()), _mm_castpd_si128(get_high()));
}
#endif
#endif // VECTORI256_H
// Member function to change a single element in vector
// Note: This function is inefficient. Use load function if changing more than one element
Vec4db const & insert(uint32_t index, bool value) {
static const int32_t maskl[16] = {0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0};
__m256d mask = _mm256_loadu_pd((double const*)(maskl+8-(index&3)*2)); // mask with FFFFFFFFFFFFFFFF at index position
if (value) {
ymm = _mm256_or_pd(ymm,mask);
}
else {
ymm = _mm256_andnot_pd(mask,ymm);
}
return *this;
}
// Member function extract a single element from vector
bool extract(uint32_t index) const {
union {
double f[8];
int32_t i[16];
} u;
_mm256_storeu_pd(u.f, ymm);
return u.i[(index & 3) * 2 + 1] != 0;
}
// Extract a single element. Operator [] can only read an element, not write.
bool operator [] (uint32_t index) const {
return extract(index);
}
// Member functions to split into two Vec4fb:
Vec2db get_low() const {
return _mm256_castpd256_pd128(ymm);
}
Vec2db get_high() const {
return _mm256_extractf128_pd(ymm,1);
}
static int size () {
return 4;
}
};
/*****************************************************************************
*
* Operators for Vec4db
*
*****************************************************************************/
// vector operator & : bitwise and
static inline Vec4db operator & (Vec4db const & a, Vec4db const & b) {
return _mm256_and_pd(a, b);
}
static inline Vec4db operator && (Vec4db const & a, Vec4db const & b) {
return a & b;
}
// vector operator &= : bitwise and
static inline Vec4db & operator &= (Vec4db & a, Vec4db const & b) {
a = a & b;
return a;
}
// vector operator | : bitwise or
static inline Vec4db operator | (Vec4db const & a, Vec4db const & b) {
return _mm256_or_pd(a, b);
}
static inline Vec4db operator || (Vec4db const & a, Vec4db const & b) {
return a | b;
}
// vector operator |= : bitwise or
static inline Vec4db & operator |= (Vec4db & a, Vec4db const & b) {
a = a | b;
return a;
}
// vector operator ^ : bitwise xor
static inline Vec4db operator ^ (Vec4db const & a, Vec4db const & b) {
return _mm256_xor_pd(a, b);
}
// vector operator ^= : bitwise xor
static inline Vec4db & operator ^= (Vec4db & a, Vec4db const & b) {
a = a ^ b;
return a;
}
// vector operator ~ : bitwise not
static inline Vec4db operator ~ (Vec4db const & a) {
return _mm256_xor_pd(a, _mm256_castps_pd (constant8f<-1,-1,-1,-1,-1,-1,-1,-1>()));
}
// vector operator ! : logical not
// (operator ! is less efficient than operator ~. Use only where not
// all bits in an element are the same)
static inline Vec4db operator ! (Vec4db const & a) {
return Vec4db( ! Vec4qb(a));
}
// Functions for Vec8fb
// andnot: a & ~ b
static inline Vec4db andnot(Vec4db const & a, Vec4db const & b) {
return _mm256_andnot_pd(b, a);
}
/*****************************************************************************
*
* Horizontal Boolean functions
*
*****************************************************************************/
// horizontal_and. Returns true if all bits are 1
static inline bool horizontal_and (Vec4db const & a) {
#if defined (VECTORI256_H) && VECTORI256_H > 1 // 256 bit integer vectors are available, AVX2
return horizontal_and(Vec256b(_mm256_castpd_si256(a)));
#else // split into 128 bit vectors
return horizontal_and(a.get_low() & a.get_high());
#endif
}
// horizontal_or. Returns true if at least one bit is 1
static inline bool horizontal_or (Vec4db const & a) {
#if defined (VECTORI256_H) && VECTORI256_H > 1 // 256 bit integer vectors are available, AVX2
return horizontal_or(Vec256b(_mm256_castpd_si256(a)));
#else // split into 128 bit vectors
return horizontal_or(a.get_low() | a.get_high());
#endif
}
/*****************************************************************************
*
* Vec8f: Vector of 8 single precision floating point values
*
*****************************************************************************/
class Vec8f {
protected:
__m256 ymm; // Float vector
public:
// Default constructor:
Vec8f() {
}
// Constructor to broadcast the same value into all elements:
Vec8f(float f) {
ymm = _mm256_set1_ps(f);
}
// Constructor to build from all elements:
Vec8f(float f0, float f1, float f2, float f3, float f4, float f5, float f6, float f7) {
ymm = _mm256_setr_ps(f0, f1, f2, f3, f4, f5, f6, f7);
}
// Constructor to build from two Vec4f:
Vec8f(Vec4f const & a0, Vec4f const & a1) {
ymm = set_m128r(a0, a1);
//ymm = _mm256_set_m128(a1, a0);
}
// Constructor to convert from type __m256 used in intrinsics:
Vec8f(__m256 const & x) {
ymm = x;
}
// Assignment operator to convert from type __m256 used in intrinsics:
Vec8f & operator = (__m256 const & x) {
ymm = x;
return *this;
}
// Type cast operator to convert to __m256 used in intrinsics
operator __m256() const {
return ymm;
}
// Member function to load from array (unaligned)
Vec8f & load(float const * p) {
ymm = _mm256_loadu_ps(p);
return *this;
}
// Member function to load from array, aligned by 32
// You may use load_a instead of load if you are certain that p points to an address
// divisible by 32.
Vec8f & load_a(float const * p) {
ymm = _mm256_load_ps(p);
return *this;
}
// Member function to store into array (unaligned)
void store(float * p) const {
_mm256_storeu_ps(p, ymm);
}
// Member function to store into array, aligned by 32
// You may use store_a instead of store if you are certain that p points to an address
// divisible by 32.
void store_a(float * p) const {
_mm256_store_ps(p, ymm);
}
// Partial load. Load n elements and set the rest to 0
Vec8f & load_partial(int n, float const * p) {
if (n > 0 && n <= 4) {
*this = Vec8f(Vec4f().load_partial(n, p), _mm_setzero_ps());
// ymm = _mm256_castps128_ps256(Vec4f().load_partial<n>(p)); (this doesn't work on MS compiler due to sloppy definition of the cast)
}
else if (n > 4 && n <= 8) {
*this = Vec8f(Vec4f().load(p), Vec4f().load_partial(n - 4, p + 4));
}
else {
ymm = _mm256_setzero_ps();
}
return *this;
}
// Partial store. Store n elements
void store_partial(int n, float * p) const {
if (n <= 4) {
get_low().store_partial(n, p);
}
else if (n <= 8) {
get_low().store(p);
get_high().store_partial(n - 4, p + 4);
}
}
// cut off vector to n elements. The last 8-n elements are set to zero
Vec8f & cutoff(int n) {
if (uint32_t(n) >= 8) return *this;
static const union {
int32_t i[16];
float f[16];
} mask = {{-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0}};
*this = Vec8fb(*this) & Vec8fb(Vec8f().load(mask.f + 8 - n));
return *this;
}
// Member function to change a single element in vector
// Note: This function is inefficient. Use load function if changing more than one element
Vec8f const & insert(uint32_t index, float value) {
__m256 v0 = _mm256_broadcast_ss(&value);
switch (index) {
case 0:
ymm = _mm256_blend_ps (ymm, v0, 1); break;
case 1:
ymm = _mm256_blend_ps (ymm, v0, 2); break;
case 2:
ymm = _mm256_blend_ps (ymm, v0, 4); break;
case 3:
ymm = _mm256_blend_ps (ymm, v0, 8); break;
case 4:
ymm = _mm256_blend_ps (ymm, v0, 0x10); break;
case 5:
ymm = _mm256_blend_ps (ymm, v0, 0x20); break;
case 6:
ymm = _mm256_blend_ps (ymm, v0, 0x40); break;
default:
ymm = _mm256_blend_ps (ymm, v0, 0x80); break;
}
return *this;
}
// Member function extract a single element from vector
float extract(uint32_t index) const {
float x[8];
store(x);
return x[index & 7];
}
// Extract a single element. Use store function if extracting more than one element.
// Operator [] can only read an element, not write.
float operator [] (uint32_t index) const {
return extract(index);
}
// Member functions to split into two Vec4f:
Vec4f get_low() const {
return _mm256_castps256_ps128(ymm);
}
Vec4f get_high() const {
return _mm256_extractf128_ps(ymm,1);
}
static int size () {
return 8;
}
};
/*****************************************************************************
*
* Operators for Vec8f
*
*****************************************************************************/
// vector operator + : add element by element
static inline Vec8f operator + (Vec8f const & a, Vec8f const & b) {
return _mm256_add_ps(a, b);
}
// vector operator + : add vector and scalar
static inline Vec8f operator + (Vec8f const & a, float b) {
return a + Vec8f(b);
}
static inline Vec8f operator + (float a, Vec8f const & b) {
return Vec8f(a) + b;
}
// vector operator += : add
static inline Vec8f & operator += (Vec8f & a, Vec8f const & b) {
a = a + b;
return a;
}
// postfix operator ++
static inline Vec8f operator ++ (Vec8f & a, int) {
Vec8f a0 = a;
a = a + 1.0f;
return a0;
}
// prefix operator ++
static inline Vec8f & operator ++ (Vec8f & a) {
a = a + 1.0f;
return a;
}
// vector operator - : subtract element by element
static inline Vec8f operator - (Vec8f const & a, Vec8f const & b) {
return _mm256_sub_ps(a, b);
}
// vector operator - : subtract vector and scalar
static inline Vec8f operator - (Vec8f const & a, float b) {
return a - Vec8f(b);
}
static inline Vec8f operator - (float a, Vec8f const & b) {
return Vec8f(a) - b;
}
// vector operator - : unary minus
// Change sign bit, even for 0, INF and NAN
static inline Vec8f operator - (Vec8f const & a) {
return _mm256_xor_ps(a, constant8f<(int)0x80000000,(int)0x80000000,(int)0x80000000,(int)0x80000000,(int)0x80000000,(int)0x80000000,(int)0x80000000,(int)0x80000000> ());
}
// vector operator -= : subtract
static inline Vec8f & operator -= (Vec8f & a, Vec8f const & b) {
a = a - b;
return a;
}
// postfix operator --
static inline Vec8f operator -- (Vec8f & a, int) {
Vec8f a0 = a;
a = a - 1.0f;
return a0;
}
// prefix operator --
static inline Vec8f & operator -- (Vec8f & a) {
a = a - 1.0f;
return a;
}
// vector operator * : multiply element by element
static inline Vec8f operator * (Vec8f const & a, Vec8f const & b) {
return _mm256_mul_ps(a, b);
}
// vector operator * : multiply vector and scalar
static inline Vec8f operator * (Vec8f const & a, float b) {
return a * Vec8f(b);
}
static inline Vec8f operator * (float a, Vec8f const & b) {
return Vec8f(a) * b;
}
// vector operator *= : multiply
static inline Vec8f & operator *= (Vec8f & a, Vec8f const & b) {
a = a * b;
return a;
}
// vector operator / : divide all elements by same integer
static inline Vec8f operator / (Vec8f const & a, Vec8f const & b) {
return _mm256_div_ps(a, b);
}
// vector operator / : divide vector and scalar
static inline Vec8f operator / (Vec8f const & a, float b) {
return a / Vec8f(b);
}
static inline Vec8f operator / (float a, Vec8f const & b) {
return Vec8f(a) / b;
}
// vector operator /= : divide
static inline Vec8f & operator /= (Vec8f & a, Vec8f const & b) {
a = a / b;
return a;
}
// vector operator == : returns true for elements for which a == b
static inline Vec8fb operator == (Vec8f const & a, Vec8f const & b) {
return _mm256_cmp_ps(a, b, 0);
}
// vector operator != : returns true for elements for which a != b
static inline Vec8fb operator != (Vec8f const & a, Vec8f const & b) {
return _mm256_cmp_ps(a, b, 4);
}
// vector operator < : returns true for elements for which a < b
static inline Vec8fb operator < (Vec8f const & a, Vec8f const & b) {
return _mm256_cmp_ps(a, b, 1);
}
// vector operator <= : returns true for elements for which a <= b
static inline Vec8fb operator <= (Vec8f const & a, Vec8f const & b) {
return _mm256_cmp_ps(a, b, 2);
}
// vector operator > : returns true for elements for which a > b
static inline Vec8fb operator > (Vec8f const & a, Vec8f const & b) {
return b < a;
}
// vector operator >= : returns true for elements for which a >= b
static inline Vec8fb operator >= (Vec8f const & a, Vec8f const & b) {
return b <= a;
}
// Bitwise logical operators
// vector operator & : bitwise and
static inline Vec8f operator & (Vec8f const & a, Vec8f const & b) {
return _mm256_and_ps(a, b);
}
// vector operator &= : bitwise and
static inline Vec8f & operator &= (Vec8f & a, Vec8f const & b) {
a = a & b;
return a;
}
// vector operator & : bitwise and of Vec8f and Vec8fb
static inline Vec8f operator & (Vec8f const & a, Vec8fb const & b) {
return _mm256_and_ps(a, b);
}
static inline Vec8f operator & (Vec8fb const & a, Vec8f const & b) {
return _mm256_and_ps(a, b);
}
// vector operator | : bitwise or
static inline Vec8f operator | (Vec8f const & a, Vec8f const & b) {
return _mm256_or_ps(a, b);
}
// vector operator |= : bitwise or
static inline Vec8f & operator |= (Vec8f & a, Vec8f const & b) {
a = a | b;
return a;
}
// vector operator ^ : bitwise xor
static inline Vec8f operator ^ (Vec8f const & a, Vec8f const & b) {
return _mm256_xor_ps(a, b);
}
// vector operator ^= : bitwise xor
static inline Vec8f & operator ^= (Vec8f & a, Vec8f const & b) {
a = a ^ b;
return a;
}
// vector operator ! : logical not. Returns Boolean vector
static inline Vec8fb operator ! (Vec8f const & a) {
return a == Vec8f(0.0f);
}
/*****************************************************************************
*
* Functions for Vec8f
*
*****************************************************************************/
// Select between two operands. Corresponds to this pseudocode:
// for (int i = 0; i < 8; i++) result[i] = s[i] ? a[i] : b[i];
// Each byte in s must be either 0 (false) or 0xFFFFFFFF (true). No other values are allowed.
static inline Vec8f select (Vec8fb const & s, Vec8f const & a, Vec8f const & b) {
return _mm256_blendv_ps (b, a, s);
}
// Conditional add: For all vector elements i: result[i] = f[i] ? (a[i] + b[i]) : a[i]
static inline Vec8f if_add (Vec8fb const & f, Vec8f const & a, Vec8f const & b) {
return a + (Vec8f(f) & b);
}
// Conditional multiply: For all vector elements i: result[i] = f[i] ? (a[i] * b[i]) : a[i]
static inline Vec8f if_mul (Vec8fb const & f, Vec8f const & a, Vec8f const & b) {
return a * select(f, b, 1.f);
}
// General arithmetic functions, etc.
// Horizontal add: Calculates the sum of all vector elements.
static inline float horizontal_add (Vec8f const & a) {
__m256 t1 = _mm256_hadd_ps(a,a);
__m256 t2 = _mm256_hadd_ps(t1,t1);
__m128 t3 = _mm256_extractf128_ps(t2,1);
__m128 t4 = _mm_add_ss(_mm256_castps256_ps128(t2),t3);
return _mm_cvtss_f32(t4);
}
// function max: a > b ? a : b
static inline Vec8f max(Vec8f const & a, Vec8f const & b) {
return _mm256_max_ps(a,b);
}
// function min: a < b ? a : b
static inline Vec8f min(Vec8f const & a, Vec8f const & b) {
return _mm256_min_ps(a,b);
}
// function abs: absolute value
// Removes sign bit, even for -0.0f, -INF and -NAN
static inline Vec8f abs(Vec8f const & a) {
__m256 mask = constant8f<0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF> ();
return _mm256_and_ps(a,mask);
}
// function sqrt: square root
static inline Vec8f sqrt(Vec8f const & a) {
return _mm256_sqrt_ps(a);
}
// function square: a * a
static inline Vec8f square(Vec8f const & a) {
return a * a;
}
// pow(Vec8f, int):
template <typename TT> static Vec8f pow(Vec8f const & a, TT const & n);
// Raise floating point numbers to integer power n
template <>
inline Vec8f pow<int>(Vec8f const & x0, int const & n) {
return pow_template_i<Vec8f>(x0, n);
}
// allow conversion from unsigned int
template <>
inline Vec8f pow<uint32_t>(Vec8f const & x0, uint32_t const & n) {
return pow_template_i<Vec8f>(x0, (int)n);
}
// Raise floating point numbers to integer power n, where n is a compile-time constant
template <int n>
static inline Vec8f pow_n(Vec8f const & a) {
if (n < 0) return Vec8f(1.0f) / pow_n<-n>(a);
if (n == 0) return Vec8f(1.0f);
if (n >= 256) return pow(a, n);
Vec8f x = a; // a^(2^i)
Vec8f y; // accumulator
const int lowest = n - (n & (n-1));// lowest set bit in n
if (n & 1) y = x;
if (n < 2) return y;
x = x*x; // x^2
if (n & 2) {
if (lowest == 2) y = x; else y *= x;
}
if (n < 4) return y;
x = x*x; // x^4
if (n & 4) {
if (lowest == 4) y = x; else y *= x;
}
if (n < 8) return y;
x = x*x; // x^8
if (n & 8) {
if (lowest == 8) y = x; else y *= x;
}
if (n < 16) return y;
x = x*x; // x^16
if (n & 16) {
if (lowest == 16) y = x; else y *= x;
}
if (n < 32) return y;
x = x*x; // x^32
if (n & 32) {
if (lowest == 32) y = x; else y *= x;
}
if (n < 64) return y;
x = x*x; // x^64
if (n & 64) {
if (lowest == 64) y = x; else y *= x;
}
if (n < 128) return y;
x = x*x; // x^128
if (n & 128) {
if (lowest == 128) y = x; else y *= x;
}
return y;
}
template <int n>
static inline Vec8f pow(Vec8f const & a, Const_int_t<n>) {
return pow_n<n>(a);
}
// function round: round to nearest integer (even). (result as float vector)
static inline Vec8f round(Vec8f const & a) {
return _mm256_round_ps(a, 0+8);
}
// function truncate: round towards zero. (result as float vector)
static inline Vec8f truncate(Vec8f const & a) {
return _mm256_round_ps(a, 3+8);
}
// function floor: round towards minus infinity. (result as float vector)
static inline Vec8f floor(Vec8f const & a) {
return _mm256_round_ps(a, 1+8);
}
// function ceil: round towards plus infinity. (result as float vector)
static inline Vec8f ceil(Vec8f const & a) {
return _mm256_round_ps(a, 2+8);
}
#ifdef VECTORI256_H // 256 bit integer vectors are available
#if VECTORI256_H > 1 // AVX2
// function round_to_int: round to nearest integer (even). (result as integer vector)
static inline Vec8i round_to_int(Vec8f const & a) {
// Note: assume MXCSR control register is set to rounding
return _mm256_cvtps_epi32(a);
}
// function truncate_to_int: round towards zero. (result as integer vector)
static inline Vec8i truncate_to_int(Vec8f const & a) {
return _mm256_cvttps_epi32(a);
}
// function to_float: convert integer vector to float vector
static inline Vec8f to_float(Vec8i const & a) {
return _mm256_cvtepi32_ps(a);
}
// function to_float: convert unsigned integer vector to float vector
static inline Vec8f to_float(Vec8ui const & a) {
#ifdef __AVX512VL__
return _mm256_cvtepu32_ps(a);
#else
Vec8f b = to_float(Vec8i(a & 0x7FFFFFFF)); // 31 bits
Vec8i c = Vec8i(a) >> 31; // generate mask from highest bit
Vec8f d = Vec8f(2147483648.f) & Vec8f(_mm256_castsi256_ps(c));// mask floating point constant 2^31
return b + d;
#endif
}
#else // no AVX2
// function round_to_int: round to nearest integer (even). (result as integer vector)
static inline Vec8i round_to_int(Vec8f const & a) {
// Note: assume MXCSR control register is set to rounding
return Vec8i(_mm_cvtps_epi32(a.get_low()), _mm_cvtps_epi32(a.get_high()));
}
// function truncate_to_int: round towards zero. (result as integer vector)
static inline Vec8i truncate_to_int(Vec8f const & a) {
return Vec8i(_mm_cvttps_epi32(a.get_low()), _mm_cvttps_epi32(a.get_high()));
}
// function to_float: convert integer vector to float vector
static inline Vec8f to_float(Vec8i const & a) {
return Vec8f(_mm_cvtepi32_ps(a.get_low()), _mm_cvtepi32_ps(a.get_high()));
}
// function to_float: convert unsigned integer vector to float vector
static inline Vec8f to_float(Vec8ui const & a) {
return Vec8f(to_float(a.get_low()), to_float(a.get_high()));
}
#endif
#endif // VECTORI256_H
// Fused multiply and add functions
// Multiply and add
static inline Vec8f mul_add(Vec8f const & a, Vec8f const & b, Vec8f const & c) {
#ifdef __FMA__
return _mm256_fmadd_ps(a, b, c);
#elif defined (__FMA4__)
return _mm256_macc_ps(a, b, c);
#else
return a * b + c;
#endif
}
// Multiply and subtract
static inline Vec8f mul_sub(Vec8f const & a, Vec8f const & b, Vec8f const & c) {
#ifdef __FMA__
return _mm256_fmsub_ps(a, b, c);
#elif defined (__FMA4__)
return _mm256_msub_ps(a, b, c);
#else
return a * b - c;
#endif
}
// Multiply and inverse subtract
static inline Vec8f nmul_add(Vec8f const & a, Vec8f const & b, Vec8f const & c) {
#ifdef __FMA__
return _mm256_fnmadd_ps(a, b, c);
#elif defined (__FMA4__)
return _mm256_nmacc_ps(a, b, c);
#else
return c - a * b;
#endif
}
// Multiply and subtract with extra precision on the intermediate calculations,
// even if FMA instructions not supported, using Veltkamp-Dekker split
static inline Vec8f mul_sub_x(Vec8f const & a, Vec8f const & b, Vec8f const & c) {
#ifdef __FMA__
return _mm256_fmsub_ps(a, b, c);
#elif defined (__FMA4__)
return _mm256_msub_ps(a, b, c);
#else
// calculate a * b - c with extra precision
const int b12 = -(1 << 12); // mask to remove lower 12 bits
Vec8f upper_mask = constant8f<b12,b12,b12,b12,b12,b12,b12,b12>();
Vec8f a_high = a & upper_mask; // split into high and low parts
Vec8f b_high = b & upper_mask;
Vec8f a_low = a - a_high;
Vec8f b_low = b - b_high;
Vec8f r1 = a_high * b_high; // this product is exact
Vec8f r2 = r1 - c; // subtract c from high product
Vec8f r3 = r2 + (a_high * b_low + b_high * a_low) + a_low * b_low; // add rest of product
return r3; // + ((r2 - r1) + c);
#endif
}
// Approximate math functions
// approximate reciprocal (Faster than 1.f / a. relative accuracy better than 2^-11)
static inline Vec8f approx_recipr(Vec8f const & a) {
#if INSTRSET >= 9 // use more accurate version if available. (none of these will raise exceptions on zero)
#ifdef __AVX512ER__ // AVX512ER: full precision
// todo: if future processors have both AVX512ER and AVX512VL: _mm256_rcp28_round_ps(a, _MM_FROUND_NO_EXC);
return _mm512_castps512_ps256(_mm512_rcp28_round_ps(_mm512_castps256_ps512(a), _MM_FROUND_NO_EXC));
#elif defined __AVX512VL__ // AVX512VL: 14 bit precision
return _mm256_rcp14_ps(a);
#else // AVX512F: 14 bit precision
return _mm512_castps512_ps256(_mm512_rcp14_ps(_mm512_castps256_ps512(a)));
#endif
#else // AVX: 11 bit precision
return _mm256_rcp_ps(a);
#endif
}
// approximate reciprocal squareroot (Faster than 1.f / sqrt(a). Relative accuracy better than 2^-11)
static inline Vec8f approx_rsqrt(Vec8f const & a) {
#if INSTRSET >= 9 // use more accurate version if available. (none of these will raise exceptions on zero)
#ifdef __AVX512ER__ // AVX512ER: full precision
// todo: if future processors have both AVX512ER and AVX521VL: _mm256_rsqrt28_round_ps(a, _MM_FROUND_NO_EXC);
return _mm512_castps512_ps256(_mm512_rsqrt28_round_ps(_mm512_castps256_ps512(a), _MM_FROUND_NO_EXC));
#elif defined __AVX512VL__ // AVX512VL: 14 bit precision
return _mm256_rsqrt14_ps(a);
#else // AVX512F: 14 bit precision
return _mm512_castps512_ps256(_mm512_rsqrt14_ps(_mm512_castps256_ps512(a)));
#endif
#else // AVX: 11 bit precision
return _mm256_rsqrt_ps(a);
#endif
}
// Math functions using fast bit manipulation
#ifdef VECTORI256_H // 256 bit integer vectors are available, AVX2
// Extract the exponent as an integer
// exponent(a) = floor(log2(abs(a)));
// exponent(1.0f) = 0, exponent(0.0f) = -127, exponent(INF) = +128, exponent(NAN) = +128
static inline Vec8i exponent(Vec8f const & a) {
#if VECTORI256_H > 1 // AVX2
Vec8ui t1 = _mm256_castps_si256(a);// reinterpret as 32-bit integer
Vec8ui t2 = t1 << 1; // shift out sign bit
Vec8ui t3 = t2 >> 24; // shift down logical to position 0
Vec8i t4 = Vec8i(t3) - 0x7F; // subtract bias from exponent
return t4;
#else // no AVX2
return Vec8i(exponent(a.get_low()), exponent(a.get_high()));
#endif
}
#endif
// Extract the fraction part of a floating point number
// a = 2^exponent(a) * fraction(a), except for a = 0
// fraction(1.0f) = 1.0f, fraction(5.0f) = 1.25f
static inline Vec8f fraction(Vec8f const & a) {
#if defined (VECTORI256_H) && VECTORI256_H > 2 // 256 bit integer vectors are available, AVX2
Vec8ui t1 = _mm256_castps_si256(a); // reinterpret as 32-bit integer
Vec8ui t2 = (t1 & 0x007FFFFF) | 0x3F800000; // set exponent to 0 + bias
return _mm256_castsi256_ps(t2);
#else
return Vec8f(fraction(a.get_low()), fraction(a.get_high()));
#endif
}
#ifdef VECTORI256_H // 256 bit integer vectors are available, AVX2
// Fast calculation of pow(2,n) with n integer
// n = 0 gives 1.0f
// n >= 128 gives +INF
// n <= -127 gives 0.0f
// This function will never produce denormals, and never raise exceptions
static inline Vec8f exp2(Vec8i const & n) {
#if VECTORI256_H > 1 // AVX2
Vec8i t1 = max(n, -0x7F); // limit to allowed range
Vec8i t2 = min(t1, 0x80);
Vec8i t3 = t2 + 0x7F; // add bias
Vec8i t4 = t3 << 23; // put exponent into position 23
return _mm256_castsi256_ps(t4); // reinterpret as float
#else
return Vec8f(exp2(n.get_low()), exp2(n.get_high()));
#endif
}
//static inline Vec8f exp2(Vec8f const & x); // defined in vectormath_exp.h
#endif // VECTORI256_H
// Categorization functions
// Function sign_bit: gives true for elements that have the sign bit set
// even for -0.0f, -INF and -NAN
// Note that sign_bit(Vec8f(-0.0f)) gives true, while Vec8f(-0.0f) < Vec8f(0.0f) gives false
// (the underscore in the name avoids a conflict with a macro in Intel's mathimf.h)
static inline Vec8fb sign_bit(Vec8f const & a) {
#if defined (VECTORI256_H) && VECTORI256_H > 1 // 256 bit integer vectors are available, AVX2
Vec8i t1 = _mm256_castps_si256(a); // reinterpret as 32-bit integer
Vec8i t2 = t1 >> 31; // extend sign bit
return _mm256_castsi256_ps(t2); // reinterpret as 32-bit Boolean
#else
return Vec8fb(sign_bit(a.get_low()), sign_bit(a.get_high()));
#endif
}
// Function sign_combine: changes the sign of a when b has the sign bit set
// same as select(sign_bit(b), -a, a)
static inline Vec8f sign_combine(Vec8f const & a, Vec8f const & b) {
Vec8f signmask = constant8f<(int)0x80000000,(int)0x80000000,(int)0x80000000,(int)0x80000000,(int)0x80000000,(int)0x80000000,(int)0x80000000,(int)0x80000000>(); // -0.0
return a ^ (b & signmask);
}
// Function is_finite: gives true for elements that are normal, denormal or zero,
// false for INF and NAN
// (the underscore in the name avoids a conflict with a macro in Intel's mathimf.h)
static inline Vec8fb is_finite(Vec8f const & a) {
#if defined (VECTORI256_H) && VECTORI256_H > 1 // 256 bit integer vectors are available, AVX2
Vec8i t1 = _mm256_castps_si256(a); // reinterpret as 32-bit integer
Vec8i t2 = t1 << 1; // shift out sign bit
Vec8ib t3 = Vec8i(t2 & 0xFF000000) != 0xFF000000; // exponent field is not all 1s
return t3;
#else
return Vec8fb(is_finite(a.get_low()), is_finite(a.get_high()));
#endif
}
// Function is_inf: gives true for elements that are +INF or -INF
// false for finite numbers and NAN
// (the underscore in the name avoids a conflict with a macro in Intel's mathimf.h)
static inline Vec8fb is_inf(Vec8f const & a) {
#if defined (VECTORI256_H) && VECTORI256_H > 1 // 256 bit integer vectors are available, AVX2
Vec8i t1 = _mm256_castps_si256(a); // reinterpret as 32-bit integer
Vec8i t2 = t1 << 1; // shift out sign bit
return t2 == 0xFF000000; // exponent is all 1s, fraction is 0
#else
return Vec8fb(is_inf(a.get_low()), is_inf(a.get_high()));
#endif
}
// Function is_nan: gives true for elements that are +NAN or -NAN
// false for finite numbers and +/-INF
// (the underscore in the name avoids a conflict with a macro in Intel's mathimf.h)
static inline Vec8fb is_nan(Vec8f const & a) {
#if defined (VECTORI256_H) && VECTORI256_H > 1 // 256 bit integer vectors are available, AVX2
Vec8i t1 = _mm256_castps_si256(a); // reinterpret as 32-bit integer
Vec8i t2 = t1 << 1; // shift out sign bit
Vec8i t3 = 0xFF000000; // exponent mask
Vec8i t4 = t2 & t3; // exponent
Vec8i t5 = _mm256_andnot_si256(t3,t2);// fraction
return Vec8ib(t4 == t3 && t5 != 0);// exponent = all 1s and fraction != 0
#else
return Vec8fb(is_nan(a.get_low()), is_nan(a.get_high()));
#endif
}
// Function is_subnormal: gives true for elements that are denormal (subnormal)
// false for finite numbers, zero, NAN and INF
static inline Vec8fb is_subnormal(Vec8f const & a) {
#if defined (VECTORI256_H) && VECTORI256_H > 1 // 256 bit integer vectors are available, AVX2
Vec8i t1 = _mm256_castps_si256(a); // reinterpret as 32-bit integer
Vec8i t2 = t1 << 1; // shift out sign bit
Vec8i t3 = 0xFF000000; // exponent mask
Vec8i t4 = t2 & t3; // exponent
Vec8i t5 = _mm256_andnot_si256(t3,t2);// fraction
return Vec8ib(t4 == 0 && t5 != 0); // exponent = 0 and fraction != 0
#else
return Vec8fb(is_subnormal(a.get_low()), is_subnormal(a.get_high()));
#endif
}
// Function is_zero_or_subnormal: gives true for elements that are zero or subnormal (denormal)
// false for finite numbers, NAN and INF
static inline Vec8fb is_zero_or_subnormal(Vec8f const & a) {
#if defined (VECTORI256_H) && VECTORI256_H > 1 // 256 bit integer vectors are available, AVX2
Vec8i t = _mm256_castps_si256(a); // reinterpret as 32-bit integer
t &= 0x7F800000; // isolate exponent
return t == 0; // exponent = 0
#else
return Vec8fb(is_zero_or_subnormal(a.get_low()), is_zero_or_subnormal(a.get_high()));
#endif
}
// Function infinite4f: returns a vector where all elements are +INF
static inline Vec8f infinite8f() {
return constant8f<0x7F800000,0x7F800000,0x7F800000,0x7F800000,0x7F800000,0x7F800000,0x7F800000,0x7F800000>();
}
// Function nan4f: returns a vector where all elements are +NAN (quiet)
static inline Vec8f nan8f(int n = 0x10) {
return _mm256_castsi256_ps(_mm256_set1_epi32(0x7FC00000 + n));
}
// change signs on vectors Vec8f
// Each index i0 - i7 is 1 for changing sign on the corresponding element, 0 for no change
template <int i0, int i1, int i2, int i3, int i4, int i5, int i6, int i7>
static inline Vec8f change_sign(Vec8f const & a) {
if ((i0 | i1 | i2 | i3 | i4 | i5 | i6 | i7) == 0) return a;
__m256 mask = constant8f<i0 ? (int)0x80000000 : 0, i1 ? (int)0x80000000 : 0, i2 ? (int)0x80000000 : 0, i3 ? (int)0x80000000 : 0,
i4 ? (int)0x80000000 : 0, i5 ? (int)0x80000000 : 0, i6 ? (int)0x80000000 : 0, i7 ? (int)0x80000000 : 0> ();
return _mm256_xor_ps(a, mask);
}
/*****************************************************************************
*
* Vec4d: Vector of 4 double precision floating point values
*
*****************************************************************************/
class Vec4d {
protected:
__m256d ymm; // double vector
public:
// Default constructor:
Vec4d() {
}
// Constructor to broadcast the same value into all elements:
Vec4d(double d) {
ymm = _mm256_set1_pd(d);
}
// Constructor to build from all elements:
Vec4d(double d0, double d1, double d2, double d3) {
ymm = _mm256_setr_pd(d0, d1, d2, d3);
}
// Constructor to build from two Vec2d:
Vec4d(Vec2d const & a0, Vec2d const & a1) {
ymm = _mm256_castps_pd(set_m128r(_mm_castpd_ps(a0), _mm_castpd_ps(a1)));
//ymm = _mm256_set_m128d(a1, a0);
}
// Constructor to convert from type __m256d used in intrinsics:
Vec4d(__m256d const & x) {
ymm = x;
}
// Assignment operator to convert from type __m256d used in intrinsics:
Vec4d & operator = (__m256d const & x) {
ymm = x;
return *this;
}
// Type cast operator to convert to __m256d used in intrinsics
operator __m256d() const {
return ymm;
}
// Member function to load from array (unaligned)
Vec4d & load(double const * p) {
ymm = _mm256_loadu_pd(p);
return *this;
}
// Member function to load from array, aligned by 32
// You may use load_a instead of load if you are certain that p points to an address
// divisible by 32
Vec4d & load_a(double const * p) {
ymm = _mm256_load_pd(p);
return *this;
}
// Member function to store into array (unaligned)
void store(double * p) const {
_mm256_storeu_pd(p, ymm);
}
// Member function to store into array, aligned by 32
// You may use store_a instead of store if you are certain that p points to an address
// divisible by 32
void store_a(double * p) const {
_mm256_store_pd(p, ymm);
}
// Partial load. Load n elements and set the rest to 0
Vec4d & load_partial(int n, double const * p) {
if (n > 0 && n <= 2) {
*this = Vec4d(Vec2d().load_partial(n, p), _mm_setzero_pd());
}
else if (n > 2 && n <= 4) {
*this = Vec4d(Vec2d().load(p), Vec2d().load_partial(n - 2, p + 2));
}
else {
ymm = _mm256_setzero_pd();
}
return *this;
}
// Partial store. Store n elements
void store_partial(int n, double * p) const {
if (n <= 2) {
get_low().store_partial(n, p);
}
else if (n <= 4) {
get_low().store(p);
get_high().store_partial(n - 2, p + 2);
}
}
// cut off vector to n elements. The last 4-n elements are set to zero
Vec4d & cutoff(int n) {
ymm = _mm256_castps_pd(Vec8f(_mm256_castpd_ps(ymm)).cutoff(n*2));
return *this;
}
// Member function to change a single element in vector
// Note: This function is inefficient. Use load function if changing more than one element
Vec4d const & insert(uint32_t index, double value) {
__m256d v0 = _mm256_broadcast_sd(&value);
switch (index) {
case 0:
ymm = _mm256_blend_pd (ymm, v0, 1); break;
case 1:
ymm = _mm256_blend_pd (ymm, v0, 2); break;
case 2:
ymm = _mm256_blend_pd (ymm, v0, 4); break;
default:
ymm = _mm256_blend_pd (ymm, v0, 8); break;
}
return *this;
}
// Member function extract a single element from vector
double extract(uint32_t index) const {
double x[4];
store(x);
return x[index & 3];
}
// Extract a single element. Use store function if extracting more than one element.
// Operator [] can only read an element, not write.
double operator [] (uint32_t index) const {
return extract(index);
}
// Member functions to split into two Vec2d:
Vec2d get_low() const {
return _mm256_castpd256_pd128(ymm);
}
Vec2d get_high() const {
return _mm256_extractf128_pd(ymm,1);
}
static int size () {
return 4;
}
};
/*****************************************************************************
*
* Operators for Vec4d
*
*****************************************************************************/
// vector operator + : add element by element
static inline Vec4d operator + (Vec4d const & a, Vec4d const & b) {
return _mm256_add_pd(a, b);
}
// vector operator + : add vector and scalar
static inline Vec4d operator + (Vec4d const & a, double b) {
return a + Vec4d(b);
}
static inline Vec4d operator + (double a, Vec4d const & b) {
return Vec4d(a) + b;
}
// vector operator += : add
static inline Vec4d & operator += (Vec4d & a, Vec4d const & b) {
a = a + b;
return a;
}
// postfix operator ++
static inline Vec4d operator ++ (Vec4d & a, int) {
Vec4d a0 = a;
a = a + 1.0;
return a0;
}
// prefix operator ++
static inline Vec4d & operator ++ (Vec4d & a) {
a = a + 1.0;
return a;
}
// vector operator - : subtract element by element
static inline Vec4d operator - (Vec4d const & a, Vec4d const & b) {
return _mm256_sub_pd(a, b);
}
// vector operator - : subtract vector and scalar
static inline Vec4d operator - (Vec4d const & a, double b) {
return a - Vec4d(b);
}
static inline Vec4d operator - (double a, Vec4d const & b) {
return Vec4d(a) - b;
}
// vector operator - : unary minus
// Change sign bit, even for 0, INF and NAN
static inline Vec4d operator - (Vec4d const & a) {
return _mm256_xor_pd(a, _mm256_castps_pd(constant8f<0,(int)0x80000000,0,(int)0x80000000,0,(int)0x80000000,0,(int)0x80000000> ()));
}
// vector operator -= : subtract
static inline Vec4d & operator -= (Vec4d & a, Vec4d const & b) {
a = a - b;
return a;
}
// postfix operator --
static inline Vec4d operator -- (Vec4d & a, int) {
Vec4d a0 = a;
a = a - 1.0;
return a0;
}
// prefix operator --
static inline Vec4d & operator -- (Vec4d & a) {
a = a - 1.0;
return a;
}
// vector operator * : multiply element by element
static inline Vec4d operator * (Vec4d const & a, Vec4d const & b) {
return _mm256_mul_pd(a, b);
}
// vector operator * : multiply vector and scalar
static inline Vec4d operator * (Vec4d const & a, double b) {
return a * Vec4d(b);
}
static inline Vec4d operator * (double a, Vec4d const & b) {
return Vec4d(a) * b;
}
// vector operator *= : multiply
static inline Vec4d & operator *= (Vec4d & a, Vec4d const & b) {
a = a * b;
return a;
}
// vector operator / : divide all elements by same integer
static inline Vec4d operator / (Vec4d const & a, Vec4d const & b) {
return _mm256_div_pd(a, b);
}
// vector operator / : divide vector and scalar
static inline Vec4d operator / (Vec4d const & a, double b) {
return a / Vec4d(b);
}
static inline Vec4d operator / (double a, Vec4d const & b) {
return Vec4d(a) / b;
}
// vector operator /= : divide
static inline Vec4d & operator /= (Vec4d & a, Vec4d const & b) {
a = a / b;
return a;
}
// vector operator == : returns true for elements for which a == b
static inline Vec4db operator == (Vec4d const & a, Vec4d const & b) {
return _mm256_cmp_pd(a, b, 0);
}
// vector operator != : returns true for elements for which a != b
static inline Vec4db operator != (Vec4d const & a, Vec4d const & b) {
return _mm256_cmp_pd(a, b, 4);
}
// vector operator < : returns true for elements for which a < b
static inline Vec4db operator < (Vec4d const & a, Vec4d const & b) {
return _mm256_cmp_pd(a, b, 1);
}
// vector operator <= : returns true for elements for which a <= b
static inline Vec4db operator <= (Vec4d const & a, Vec4d const & b) {
return _mm256_cmp_pd(a, b, 2);
}
// vector operator > : returns true for elements for which a > b
static inline Vec4db operator > (Vec4d const & a, Vec4d const & b) {
return b < a;
}
// vector operator >= : returns true for elements for which a >= b
static inline Vec4db operator >= (Vec4d const & a, Vec4d const & b) {
return b <= a;
}
// Bitwise logical operators
// vector operator & : bitwise and
static inline Vec4d operator & (Vec4d const & a, Vec4d const & b) {
return _mm256_and_pd(a, b);
}
// vector operator &= : bitwise and
static inline Vec4d & operator &= (Vec4d & a, Vec4d const & b) {
a = a & b;
return a;
}
// vector operator & : bitwise and of Vec4d and Vec4db
static inline Vec4d operator & (Vec4d const & a, Vec4db const & b) {
return _mm256_and_pd(a, b);
}
static inline Vec4d operator & (Vec4db const & a, Vec4d const & b) {
return _mm256_and_pd(a, b);
}
// vector operator | : bitwise or
static inline Vec4d operator | (Vec4d const & a, Vec4d const & b) {
return _mm256_or_pd(a, b);
}
// vector operator |= : bitwise or
static inline Vec4d & operator |= (Vec4d & a, Vec4d const & b) {
a = a | b;
return a;
}
// vector operator ^ : bitwise xor
static inline Vec4d operator ^ (Vec4d const & a, Vec4d const & b) {
return _mm256_xor_pd(a, b);
}
// vector operator ^= : bitwise xor
static inline Vec4d & operator ^= (Vec4d & a, Vec4d const & b) {
a = a ^ b;
return a;
}
// vector operator ! : logical not. Returns Boolean vector
static inline Vec4db operator ! (Vec4d const & a) {
return a == Vec4d(0.0);
}
/*****************************************************************************
*
* Functions for Vec4d
*
*****************************************************************************/
// Select between two operands. Corresponds to this pseudocode:
// for (int i = 0; i < 2; i++) result[i] = s[i] ? a[i] : b[i];
// Each byte in s must be either 0 (false) or 0xFFFFFFFFFFFFFFFF (true).
// No other values are allowed.
static inline Vec4d select (Vec4db const & s, Vec4d const & a, Vec4d const & b) {
return _mm256_blendv_pd(b, a, s);
}
// Conditional add: For all vector elements i: result[i] = f[i] ? (a[i] + b[i]) : a[i]
static inline Vec4d if_add (Vec4db const & f, Vec4d const & a, Vec4d const & b) {
return a + (Vec4d(f) & b);
}
// Conditional multiply: For all vector elements i: result[i] = f[i] ? (a[i] * b[i]) : a[i]
static inline Vec4d if_mul (Vec4db const & f, Vec4d const & a, Vec4d const & b) {
return a * select(f, b, 1.);
}
// General arithmetic functions, etc.
// Horizontal add: Calculates the sum of all vector elements.
static inline double horizontal_add (Vec4d const & a) {
__m256d t1 = _mm256_hadd_pd(a,a);
__m128d t2 = _mm256_extractf128_pd(t1,1);
__m128d t3 = _mm_add_sd(_mm256_castpd256_pd128(t1),t2);
return _mm_cvtsd_f64(t3);
}
// function max: a > b ? a : b
static inline Vec4d max(Vec4d const & a, Vec4d const & b) {
return _mm256_max_pd(a,b);
}
// function min: a < b ? a : b
static inline Vec4d min(Vec4d const & a, Vec4d const & b) {
return _mm256_min_pd(a,b);
}
// function abs: absolute value
// Removes sign bit, even for -0.0f, -INF and -NAN
static inline Vec4d abs(Vec4d const & a) {
__m256d mask = _mm256_castps_pd(constant8f<-1,0x7FFFFFFF,-1,0x7FFFFFFF,-1,0x7FFFFFFF,-1,0x7FFFFFFF> ());
return _mm256_and_pd(a,mask);
}
// function sqrt: square root
static inline Vec4d sqrt(Vec4d const & a) {
return _mm256_sqrt_pd(a);
}
// function square: a * a
static inline Vec4d square(Vec4d const & a) {
return a * a;
}
// pow(Vec4d, int):
template <typename TT> static Vec4d pow(Vec4d const & a, TT const & n);
// Raise floating point numbers to integer power n
template <>
inline Vec4d pow<int>(Vec4d const & x0, int const & n) {
return pow_template_i<Vec4d>(x0, n);
}
// allow conversion from unsigned int
template <>
inline Vec4d pow<uint32_t>(Vec4d const & x0, uint32_t const & n) {
return pow_template_i<Vec4d>(x0, (int)n);
}
// Raise floating point numbers to integer power n, where n is a compile-time constant
template <int n>
static inline Vec4d pow_n(Vec4d const & a) {
if (n < 0) return Vec4d(1.0) / pow_n<-n>(a);
if (n == 0) return Vec4d(1.0);
if (n >= 256) return pow(a, n);
Vec4d x = a; // a^(2^i)
Vec4d y; // accumulator
const int lowest = n - (n & (n-1));// lowest set bit in n
if (n & 1) y = x;
if (n < 2) return y;
x = x*x; // x^2
if (n & 2) {
if (lowest == 2) y = x; else y *= x;
}
if (n < 4) return y;
x = x*x; // x^4
if (n & 4) {
if (lowest == 4) y = x; else y *= x;
}
if (n < 8) return y;
x = x*x; // x^8
if (n & 8) {
if (lowest == 8) y = x; else y *= x;
}
if (n < 16) return y;
x = x*x; // x^16
if (n & 16) {
if (lowest == 16) y = x; else y *= x;
}
if (n < 32) return y;
x = x*x; // x^32
if (n & 32) {
if (lowest == 32) y = x; else y *= x;
}
if (n < 64) return y;
x = x*x; // x^64
if (n & 64) {
if (lowest == 64) y = x; else y *= x;
}
if (n < 128) return y;
x = x*x; // x^128
if (n & 128) {
if (lowest == 128) y = x; else y *= x;
}
return y;
}
template <int n>
static inline Vec4d pow(Vec4d const & a, Const_int_t<n>) {
return pow_n<n>(a);
}
// function round: round to nearest integer (even). (result as double vector)
static inline Vec4d round(Vec4d const & a) {
return _mm256_round_pd(a, 0+8);
}
// function truncate: round towards zero. (result as double vector)
static inline Vec4d truncate(Vec4d const & a) {
return _mm256_round_pd(a, 3+8);
}
// function floor: round towards minus infinity. (result as double vector)
static inline Vec4d floor(Vec4d const & a) {
return _mm256_round_pd(a, 1+8);
}
// function ceil: round towards plus infinity. (result as double vector)
static inline Vec4d ceil(Vec4d const & a) {
return _mm256_round_pd(a, 2+8);
}
// function round_to_int: round to nearest integer (even). (result as integer vector)
static inline Vec4i round_to_int(Vec4d const & a) {
// Note: assume MXCSR control register is set to rounding
return _mm256_cvtpd_epi32(a);
}
// function truncate_to_int: round towards zero. (result as integer vector)
static inline Vec4i truncate_to_int(Vec4d const & a) {
return _mm256_cvttpd_epi32(a);
}
#ifdef VECTORI256_H // 256 bit integer vectors are available
// function truncate_to_int64: round towards zero. (inefficient)
static inline Vec4q truncate_to_int64(Vec4d const & a) {
#if defined (__AVX512DQ__) && defined (__AVX512VL__)
//return _mm256_maskz_cvttpd_epi64( __mmask8(0xFF), a);
return _mm256_cvttpd_epi64(a);
#else
double aa[4];
a.store(aa);
return Vec4q(int64_t(aa[0]), int64_t(aa[1]), int64_t(aa[2]), int64_t(aa[3]));
#endif
}
// function truncate_to_int64_limited: round towards zero.
// result as 64-bit integer vector, but with limited range. Deprecated!
static inline Vec4q truncate_to_int64_limited(Vec4d const & a) {
#if defined (__AVX512DQ__) && defined (__AVX512VL__)
return truncate_to_int64(a);
#elif VECTORI256_H > 1
// Note: assume MXCSR control register is set to rounding
Vec2q b = _mm256_cvttpd_epi32(a); // round to 32-bit integers
__m256i c = permute4q<0,-256,1,-256>(Vec4q(b,b)); // get bits 64-127 to position 128-191
__m256i s = _mm256_srai_epi32(c, 31); // sign extension bits
return _mm256_unpacklo_epi32(c, s); // interleave with sign extensions
#else
return Vec4q(truncate_to_int64_limited(a.get_low()), truncate_to_int64_limited(a.get_high()));
#endif
}
// function round_to_int64: round to nearest or even. (inefficient)
static inline Vec4q round_to_int64(Vec4d const & a) {
#if defined (__AVX512DQ__) && defined (__AVX512VL__)
return _mm256_cvtpd_epi64(a);
#else
return truncate_to_int64(round(a));
#endif
}
// function round_to_int64_limited: round to nearest integer (even)
// result as 64-bit integer vector, but with limited range. Deprecated!
static inline Vec4q round_to_int64_limited(Vec4d const & a) {
#if defined (__AVX512DQ__) && defined (__AVX512VL__)
return round_to_int64(a);
#elif VECTORI256_H > 1
// Note: assume MXCSR control register is set to rounding
Vec2q b = _mm256_cvtpd_epi32(a); // round to 32-bit integers
__m256i c = permute4q<0,-256,1,-256>(Vec4q(b,b)); // get bits 64-127 to position 128-191
__m256i s = _mm256_srai_epi32(c, 31); // sign extension bits
return _mm256_unpacklo_epi32(c, s); // interleave with sign extensions
#else
return Vec4q(round_to_int64_limited(a.get_low()), round_to_int64_limited(a.get_high()));
#endif
}
// function to_double: convert integer vector elements to double vector (inefficient)
static inline Vec4d to_double(Vec4q const & a) {
#if defined (__AVX512DQ__) && defined (__AVX512VL__)
return _mm256_maskz_cvtepi64_pd( __mmask16(0xFF), a);
#else
int64_t aa[4];
a.store(aa);
return Vec4d(double(aa[0]), double(aa[1]), double(aa[2]), double(aa[3]));
#endif
}
// function to_double_limited: convert integer vector elements to double vector
// limited to abs(x) < 2^31. Deprecated!
static inline Vec4d to_double_limited(Vec4q const & x) {
#if defined (__AVX512DQ__) && defined (__AVX512VL__)
return to_double(x);
#else
Vec8i compressed = permute8i<0,2,4,6,-256,-256,-256,-256>(Vec8i(x));
return _mm256_cvtepi32_pd(compressed.get_low()); // AVX
#endif
}
#endif // VECTORI256_H
// function to_double: convert integer vector to double vector
static inline Vec4d to_double(Vec4i const & a) {
return _mm256_cvtepi32_pd(a);
}
// function compress: convert two Vec4d to one Vec8f
static inline Vec8f compress (Vec4d const & low, Vec4d const & high) {
__m128 t1 = _mm256_cvtpd_ps(low);
__m128 t2 = _mm256_cvtpd_ps(high);
return Vec8f(t1, t2);
}
// Function extend_low : convert Vec8f vector elements 0 - 3 to Vec4d
static inline Vec4d extend_low(Vec8f const & a) {
return _mm256_cvtps_pd(_mm256_castps256_ps128(a));
}
// Function extend_high : convert Vec8f vector elements 4 - 7 to Vec4d
static inline Vec4d extend_high (Vec8f const & a) {
return _mm256_cvtps_pd(_mm256_extractf128_ps(a,1));
}
// Fused multiply and add functions
// Multiply and add
static inline Vec4d mul_add(Vec4d const & a, Vec4d const & b, Vec4d const & c) {
#ifdef __FMA__
return _mm256_fmadd_pd(a, b, c);
#elif defined (__FMA4__)
return _mm256_macc_pd(a, b, c);
#else
return a * b + c;
#endif
}
// Multiply and subtract
static inline Vec4d mul_sub(Vec4d const & a, Vec4d const & b, Vec4d const & c) {
#ifdef __FMA__
return _mm256_fmsub_pd(a, b, c);
#elif defined (__FMA4__)
return _mm256_msub_pd(a, b, c);
#else
return a * b - c;
#endif
}
// Multiply and inverse subtract
static inline Vec4d nmul_add(Vec4d const & a, Vec4d const & b, Vec4d const & c) {
#ifdef __FMA__
return _mm256_fnmadd_pd(a, b, c);
#elif defined (__FMA4__)
return _mm256_nmacc_pd(a, b, c);
#else
return c - a * b;
#endif
}
// Multiply and subtract with extra precision on the intermediate calculations,
// even if FMA instructions not supported, using Veltkamp-Dekker split
static inline Vec4d mul_sub_x(Vec4d const & a, Vec4d const & b, Vec4d const & c) {
#ifdef __FMA__
return _mm256_fmsub_pd(a, b, c);
#elif defined (__FMA4__)
return _mm256_msub_pd(a, b, c);
#else
// calculate a * b - c with extra precision
// mask to remove lower 27 bits
Vec4d upper_mask = _mm256_castps_pd(constant8f<(int)0xF8000000,-1,(int)0xF8000000,-1,(int)0xF8000000,-1,(int)0xF8000000,-1>());
Vec4d a_high = a & upper_mask; // split into high and low parts
Vec4d b_high = b & upper_mask;
Vec4d a_low = a - a_high;
Vec4d b_low = b - b_high;
Vec4d r1 = a_high * b_high; // this product is exact
Vec4d r2 = r1 - c; // subtract c from high product
Vec4d r3 = r2 + (a_high * b_low + b_high * a_low) + a_low * b_low; // add rest of product
return r3; // + ((r2 - r1) + c);
#endif
}
// Math functions using fast bit manipulation
#ifdef VECTORI256_H // 256 bit integer vectors are available
// Extract the exponent as an integer
// exponent(a) = floor(log2(abs(a)));
// exponent(1.0) = 0, exponent(0.0) = -1023, exponent(INF) = +1024, exponent(NAN) = +1024
static inline Vec4q exponent(Vec4d const & a) {
#if VECTORI256_H > 1 // AVX2
Vec4uq t1 = _mm256_castpd_si256(a);// reinterpret as 64-bit integer
Vec4uq t2 = t1 << 1; // shift out sign bit
Vec4uq t3 = t2 >> 53; // shift down logical to position 0
Vec4q t4 = Vec4q(t3) - 0x3FF; // subtract bias from exponent
return t4;
#else
return Vec4q(exponent(a.get_low()), exponent(a.get_high()));
#endif
}
// Extract the fraction part of a floating point number
// a = 2^exponent(a) * fraction(a), except for a = 0
// fraction(1.0) = 1.0, fraction(5.0) = 1.25
static inline Vec4d fraction(Vec4d const & a) {
#if VECTORI256_H > 1 // AVX2
Vec4uq t1 = _mm256_castpd_si256(a); // reinterpret as 64-bit integer
Vec4uq t2 = Vec4uq((t1 & 0x000FFFFFFFFFFFFF) | 0x3FF0000000000000); // set exponent to 0 + bias
return _mm256_castsi256_pd(t2);
#else
return Vec4d(fraction(a.get_low()), fraction(a.get_high()));
#endif
}
// Fast calculation of pow(2,n) with n integer
// n = 0 gives 1.0
// n >= 1024 gives +INF
// n <= -1023 gives 0.0
// This function will never produce denormals, and never raise exceptions
static inline Vec4d exp2(Vec4q const & n) {
#if VECTORI256_H > 1 // AVX2
Vec4q t1 = max(n, -0x3FF); // limit to allowed range
Vec4q t2 = min(t1, 0x400);
Vec4q t3 = t2 + 0x3FF; // add bias
Vec4q t4 = t3 << 52; // put exponent into position 52
return _mm256_castsi256_pd(t4); // reinterpret as double
#else
return Vec4d(exp2(n.get_low()), exp2(n.get_high()));
#endif
}
//static inline Vec4d exp2(Vec4d const & x); // defined in vectormath_exp.h
#endif
// Categorization functions
// Function sign_bit: gives true for elements that have the sign bit set
// even for -0.0, -INF and -NAN
// Note that sign_bit(Vec4d(-0.0)) gives true, while Vec4d(-0.0) < Vec4d(0.0) gives false
static inline Vec4db sign_bit(Vec4d const & a) {
#if defined (VECTORI256_H) && VECTORI256_H > 1 // 256 bit integer vectors are available, AVX2
Vec4q t1 = _mm256_castpd_si256(a); // reinterpret as 64-bit integer
Vec4q t2 = t1 >> 63; // extend sign bit
return _mm256_castsi256_pd(t2); // reinterpret as 64-bit Boolean
#else
return Vec4db(sign_bit(a.get_low()),sign_bit(a.get_high()));
#endif
}
// Function sign_combine: changes the sign of a when b has the sign bit set
// same as select(sign_bit(b), -a, a)
static inline Vec4d sign_combine(Vec4d const & a, Vec4d const & b) {
Vec4d signmask = _mm256_castps_pd(constant8f<0,(int)0x80000000,0,(int)0x80000000,0,(int)0x80000000,0,(int)0x80000000>()); // -0.0
return a ^ (b & signmask);
}
// Function is_finite: gives true for elements that are normal, denormal or zero,
// false for INF and NAN
static inline Vec4db is_finite(Vec4d const & a) {
#if defined (VECTORI256_H) && VECTORI256_H > 1 // 256 bit integer vectors are available, AVX2
Vec4q t1 = _mm256_castpd_si256(a); // reinterpret as 64-bit integer
Vec4q t2 = t1 << 1; // shift out sign bit
Vec4q t3 = 0xFFE0000000000000; // exponent mask
Vec4qb t4 = Vec4q(t2 & t3) != t3; // exponent field is not all 1s
return t4;
#else
return Vec4db(is_finite(a.get_low()),is_finite(a.get_high()));
#endif
}
// Function is_inf: gives true for elements that are +INF or -INF
// false for finite numbers and NAN
static inline Vec4db is_inf(Vec4d const & a) {
#if defined (VECTORI256_H) && VECTORI256_H > 1 // 256 bit integer vectors are available, AVX2
Vec4q t1 = _mm256_castpd_si256(a); // reinterpret as 64-bit integer
Vec4q t2 = t1 << 1; // shift out sign bit
return t2 == 0xFFE0000000000000; // exponent is all 1s, fraction is 0
#else
return Vec4db(is_inf(a.get_low()),is_inf(a.get_high()));
#endif
}
// Function is_nan: gives true for elements that are +NAN or -NAN
// false for finite numbers and +/-INF
static inline Vec4db is_nan(Vec4d const & a) {
#if defined (VECTORI256_H) && VECTORI256_H > 1 // 256 bit integer vectors are available, AVX2
Vec4q t1 = _mm256_castpd_si256(a); // reinterpret as 64-bit integer
Vec4q t2 = t1 << 1; // shift out sign bit
Vec4q t3 = 0xFFE0000000000000; // exponent mask
Vec4q t4 = t2 & t3; // exponent
Vec4q t5 = _mm256_andnot_si256(t3,t2);// fraction
return Vec4qb(t4 == t3 && t5 != 0);// exponent = all 1s and fraction != 0
#else
return Vec4db(is_nan(a.get_low()),is_nan(a.get_high()));
#endif
}
// Function is_subnormal: gives true for elements that are denormal (subnormal)
// false for finite numbers, zero, NAN and INF
static inline Vec4db is_subnormal(Vec4d const & a) {
#if defined (VECTORI256_H) && VECTORI256_H > 1 // 256 bit integer vectors are available, AVX2
Vec4q t1 = _mm256_castpd_si256(a); // reinterpret as 64-bit integer
Vec4q t2 = t1 << 1; // shift out sign bit
Vec4q t3 = 0xFFE0000000000000; // exponent mask
Vec4q t4 = t2 & t3; // exponent
Vec4q t5 = _mm256_andnot_si256(t3,t2);// fraction
return Vec4qb(t4 == 0 && t5 != 0); // exponent = 0 and fraction != 0
#else
return Vec4db(is_subnormal(a.get_low()),is_subnormal(a.get_high()));
#endif
}
// Function is_zero_or_subnormal: gives true for elements that are zero or subnormal (denormal)
// false for finite numbers, NAN and INF
static inline Vec4db is_zero_or_subnormal(Vec4d const & a) {
#if defined (VECTORI256_H) && VECTORI256_H > 1 // 256 bit integer vectors are available, AVX2
Vec4q t = _mm256_castpd_si256(a); // reinterpret as 32-bit integer
t &= 0x7FF0000000000000ll; // isolate exponent
return t == 0; // exponent = 0
#else
return Vec4db(is_zero_or_subnormal(a.get_low()),is_zero_or_subnormal(a.get_high()));
#endif
}
// Function infinite2d: returns a vector where all elements are +INF
static inline Vec4d infinite4d() {
return _mm256_castps_pd(constant8f<0,0x7FF00000,0,0x7FF00000,0,0x7FF00000,0,0x7FF00000>());
}
// Function nan4d: returns a vector where all elements are +NAN (quiet)
static inline Vec4d nan4d(int n = 0x10) {
#if defined (VECTORI256_H) && VECTORI256_H > 1 // 256 bit integer vectors are available, AVX2
return _mm256_castsi256_pd(Vec4q(0x7FF8000000000000 + n));
#else
return Vec4d(nan2d(n),nan2d(n));
#endif
}
// change signs on vectors Vec4d
// Each index i0 - i3 is 1 for changing sign on the corresponding element, 0 for no change
template <int i0, int i1, int i2, int i3>
static inline Vec4d change_sign(Vec4d const & a) {
if ((i0 | i1 | i2 | i3) == 0) return a;
__m256 mask = constant8f<0, i0 ? (int)0x80000000 : 0, 0, i1 ? (int)0x80000000 : 0, 0, i2 ? (int)0x80000000 : 0, 0, i3 ? (int)0x80000000 : 0> ();
return _mm256_xor_pd(a, _mm256_castps_pd(mask));
}
/*****************************************************************************
*
* Functions for reinterpretation between vector types
*
*****************************************************************************/
#if defined (VECTORI256_H) && VECTORI256_H >= 2
// AVX2 vectors defined
// ABI version 4 or later needed on Gcc for correct mangling of 256-bit intrinsic vectors.
// It is recommended to compile with -fabi-version=0 to get the latest abi version
#if !defined (GCC_VERSION) || (defined (__GXX_ABI_VERSION) && __GXX_ABI_VERSION >= 1004)
static inline __m256i reinterpret_i (__m256i const & x) {
return x;
}
static inline __m256i reinterpret_i (__m256 const & x) {
return _mm256_castps_si256(x);
}
static inline __m256i reinterpret_i (__m256d const & x) {
return _mm256_castpd_si256(x);
}
static inline __m256 reinterpret_f (__m256i const & x) {
return _mm256_castsi256_ps(x);
}
static inline __m256 reinterpret_f (__m256 const & x) {
return x;
}
static inline __m256 reinterpret_f (__m256d const & x) {
return _mm256_castpd_ps(x);
}
static inline __m256d reinterpret_d (__m256i const & x) {
return _mm256_castsi256_pd(x);
}
static inline __m256d reinterpret_d (__m256 const & x) {
return _mm256_castps_pd(x);
}
static inline __m256d reinterpret_d (__m256d const & x) {
return x;
}
#else // __GXX_ABI_VERSION < 1004
static inline __m256i reinterpret_i (Vec32c const & x) {
return x;
}
static inline __m256i reinterpret_i (Vec16s const & x) {
return x;
}
static inline __m256i reinterpret_i (Vec8i const & x) {
return x;
}
static inline __m256i reinterpret_i (Vec4q const & x) {
return x;
}
static inline __m256i reinterpret_i (Vec8f const & x) {
return _mm256_castps_si256(x);
}
static inline __m256i reinterpret_i (Vec4d const & x) {
return _mm256_castpd_si256(x);
}
static inline __m256 reinterpret_f (Vec32c const & x) {
return _mm256_castsi256_ps(x);
}
static inline __m256 reinterpret_f (Vec16s const & x) {
return _mm256_castsi256_ps(x);
}
static inline __m256 reinterpret_f (Vec8i const & x) {
return _mm256_castsi256_ps(x);
}
static inline __m256 reinterpret_f (Vec4q const & x) {
return _mm256_castsi256_ps(x);
}
static inline __m256 reinterpret_f (Vec8f const & x) {
return x;
}
static inline __m256 reinterpret_f (Vec4d const & x) {
return _mm256_castpd_ps(x);
}
static inline __m256d reinterpret_d (Vec32c const & x) {
return _mm256_castsi256_pd(x);
}
static inline __m256d reinterpret_d (Vec16s const & x) {
return _mm256_castsi256_pd(x);
}
static inline __m256d reinterpret_d (Vec8i const & x) {
return _mm256_castsi256_pd(x);
}
static inline __m256d reinterpret_d (Vec4q const & x) {
return _mm256_castsi256_pd(x);
}
static inline __m256d reinterpret_d (Vec8f const & x) {
return _mm256_castps_pd(x);
}
static inline __m256d reinterpret_d (Vec4d const & x) {
return x;
}
#endif // __GXX_ABI_VERSION
#else
// AVX2 emulated in vectori256e.h, AVX supported
// ABI version 4 or later needed on Gcc for correct mangling of 256-bit intrinsic vectors.
// It is recommended to compile with -fabi-version=0 to get the latest abi version
#if !defined (GCC_VERSION) || (defined (__GXX_ABI_VERSION) && __GXX_ABI_VERSION >= 1004)
static inline Vec256ie reinterpret_i (__m256 const & x) {
Vec8f xx(x);
return Vec256ie(reinterpret_i(xx.get_low()), reinterpret_i(xx.get_high()));
}
static inline Vec256ie reinterpret_i (__m256d const & x) {
Vec4d xx(x);
return Vec256ie(reinterpret_i(xx.get_low()), reinterpret_i(xx.get_high()));
}
static inline __m256 reinterpret_f (__m256 const & x) {
return x;
}
static inline __m256 reinterpret_f (__m256d const & x) {
return _mm256_castpd_ps(x);
}
static inline __m256d reinterpret_d (__m256 const & x) {
return _mm256_castps_pd(x);
}
static inline __m256d reinterpret_d (__m256d const & x) {
return x;
}
#else // __GXX_ABI_VERSION < 1004
static inline Vec256ie reinterpret_i (Vec8f const & x) {
Vec8f xx(x);
return Vec256ie(reinterpret_i(xx.get_low()), reinterpret_i(xx.get_high()));
}
static inline Vec256ie reinterpret_i (Vec4d const & x) {
Vec4d xx(x);
return Vec256ie(reinterpret_i(xx.get_low()), reinterpret_i(xx.get_high()));
}
static inline __m256 reinterpret_f (Vec8f const & x) {
return x;
}
static inline __m256 reinterpret_f (Vec4d const & x) {
return _mm256_castpd_ps(x);
}
static inline __m256d reinterpret_d (Vec8f const & x) {
return _mm256_castps_pd(x);
}
static inline __m256d reinterpret_d (Vec4d const & x) {
return x;
}
#endif // __GXX_ABI_VERSION
static inline Vec256ie reinterpret_i (Vec256ie const & x) {
return x;
}
static inline __m256 reinterpret_f (Vec256ie const & x) {
return Vec8f(Vec4f(reinterpret_f(x.get_low())), Vec4f(reinterpret_f(x.get_high())));
}
static inline __m256d reinterpret_d (Vec256ie const & x) {
return Vec4d(Vec2d(reinterpret_d(x.get_low())), Vec2d(reinterpret_d(x.get_high())));
}
#endif // VECTORI256_H
/*****************************************************************************
*
* Vector permute and blend functions
*
******************************************************************************
*
* The permute function can reorder the elements of a vector and optionally
* set some elements to zero.
*
* The indexes are inserted as template parameters in <>. These indexes must be
* constants. Each template parameter is an index to the element you want to
* select. An index of -1 will generate zero. An index of -256 means don't care.
*
* Example:
* Vec4d a(10., 11., 12., 13.); // a is (10, 11, 12, 13)
* Vec4d b;
* b = permute4d<1,0,-1,3>(a); // b is (11, 10, 0, 13)
*
*
* The blend function can mix elements from two different vectors and
* optionally set some elements to zero.
*
* The indexes are inserted as template parameters in <>. These indexes must be
* constants. Each template parameter is an index to the element you want to
* select, where indexes 0 - 3 indicate an element from the first source
* vector and indexes 4 - 7 indicate an element from the second source vector.
* A negative index will generate zero.
*
*
* Example:
* Vec4d a(10., 11., 12., 13.); // a is (10, 11, 12, 13)
* Vec4d b(20., 21., 22., 23.); // a is (20, 21, 22, 23)
* Vec4d c;
* c = blend4d<4,3,7,-1> (a,b); // c is (20, 13, 23, 0)
*
* A lot of the code here is metaprogramming aiming to find the instructions
* that best fit the template parameters and instruction set. The metacode
* will be reduced out to leave only a few vector instructions in release
* mode with optimization on.
*****************************************************************************/
// permute vector Vec4d
template <int i0, int i1, int i2, int i3>
static inline Vec4d permute4d(Vec4d const & a) {
const int ior = i0 | i1 | i2 | i3; // OR indexes
// is zeroing needed
const bool do_zero = ior < 0 && (ior & 0x80); // at least one index is negative, and not -0x100
// is shuffling needed
const bool do_shuffle = (i0>0) || (i1!=1 && i1>=0) || (i2!=2 && i2>=0) || (i3!=3 && i3>=0);
if (!do_shuffle) { // no shuffling needed
if (do_zero) { // zeroing
if ((i0 & i1 & i2 & i3) < 0) {
return _mm256_setzero_pd(); // zero everything
}
// zero some elements
__m256d const mask = _mm256_castps_pd (
constant8f< -int(i0>=0), -int(i0>=0), -int(i1>=0), -int(i1>=0), -int(i2>=0), -int(i2>=0), -int(i3>=0), -int(i3>=0) > ());
return _mm256_and_pd(a, mask); // zero with AND mask
}
else {
return a; // do nothing
}
}
#if INSTRSET >= 8 // AVX2: use VPERMPD
__m256d x = _mm256_permute4x64_pd(a, (i0&3) | (i1&3)<<2 | (i2&3)<<4 | (i3&3)<<6);
if (do_zero) { // zeroing
// zero some elements
__m256d const mask2 = _mm256_castps_pd (
constant8f< -int(i0>=0), -int(i0>=0), -int(i1>=0), -int(i1>=0), -int(i2>=0), -int(i2>=0), -int(i3>=0), -int(i3>=0) > ());
x = _mm256_and_pd(x, mask2); // zero with AND mask
}
return x;
#else // AVX
// Needed contents of low/high part of each source register in VSHUFPD
// 0: a.low, 1: a.high, 3: zero
const int s1 = (i0 < 0 ? 3 : (i0 & 2) >> 1) | (i2 < 0 ? 0x30 : (i2 & 2) << 3);
const int s2 = (i1 < 0 ? 3 : (i1 & 2) >> 1) | (i3 < 0 ? 0x30 : (i3 & 2) << 3);
// permute mask
const int sm = (i0 < 0 ? 0 : (i0 & 1)) | (i1 < 0 ? 1 : (i1 & 1)) << 1 | (i2 < 0 ? 0 : (i2 & 1)) << 2 | (i3 < 0 ? 1 : (i3 & 1)) << 3;
if (s1 == 0x01 || s1 == 0x11 || s2 == 0x01 || s2 == 0x11) {
// too expensive to use 256 bit permute, split into two 128 bit permutes
Vec2d alo = a.get_low();
Vec2d ahi = a.get_high();
Vec2d rlo = blend2d<i0, i1> (alo, ahi);
Vec2d rhi = blend2d<i2, i3> (alo, ahi);
return Vec4d(rlo, rhi);
}
// make operands for VSHUFPD
__m256d r1, r2;
switch (s1) {
case 0x00: // LL
r1 = _mm256_insertf128_pd(a,_mm256_castpd256_pd128(a),1); break;
case 0x03: // LZ
r1 = _mm256_insertf128_pd(do_zero ? _mm256_setzero_pd() : __m256d(a), _mm256_castpd256_pd128(a), 1);
break;
case 0x10: // LH
r1 = a; break;
case 0x13: // ZH
r1 = do_zero ? _mm256_and_pd(a, _mm256_castps_pd(constant8f<0,0,0,0,-1,-1,-1,-1>())) : __m256d(a); break;
case 0x30: // LZ
if (do_zero) {
__m128d t = _mm256_castpd256_pd128(a);
t = _mm_and_pd(t,t);
r1 = _mm256_castpd128_pd256(t);
}
else r1 = a;
break;
case 0x31: // HZ
r1 = _mm256_castpd128_pd256(_mm256_extractf128_pd(a,1)); break;
case 0x33: // ZZ
r1 = do_zero ? _mm256_setzero_pd() : __m256d(a); break;
default:; // Not needed. Avoid warning in Clang
}
if (s2 == s1) {
if (sm == 0x0A) return r1;
r2 = r1;
}
else {
switch (s2) {
case 0x00: // LL
r2 = _mm256_insertf128_pd(a,_mm256_castpd256_pd128(a),1); break;
case 0x03: // ZL
r2 = _mm256_insertf128_pd(do_zero ? _mm256_setzero_pd() : __m256d(a), _mm256_castpd256_pd128(a), 1);
break;
case 0x10: // LH
r2 = a; break;
case 0x13: // ZH
r2 = do_zero ? _mm256_and_pd(a,_mm256_castps_pd(constant8f<0,0,0,0,-1,-1,-1,-1>())) : __m256d(a); break;
case 0x30: // LZ
if (do_zero) {
__m128d t = _mm256_castpd256_pd128(a);
t = _mm_and_pd(t,t);
r2 = _mm256_castpd128_pd256(t);
}
else r2 = a;
break;
case 0x31: // HZ
r2 = _mm256_castpd128_pd256(_mm256_extractf128_pd(a,1)); break;
case 0x33: // ZZ
r2 = do_zero ? _mm256_setzero_pd() : __m256d(a); break;
default:; // Not needed. Avoid warning in Clang
}
}
return _mm256_shuffle_pd(r1, r2, sm);
#endif // INSTRSET >= 8
}
// blend vectors Vec4d
template <int i0, int i1, int i2, int i3>
static inline Vec4d blend4d(Vec4d const & a, Vec4d const & b) {
// Combine all the indexes into a single bitfield, with 8 bits for each
const int m1 = (i0 & 7) | (i1 & 7) << 8 | (i2 & 7) << 16 | (i3 & 7) << 24;
// Mask to zero out negative indexes
const uint32_t mz = (i0 < 0 ? 0 : 0xFF) | (i1 < 0 ? 0 : 0xFF) << 8 | (i2 < 0 ? 0 : 0xFF) << 16 | (i3 < 0 ? 0 : 0xFF) << 24;
if (mz == 0) return _mm256_setzero_pd(); // all zero
__m256d t1;
if ((((m1 & 0xFEFEFEFE) ^ 0x06020400) & mz) == 0) {
// fits VSHUFPD(a,b)
t1 = _mm256_shuffle_pd(a, b, (i0 & 1) | (i1 & 1) << 1 | (i2 & 1) << 2 | (i3 & 1) << 3);
if (mz == 0xFFFFFFFF) return t1;
return permute4d<i0 < 0 ? -1 : 0, i1 < 0 ? -1 : 1, i2 < 0 ? -1 : 2, i3 < 0 ? -1 : 3> (t1);
}
if ((((m1 & 0xFEFEFEFE) ^0x02060004) & mz) == 0) {
// fits VSHUFPD(b,a)
t1 = _mm256_shuffle_pd(b, a, (i0 & 1) | (i1 & 1) << 1 | (i2 & 1) << 2 | (i3 & 1) << 3);
if (mz == 0xFFFFFFFF) return t1;
return permute4d<i0 < 0 ? -1 : 0, i1 < 0 ? -1 : 1, i2 < 0 ? -1 : 2, i3 < 0 ? -1 : 3> (t1);
}
if ((((m1 & 0x03030303) ^ 0x03020100) & mz) == 0) {
// blend and zero, no permute
if ((m1 & 0x04040404 & mz) == 0) {
t1 = a;
}
else if (((m1 ^ 0x04040404) & 0x04040404 & mz) == 0) {
t1 = b;
}
else {
t1 = _mm256_blend_pd(a, b, (i0&4)>>2 | (i1&4)>>1 | (i2&4) | (i3&4) << 1);
}
if (mz == 0xFFFFFFFF) return t1;
return permute4d<i0 < 0 ? -1 : 0, i1 < 0 ? -1 : 1, i2 < 0 ? -1 : 2, i3 < 0 ? -1 : 3> (t1);
}
if ((m1 & 0x04040404 & mz) == 0) {
// all from a
return permute4d<i0, i1, i2, i3> (a);
}
if (((m1 ^ 0x04040404) & 0x04040404 & mz) == 0) {
// all from b
return permute4d<i0 ^ 4, i1 ^ 4, i2 ^ 4, i3 ^ 4> (b);
}
// check if we can do 128-bit blend/permute
if (((m1 ^ 0x01000100) & 0x01010101 & mz) == 0) {
const uint32_t j0 = uint32_t((i0 >= 0 ? i0 : i1 >= 0 ? i1 : -1) >> 1);
const uint32_t j1 = uint32_t((i2 >= 0 ? i2 : i3 >= 0 ? i3 : -1) >> 1);
if (((m1 ^ ((j0 & 3) * 0x00000202 | (j1 & 3) * 0x02020000)) & 0x06060606 & mz) == 0) {
t1 = _mm256_permute2f128_pd(a, b, (j0 & 0x0F) | (j1 & 0x0F) << 4);
const bool partialzero = (((i0 | i1) ^ j0) & 0x80) != 0 || (((i2 | i3) ^ j1) & 0x80) != 0;
if (partialzero) {
// zero some elements
__m256d mask = _mm256_castps_pd (constant8f <
i0 < 0 ? 0 : -1, i0 < 0 ? 0 : -1, i1 < 0 ? 0 : -1, i1 < 0 ? 0 : -1,
i2 < 0 ? 0 : -1, i2 < 0 ? 0 : -1, i3 < 0 ? 0 : -1, i3 < 0 ? 0 : -1 > ());
return _mm256_and_pd(t1, mask);
}
else return t1;
}
}
// general case. combine two permutes
Vec4d a1 = permute4d <
(uint32_t)i0 < 4 ? i0 : -0x100,
(uint32_t)i1 < 4 ? i1 : -0x100,
(uint32_t)i2 < 4 ? i2 : -0x100,
(uint32_t)i3 < 4 ? i3 : -0x100 > (a);
Vec4d b1 = permute4d <
(uint32_t)(i0^4) < 4 ? (i0^4) : -0x100,
(uint32_t)(i1^4) < 4 ? (i1^4) : -0x100,
(uint32_t)(i2^4) < 4 ? (i2^4) : -0x100,
(uint32_t)(i3^4) < 4 ? (i3^4) : -0x100 > (b);
t1 = _mm256_blend_pd(a1, b1, (i0&4)>>2 | (i1&4)>>1 | (i2&4) | (i3&4) << 1);
if (mz == 0xFFFFFFFF) return t1;
return permute4d<i0 < 0 ? -1 : 0, i1 < 0 ? -1 : 1, i2 < 0 ? -1 : 2, i3 < 0 ? -1 : 3> (t1);
}
/*****************************************************************************
*
* Vector Vec8f permute and blend functions
*
*****************************************************************************/
// permute vector Vec8f
template <int i0, int i1, int i2, int i3, int i4, int i5, int i6, int i7>
static inline Vec8f permute8f(Vec8f const & a) {
__m256 t1, mask;
const int ior = i0 | i1 | i2 | i3 | i4 | i5 | i6 | i7; // OR indexes
// is zeroing needed
const bool do_zero = ior < 0 && (ior & 0x80); // at least one index is negative, and not -0x100
// is shuffling needed
const bool do_shuffle = (i0>0) || (i1!=1 && i1>=0) || (i2!=2 && i2>=0) || (i3!=3 && i3>=0) ||
(i4!=4 && i4>=0) || (i5!=5 && i5>=0) || (i6!=6 && i6>=0) || (i7!=7 && i7>=0);
if (!do_shuffle) { // no shuffling needed
if (do_zero) { // zeroing
if ((i0 & i1 & i2 & i3 & i4 & i5 & i6 & i7) < 0) {
return _mm256_setzero_ps(); // zero everything
}
// zero some elements
mask = constant8f< -int(i0>=0), -int(i1>=0), -int(i2>=0), -int(i3>=0), -int(i4>=0), -int(i5>=0), -int(i6>=0), -int(i7>=0) > ();
return _mm256_and_ps(a, mask); // zero with AND mask
}
else {
return a; // do nothing
}
}
#if INSTRSET >= 8 // AVX2: use VPERMPS
if (do_shuffle) { // shuffling
mask = constant8f< i0 & 7, i1 & 7, i2 & 7, i3 & 7, i4 & 7, i5 & 7, i6 & 7, i7 & 7 > ();
#if defined (_MSC_VER) && _MSC_VER < 1700 && ! defined(__INTEL_COMPILER)
// bug in MS VS 11 beta: operands in wrong order. fixed in 11.0
t1 = _mm256_permutevar8x32_ps(mask, _mm256_castps_si256(a)); // problem in immintrin.h
#elif defined (GCC_VERSION) && GCC_VERSION <= 40700 && !defined(__INTEL_COMPILER) && !defined(__clang__)
// Gcc 4.7.0 has wrong parameter type and operands in wrong order. fixed in version 4.7.1
t1 = _mm256_permutevar8x32_ps(mask, a);
#else // no bug version
t1 = _mm256_permutevar8x32_ps(a, _mm256_castps_si256(mask));
#endif
}
else {
t1 = a; // no shuffling
}
if (do_zero) { // zeroing
if ((i0 & i1 & i2 & i3 & i4 & i5 & i6 & i7) < 0) {
return _mm256_setzero_ps(); // zero everything
}
// zero some elements
mask = constant8f< -int(i0>=0), -int(i1>=0), -int(i2>=0), -int(i3>=0), -int(i4>=0), -int(i5>=0), -int(i6>=0), -int(i7>=0) > ();
t1 = _mm256_and_ps(t1, mask); // zero with AND mask
}
return t1;
#else // AVX
// Combine all the indexes into a single bitfield, with 4 bits for each
const int m1 = (i0&7) | (i1&7)<<4 | (i2&7)<<8 | (i3&7)<<12 | (i4&7)<<16 | (i5&7)<<20 | (i6&7)<<24 | (i7&7)<<28;
// Mask to zero out negative indexes
const int m2 = (i0<0?0:0xF) | (i1<0?0:0xF)<<4 | (i2<0?0:0xF)<<8 | (i3<0?0:0xF)<<12 | (i4<0?0:0xF)<<16 | (i5<0?0:0xF)<<20 | (i6<0?0:0xF)<<24 | (i7<0?0:0xF)<<28;
// Check if it is possible to use VSHUFPS. Index n must match index n+4 on bit 0-1, and even index n must match odd index n+1 on bit 2
const bool sps = ((m1 ^ (m1 >> 16)) & 0x3333 & m2 & (m2 >> 16)) == 0 && ((m1 ^ (m1 >> 4)) & 0x04040404 & m2 & m2 >> 4) == 0;
if (sps) { // can use VSHUFPS
// Index of each pair (i[n],i[n+1])
const int j0 = i0 >= 0 ? i0 : i1;
const int j1 = i2 >= 0 ? i2 : i3;
const int j2 = i4 >= 0 ? i4 : i5;
const int j3 = i6 >= 0 ? i6 : i7;
// Index of each pair (i[n],i[n+4])
const int k0 = i0 >= 0 ? i0 : i4;
const int k1 = i1 >= 0 ? i1 : i5;
const int k2 = i2 >= 0 ? i2 : i6;
const int k3 = i3 >= 0 ? i3 : i7;
// Needed contents of low/high part of each source register in VSHUFPS
// 0: a.low, 1: a.high, 3: zero or don't care
const int s1 = (j0 < 0 ? 3 : (j0 & 4) >> 2) | (j2 < 0 ? 0x30 : (j2 & 4) << 2);
const int s2 = (j1 < 0 ? 3 : (j1 & 4) >> 2) | (j3 < 0 ? 0x30 : (j3 & 4) << 2);
// calculate cost of using VSHUFPS
const int cost1 = (s1 == 0x01 || s1 == 0x11) ? 2 : (s1 == 0x00 || s1 == 0x03 || s1 == 0x31) ? 1 : 0;
const int cost2 = (s2 == s1) ? 0 : (s2 == 0x01 || s2 == 0x11) ? 2 : (s2 == 0x00 || (s2 == 0x03 && (s1 & 0xF0) != 0x00) || (s2 == 0x31 && (s1 & 0x0F) != 0x01)) ? 1 : 0;
if (cost1 + cost2 <= 3) {
// permute mask
const int sm = (k0 < 0 ? 0 : (k0 & 3)) | (k1 < 0 ? 1 : (k1 & 3)) << 2 | (k2 < 0 ? 2 : (k2 & 3)) << 4 | (k3 < 0 ? 3 : (k3 & 3)) << 6;
// make operands for VSHUFPS
__m256 r1, r2;
switch (s1) {
case 0x00: // LL
case 0x03: // ZL
r1 = _mm256_insertf128_ps(a,_mm256_castps256_ps128(a),1); break;
case 0x01: // HL
r1 = _mm256_castps128_ps256(_mm256_extractf128_ps(a,1));
r1 = _mm256_insertf128_ps(r1,_mm256_castps256_ps128(a),1); break;
case 0x10: // LH
case 0x13: // ZH
case 0x30: // LZ
case 0x33: // ZZ
r1 = a; break;
case 0x11: // HH
r1 = _mm256_castps128_ps256(_mm256_extractf128_ps(a,1));
r1 = _mm256_insertf128_ps(r1,_mm256_castps256_ps128(r1),1); break;
case 0x31: // HZ
r1 = _mm256_castps128_ps256(_mm256_extractf128_ps(a,1)); break;
}
if (s2 == s1) {
if (sm == 0xE4) return r1;
r2 = r1;
}
else {
switch (s2) {
case 0x00: // LL
r2 = _mm256_insertf128_ps(a,_mm256_castps256_ps128(a),1); break;
case 0x03: // ZL
if ((s1 & 0xF0) == 0x00) r2 = r1;
else {
r2 = _mm256_insertf128_ps(a,_mm256_castps256_ps128(a),1);
}
break;
case 0x01: // HL
r2 = _mm256_castps128_ps256(_mm256_extractf128_ps(a,1));
r2 = _mm256_insertf128_ps(r2,_mm256_castps256_ps128(a),1); break;
case 0x10: // LH
case 0x13: // ZH
case 0x30: // LZ
case 0x33: // ZZ
r2 = a; break;
case 0x11: // HH
r2 = _mm256_castps128_ps256(_mm256_extractf128_ps(a,1));
r2 = _mm256_insertf128_ps(r2,_mm256_castps256_ps128(r2),1); break;
case 0x31: // HZ
if ((s1 & 0x0F) == 0x01) r2 = r1;
else {
r2 = _mm256_castps128_ps256(_mm256_extractf128_ps(a,1));
}
break;
}
}
// now the permute instruction
t1 = _mm256_shuffle_ps(r1, r2, sm);
if (do_zero) {
// zero some elements
mask = constant8f< -int(i0>=0), -int(i1>=0), -int(i2>=0), -int(i3>=0), -int(i4>=0), -int(i5>=0), -int(i6>=0), -int(i7>=0) > ();
t1 = _mm256_and_ps(t1, mask); // zero with AND mask
}
return t1;
}
}
// not using VSHUFPS. Split into low and high part
Vec4f alo = a.get_low();
Vec4f ahi = a.get_high();
Vec4f rlo = blend4f<i0, i1, i2, i3> (alo, ahi);
Vec4f rhi = blend4f<i4, i5, i6, i7> (alo, ahi);
return Vec8f(rlo, rhi);
#endif
}
// blend vectors Vec8f
template <int i0, int i1, int i2, int i3, int i4, int i5, int i6, int i7>
static inline Vec8f blend8f(Vec8f const & a, Vec8f const & b) {
const int ior = i0 | i1 | i2 | i3 | i4 | i5 | i6 | i7; // OR indexes
// is zeroing needed
const bool do_zero = ior < 0 && (ior & 0x80); // at least one index is negative, and not -0x100
// Combine all the indexes into a single bitfield, with 4 bits for each
const int m1 = (i0&0xF) | (i1&0xF)<<4 | (i2&0xF)<<8 | (i3&0xF)<<12 | (i4&0xF)<<16 | (i5&0xF)<<20 | (i6&0xF)<<24 | (i7&0xF)<<28;
// Mask to zero out negative indexes
const int mz = (i0<0?0:0xF) | (i1<0?0:0xF)<<4 | (i2<0?0:0xF)<<8 | (i3<0?0:0xF)<<12 | (i4<0?0:0xF)<<16 | (i5<0?0:0xF)<<20 | (i6<0?0:0xF)<<24 | (i7<0?0:0xF)<<28;
__m256 t1, mask;
if (mz == 0) return _mm256_setzero_ps(); // all zero
if ((m1 & 0x88888888 & mz) == 0) {
// all from a
return permute8f<i0, i1, i2, i3, i4, i5, i6, i7> (a);
}
if (((m1 ^ 0x88888888) & 0x88888888 & mz) == 0) {
// all from b
return permute8f<i0&~8, i1&~8, i2&~8, i3&~8, i4&~8, i5&~8, i6&~8, i7&~8> (b);
}
if ((((m1 & 0x77777777) ^ 0x76543210) & mz) == 0) {
// blend and zero, no permute
mask = constant8f<(i0&8)?0:-1, (i1&8)?0:-1, (i2&8)?0:-1, (i3&8)?0:-1, (i4&8)?0:-1, (i5&8)?0:-1, (i6&8)?0:-1, (i7&8)?0:-1> ();
t1 = select(mask, a, b);
if (!do_zero) return t1;
// zero some elements
mask = constant8f< (i0<0&&(i0&8)) ? 0 : -1, (i1<0&&(i1&8)) ? 0 : -1, (i2<0&&(i2&8)) ? 0 : -1, (i3<0&&(i3&8)) ? 0 : -1,
(i4<0&&(i4&8)) ? 0 : -1, (i5<0&&(i5&8)) ? 0 : -1, (i6<0&&(i6&8)) ? 0 : -1, (i7<0&&(i7&8)) ? 0 : -1 > ();
return _mm256_and_ps(t1, mask);
}
// check if we can do 128-bit blend/permute
if (((m1 ^ 0x32103210) & 0x33333333 & mz) == 0) {
const uint32_t j0 = (i0 >= 0 ? i0 : i1 >= 0 ? i1 : i2 >= 0 ? i2 : i3 >= 0 ? i3 : -1) >> 2;
const uint32_t j1 = (i4 >= 0 ? i4 : i5 >= 0 ? i5 : i6 >= 0 ? i6 : i7 >= 0 ? i7 : -1) >> 2;
if (((m1 ^ ((j0 & 3) * 0x00004444 | (j1 & 3) * 0x44440000)) & 0xCCCCCCCC & mz) == 0) {
t1 = _mm256_permute2f128_ps(a, b, (j0 & 0x0F) | (j1 & 0x0F) << 4);
const bool partialzero = (((i0 | i1 | i2 | i3) ^ j0) & 0x80) != 0 || (((i4 | i5 | i6 | i7) ^ j1) & 0x80) != 0;
if (partialzero) {
// zero some elements
mask = constant8f< i0 < 0 ? 0 : -1, i1 < 0 ? 0 : -1, i2 < 0 ? 0 : -1, i3 < 0 ? 0 : -1,
i4 < 0 ? 0 : -1, i5 < 0 ? 0 : -1, i6 < 0 ? 0 : -1, i7 < 0 ? 0 : -1 > ();
return _mm256_and_ps(t1, mask);
}
else return t1;
}
}
// Not checking special cases for vunpckhps, vunpcklps: they are too rare
// Check if it is possible to use VSHUFPS.
// Index n must match index n+4 on bit 0-1, and even index n must match odd index n+1 on bit 2-3
const bool sps = ((m1 ^ (m1 >> 16)) & 0x3333 & mz & (mz >> 16)) == 0 && ((m1 ^ (m1 >> 4)) & 0x0C0C0C0C & mz & mz >> 4) == 0;
if (sps) { // can use VSHUFPS
// Index of each pair (i[n],i[n+1])
const int j0 = i0 >= 0 ? i0 : i1;
const int j1 = i2 >= 0 ? i2 : i3;
const int j2 = i4 >= 0 ? i4 : i5;
const int j3 = i6 >= 0 ? i6 : i7;
// Index of each pair (i[n],i[n+4])
const int k0 = i0 >= 0 ? i0 : i4;
const int k1 = i1 >= 0 ? i1 : i5;
const int k2 = i2 >= 0 ? i2 : i6;
const int k3 = i3 >= 0 ? i3 : i7;
// Needed contents of low/high part of each source register in VSHUFPS
// 0: a.low, 1: a.high, 2: b.low, 3: b.high, 4: zero or don't care
const int s1 = (j0 < 0 ? 4 : (j0 & 0xC) >> 2) | (j2 < 0 ? 0x30 : (j2 & 0xC) << 2);
const int s2 = (j1 < 0 ? 3 : (j1 & 0xC) >> 2) | (j3 < 0 ? 0x30 : (j3 & 0xC) << 2);
// permute mask
const int sm = (k0 < 0 ? 0 : (k0 & 3)) | (k1 < 0 ? 1 : (k1 & 3)) << 2 | (k2 < 0 ? 2 : (k2 & 3)) << 4 | (k3 < 0 ? 3 : (k3 & 3)) << 6;
__m256 r1, r2;
__m128 ahi = _mm256_extractf128_ps(a,1); // 1
__m128 bhi = _mm256_extractf128_ps(b,1); // 3
switch (s1) {
case 0x00: case 0x04:
r1 = _mm256_insertf128_ps(a,_mm256_castps256_ps128(a),1); break;
case 0x01: case 0x41:
r1 = _mm256_insertf128_ps(_mm256_castps128_ps256(ahi),_mm256_castps256_ps128(a),1); break;
case 0x02:
r1 = _mm256_insertf128_ps(b,_mm256_castps256_ps128(a),1); break;
case 0x03:
r1 = _mm256_insertf128_ps(_mm256_castps128_ps256(bhi),_mm256_castps256_ps128(a),1); break;
case 0x10: case 0x14: case 0x40: case 0x44:
r1 = a; break;
case 0x11:
r1 = _mm256_insertf128_ps(_mm256_castps128_ps256(ahi),ahi,1); break;
case 0x12:
r1 = _mm256_insertf128_ps(b,ahi,1); break;
case 0x13:
r1 = _mm256_insertf128_ps(_mm256_castps128_ps256(bhi),ahi,1); break;
case 0x20:
r1 = _mm256_insertf128_ps(a,_mm256_castps256_ps128(b),1); break;
case 0x21:
r1 = _mm256_insertf128_ps(_mm256_castps128_ps256(ahi),_mm256_castps256_ps128(b),1); break;
case 0x22: case 0x24: case 0x42:
r1 = _mm256_insertf128_ps(b,_mm256_castps256_ps128(b),1); break;
case 0x23: case 0x43:
r1 = _mm256_insertf128_ps(_mm256_castps128_ps256(bhi),_mm256_castps256_ps128(b),1); break;
case 0x30:
r1 = _mm256_insertf128_ps(a,bhi,1); break;
case 0x31:
r1 = _mm256_insertf128_ps(_mm256_castps128_ps256(ahi),bhi,1); break;
case 0x32: case 0x34:
r1 = b; break;
case 0x33:
r1 = _mm256_insertf128_ps(_mm256_castps128_ps256(bhi),bhi,1); break;
}
if (s2 == s1 || ((s2 & 0x04) && ((s1 ^ s2) & 0xF0) == 0) || ((s2 & 0x40) && ((s1 ^ s2) & 0x0F) == 0)) {
// can use r2 = r1
if (sm == 0xE4) return r1; // no shuffling needed
r2 = r1;
}
else {
switch (s2) {
case 0x00: case 0x04:
r2 = _mm256_insertf128_ps(a,_mm256_castps256_ps128(a),1); break;
case 0x01: case 0x41:
r2 = _mm256_insertf128_ps(_mm256_castps128_ps256(ahi),_mm256_castps256_ps128(a),1); break;
case 0x02:
r2 = _mm256_insertf128_ps(b,_mm256_castps256_ps128(a),1); break;
case 0x03:
r2 = _mm256_insertf128_ps(_mm256_castps128_ps256(bhi),_mm256_castps256_ps128(a),1); break;
case 0x10: case 0x14: case 0x40: case 0x44:
r2 = a; break;
case 0x11:
r2 = _mm256_insertf128_ps(_mm256_castps128_ps256(ahi),ahi,1); break;
case 0x12:
r2 = _mm256_insertf128_ps(b,ahi,1); break;
case 0x13:
r2 = _mm256_insertf128_ps(_mm256_castps128_ps256(bhi),ahi,1); break;
case 0x20:
r2 = _mm256_insertf128_ps(a,_mm256_castps256_ps128(b),1); break;
case 0x21:
r2 = _mm256_insertf128_ps(_mm256_castps128_ps256(ahi),_mm256_castps256_ps128(b),1); break;
case 0x22: case 0x24: case 0x42:
r2 = _mm256_insertf128_ps(b,_mm256_castps256_ps128(b),1); break;
case 0x23: case 0x43:
r2 = _mm256_insertf128_ps(_mm256_castps128_ps256(bhi),_mm256_castps256_ps128(b),1); break;
case 0x30:
r2 = _mm256_insertf128_ps(a,bhi,1); break;
case 0x31:
r2 = _mm256_insertf128_ps(_mm256_castps128_ps256(ahi),bhi,1); break;
case 0x32: case 0x34:
r2 = b; break;
case 0x33:
r2 = _mm256_insertf128_ps(_mm256_castps128_ps256(bhi),bhi,1); break;
}
}
// now the shuffle instruction
t1 = _mm256_shuffle_ps(r1, r2, sm);
if (do_zero) {
// zero some elements
mask = constant8f< -int(i0>=0), -int(i1>=0), -int(i2>=0), -int(i3>=0), -int(i4>=0), -int(i5>=0), -int(i6>=0), -int(i7>=0) > ();
t1 = _mm256_and_ps(t1, mask); // zero with AND mask
}
return t1;
}
// Check if we can use 64-bit blend. Even numbered indexes must be even and odd numbered
// indexes must be equal to the preceding index + 1, except for negative indexes.
if (((m1 ^ 0x10101010) & 0x11111111 & mz) == 0 && ((m1 ^ m1 >> 4) & 0x0E0E0E0E & mz & mz >> 4) == 0) {
const bool partialzero = int((i0 ^ i1) | (i2 ^ i3) | (i4 ^ i5) | (i6 ^ i7)) < 0; // part of a 64-bit block is zeroed
const int blank1 = partialzero ? -0x100 : -1; // ignore or zero
const int n0 = i0 > 0 ? i0/2 : i1 > 0 ? i1/2 : blank1; // indexes for 64 bit blend
const int n1 = i2 > 0 ? i2/2 : i3 > 0 ? i3/2 : blank1;
const int n2 = i4 > 0 ? i4/2 : i5 > 0 ? i5/2 : blank1;
const int n3 = i6 > 0 ? i6/2 : i7 > 0 ? i7/2 : blank1;
t1 = _mm256_castpd_ps (blend4d<n0,n1,n2,n3> (_mm256_castps_pd(a), _mm256_castps_pd(b)));
if (blank1 == -1 || !do_zero) {
return t1;
}
// need more zeroing
mask = constant8f< -int(i0>=0), -int(i1>=0), -int(i2>=0), -int(i3>=0), -int(i4>=0), -int(i5>=0), -int(i6>=0), -int(i7>=0) > ();
return _mm256_and_ps(t1, mask); // zero with AND mask
}
// general case: permute and blend and possible zero
const int blank2 = do_zero ? -1 : -0x100; // ignore or zero
Vec8f ta = permute8f <
(uint32_t)i0 < 8 ? i0 : blank2,
(uint32_t)i1 < 8 ? i1 : blank2,
(uint32_t)i2 < 8 ? i2 : blank2,
(uint32_t)i3 < 8 ? i3 : blank2,
(uint32_t)i4 < 8 ? i4 : blank2,
(uint32_t)i5 < 8 ? i5 : blank2,
(uint32_t)i6 < 8 ? i6 : blank2,
(uint32_t)i7 < 8 ? i7 : blank2 > (a);
Vec8f tb = permute8f <
(uint32_t)(i0^8) < 8 ? (i0^8) : blank2,
(uint32_t)(i1^8) < 8 ? (i1^8) : blank2,
(uint32_t)(i2^8) < 8 ? (i2^8) : blank2,
(uint32_t)(i3^8) < 8 ? (i3^8) : blank2,
(uint32_t)(i4^8) < 8 ? (i4^8) : blank2,
(uint32_t)(i5^8) < 8 ? (i5^8) : blank2,
(uint32_t)(i6^8) < 8 ? (i6^8) : blank2,
(uint32_t)(i7^8) < 8 ? (i7^8) : blank2 > (b);
if (blank2 == -1) {
return _mm256_or_ps(ta, tb);
}
// no zeroing, need to blend
const int maskb = ((i0 >> 3) & 1) | ((i1 >> 2) & 2) | ((i2 >> 1) & 4) | (i3 & 8) |
((i4 << 1) & 0x10) | ((i5 << 2) & 0x20) | ((i6 << 3) & 0x40) | ((i7 << 4) & 0x80);
return _mm256_blend_ps(ta, tb, maskb); // blend
}
/*****************************************************************************
*
* Vector lookup functions
*
******************************************************************************
*
* These functions use vector elements as indexes into a table.
* The table is given as one or more vectors or as an array.
*
* This can be used for several purposes:
* - table lookup
* - permute or blend with variable indexes
* - blend from more than two sources
* - gather non-contiguous data
*
* An index out of range may produce any value - the actual value produced is
* implementation dependent and may be different for different instruction
* sets. An index out of range does not produce an error message or exception.
*
* Example:
* Vec4i a(2,0,0,3); // index a is ( 2, 0, 0, 3)
* Vec4f b(1.0f,1.1f,1.2f,1.3f); // table b is (1.0, 1.1, 1.2, 1.3)
* Vec4f c;
* c = lookup4 (a,b); // result c is (1.2, 1.0, 1.0, 1.3)
*
*****************************************************************************/
#ifdef VECTORI256_H // Vec8i and Vec4q must be defined
static inline Vec8f lookup8(Vec8i const & index, Vec8f const & table) {
#if INSTRSET >= 8 && VECTORI256_H > 1 // AVX2
#if defined (_MSC_VER) && _MSC_VER < 1700 && ! defined(__INTEL_COMPILER)
// bug in MS VS 11 beta: operands in wrong order. fixed in 11.0
return _mm256_permutevar8x32_ps(_mm256_castsi256_ps(index), _mm256_castps_si256(table));
#elif defined (GCC_VERSION) && GCC_VERSION <= 40700 && !defined(__INTEL_COMPILER) && !defined(__clang__)
// Gcc 4.7.0 has wrong parameter type and operands in wrong order. fixed in version 4.7.1
return _mm256_permutevar8x32_ps(_mm256_castsi256_ps(index), table);
#else
// no bug version
return _mm256_permutevar8x32_ps(table, index);
#endif
#else // AVX
// swap low and high part of table
__m256 t1 = _mm256_castps128_ps256(_mm256_extractf128_ps(table, 1));
__m256 t2 = _mm256_insertf128_ps(t1, _mm256_castps256_ps128(table), 1);
// join index parts
__m256i index2 = _mm256_insertf128_si256(_mm256_castsi128_si256(index.get_low()), index.get_high(), 1);
// permute within each 128-bit part
__m256 r0 = _mm256_permutevar_ps(table, index2);
__m256 r1 = _mm256_permutevar_ps(t2, index2);
// high index bit for blend
__m128i k1 = _mm_slli_epi32(index.get_high() ^ 4, 29);
__m128i k0 = _mm_slli_epi32(index.get_low(), 29);
__m256 kk = _mm256_insertf128_ps(_mm256_castps128_ps256(_mm_castsi128_ps(k0)), _mm_castsi128_ps(k1), 1);
// blend the two permutes
return _mm256_blendv_ps(r0, r1, kk);
#endif
}
template <int n>
static inline Vec8f lookup(Vec8i const & index, float const * table) {
if (n <= 0) return 0;
if (n <= 4) {
Vec4f table1 = Vec4f().load(table);
return Vec8f(
lookup4 (index.get_low(), table1),
lookup4 (index.get_high(), table1));
}
#if INSTRSET < 8 // not AVX2
if (n <= 8) {
return lookup8(index, Vec8f().load(table));
}
#endif
// Limit index
Vec8ui index1;
if ((n & (n-1)) == 0) {
// n is a power of 2, make index modulo n
index1 = Vec8ui(index) & (n-1);
}
else {
// n is not a power of 2, limit to n-1
index1 = min(Vec8ui(index), n-1);
}
#if INSTRSET >= 8 && VECTORI256_H > 1 // AVX2
return _mm256_i32gather_ps(table, index1, 4);
#else // AVX
return Vec8f(table[index1[0]],table[index1[1]],table[index1[2]],table[index1[3]],
table[index1[4]],table[index1[5]],table[index1[6]],table[index1[7]]);
#endif
}
static inline Vec4d lookup4(Vec4q const & index, Vec4d const & table) {
#if INSTRSET >= 8 && VECTORI256_H > 1 // AVX2
// We can't use VPERMPD because it has constant indexes.
// Convert the index to fit VPERMPS
Vec8i index1 = permute8i<0,0,2,2,4,4,6,6> (Vec8i(index+index));
Vec8i index2 = index1 + Vec8i(constant8i<0,1,0,1,0,1,0,1>());
#if defined (_MSC_VER) && _MSC_VER < 1700 && ! defined(__INTEL_COMPILER)
// bug in MS VS 11 beta: operands in wrong order. fixed in 11.0
return _mm256_castps_pd(_mm256_permutevar8x32_ps(_mm256_castsi256_ps(index2), _mm256_castpd_si256(table)));
#elif defined (GCC_VERSION) && GCC_VERSION <= 40700 && !defined(__INTEL_COMPILER) && !defined(__clang__)
// Gcc 4.7.0 has wrong parameter type and operands in wrong order
return _mm256_castps_pd(_mm256_permutevar8x32_ps(_mm256_castsi256_ps(index2), _mm256_castpd_ps(table)));
#else
// no bug version
return _mm256_castps_pd(_mm256_permutevar8x32_ps(_mm256_castpd_ps(table), index2));
#endif
#else // AVX
// swap low and high part of table
__m256d t1 = _mm256_castpd128_pd256(_mm256_extractf128_pd(table, 1));
__m256d t2 = _mm256_insertf128_pd(t1, _mm256_castpd256_pd128(table), 1);
// index << 1
__m128i index2lo = index.get_low() + index.get_low();
__m128i index2hi = index.get_high() + index.get_high();
// join index parts
__m256i index3 = _mm256_insertf128_si256(_mm256_castsi128_si256(index2lo), index2hi, 1);
// permute within each 128-bit part
__m256d r0 = _mm256_permutevar_pd(table, index3);
__m256d r1 = _mm256_permutevar_pd(t2, index3);
// high index bit for blend
__m128i k1 = _mm_slli_epi64(index.get_high() ^ 2, 62);
__m128i k0 = _mm_slli_epi64(index.get_low(), 62);
__m256d kk = _mm256_insertf128_pd(_mm256_castpd128_pd256(_mm_castsi128_pd(k0)), _mm_castsi128_pd(k1), 1);
// blend the two permutes
return _mm256_blendv_pd(r0, r1, kk);
#endif
}
template <int n>
static inline Vec4d lookup(Vec4q const & index, double const * table) {
if (n <= 0) return 0;
if (n <= 2) {
Vec2d table1 = Vec2d().load(table);
return Vec4d(
lookup2 (index.get_low(), table1),
lookup2 (index.get_high(), table1));
}
#if INSTRSET < 8 // not AVX2
if (n <= 4) {
return lookup4(index, Vec4d().load(table));
}
#endif
// Limit index
Vec8ui index1;
if ((n & (n-1)) == 0) {
// n is a power of 2, make index modulo n
index1 = Vec8ui(index) & constant8i<n-1, 0, n-1, 0, n-1, 0, n-1, 0>();
}
else {
// n is not a power of 2, limit to n-1
index1 = min(Vec8ui(index), constant8i<n-1, 0, n-1, 0, n-1, 0, n-1, 0>() );
}
#if INSTRSET >= 8 && VECTORI256_H > 1 // AVX2
return _mm256_i64gather_pd(table, index1, 8);
#else // AVX
Vec4q index2 = Vec4q(index1);
return Vec4d(table[index2[0]],table[index2[1]],table[index2[2]],table[index2[3]]);
#endif
}
#endif // VECTORI256_H
/*****************************************************************************
*
* Gather functions with fixed indexes
*
*****************************************************************************/
// Load elements from array a with indices i0, i1, i2, i3, ..
template <int i0, int i1, int i2, int i3, int i4, int i5, int i6, int i7>
static inline Vec8f gather8f(void const * a) {
return reinterpret_f(gather8i<i0, i1, i2, i3, i4, i5, i6, i7>(a));
}
// Load elements from array a with indices i0, i1, i2, i3
template <int i0, int i1, int i2, int i3>
static inline Vec4d gather4d(void const * a) {
return reinterpret_d(gather4q<i0, i1, i2, i3>(a));
}
/*****************************************************************************
*
* Vector scatter functions
*
******************************************************************************
*
* These functions write the elements of a vector to arbitrary positions in an
* array in memory. Each vector element is written to an array position
* determined by an index. An element is not written if the corresponding
* index is out of range.
* The indexes can be specified as constant template parameters or as an
* integer vector.
*
* The scatter functions are useful if the data are distributed in a sparce
* manner into the array. If the array is dense then it is more efficient
* to permute the data into the right positions and then write the whole
* permuted vector into the array.
*
* Example:
* Vec8d a(10,11,12,13,14,15,16,17);
* double b[16] = {0};
* scatter<0,2,14,10,1,-1,5,9>(a,b);
* // Now, b = {10,14,11,0,0,16,0,0,0,17,13,0,0,0,12,0}
*
*****************************************************************************/
template <int i0, int i1, int i2, int i3, int i4, int i5, int i6, int i7>
static inline void scatter(Vec8f const & data, float * array) {
#if defined (__AVX512VL__)
__m256i indx = constant8i<i0,i1,i2,i3,i4,i5,i6,i7>();
__mmask16 mask = uint16_t(i0>=0 | (i1>=0)<<1 | (i2>=0)<<2 | (i3>=0)<<3| (i4>=0)<<4| (i5>=0)<<5| (i6>=0)<<6| (i7>=0)<<7);
_mm256_mask_i32scatter_ps(array, mask, indx, data, 4);
#elif defined (__AVX512F__)
__m512i indx = _mm512_castsi256_si512(constant8i<i0,i1,i2,i3,i4,i5,i6,i7>());
__mmask16 mask = uint16_t(i0>=0 | (i1>=0)<<1 | (i2>=0)<<2 | (i3>=0)<<3| (i4>=0)<<4| (i5>=0)<<5| (i6>=0)<<6| (i7>=0)<<7);
_mm512_mask_i32scatter_ps(array, mask, indx, _mm512_castps256_ps512(data), 4);
#else
const int index[8] = {i0,i1,i2,i3,i4,i5,i6,i7};
for (int i = 0; i < 8; i++) {
if (index[i] >= 0) array[index[i]] = data[i];
}
#endif
}
template <int i0, int i1, int i2, int i3>
static inline void scatter(Vec4d const & data, double * array) {
#if defined (__AVX512VL__)
__m128i indx = constant4i<i0,i1,i2,i3>();
__mmask16 mask = uint16_t(i0>=0 | (i1>=0)<<1 | (i2>=0)<<2 | (i3>=0)<<3);
_mm256_mask_i32scatter_pd(array, mask, indx, data, 8);
#elif defined (__AVX512F__)
__m256i indx = _mm256_castsi128_si256(constant4i<i0,i1,i2,i3>());
__mmask16 mask = uint16_t(i0>=0 | (i1>=0)<<1 | (i2>=0)<<2 | (i3>=0)<<3);
_mm512_mask_i32scatter_pd(array, mask, indx, _mm512_castpd256_pd512(data), 8);
#else
const int index[4] = {i0,i1,i2,i3};
for (int i = 0; i < 4; i++) {
if (index[i] >= 0) array[index[i]] = data[i];
}
#endif
}
static inline void scatter(Vec8i const & index, uint32_t limit, Vec8f const & data, float * array) {
#if defined (__AVX512VL__)
__mmask16 mask = _mm256_cmplt_epu32_mask(index, Vec8ui(limit));
_mm256_mask_i32scatter_ps(array, mask, index, data, 4);
#elif defined (__AVX512F__)
// 16 bit mask. upper 8 bits are (0<0) = false
__mmask16 mask = _mm512_cmplt_epu32_mask(_mm512_castsi256_si512(index), _mm512_castsi256_si512(Vec8ui(limit)));
_mm512_mask_i32scatter_ps(array, mask, _mm512_castsi256_si512(index), _mm512_castps256_ps512(data), 4);
#else
for (int i = 0; i < 8; i++) {
if (uint32_t(index[i]) < limit) array[index[i]] = data[i];
}
#endif
}
static inline void scatter(Vec4q const & index, uint32_t limit, Vec4d const & data, double * array) {
#if defined (__AVX512VL__)
__mmask16 mask = _mm256_cmplt_epu64_mask(index, Vec4uq(uint64_t(limit)));
_mm256_mask_i64scatter_pd(array, mask, index, data, 8);
#elif defined (__AVX512F__)
// 16 bit mask. upper 8 bits are (0<0) = false
__mmask16 mask = _mm512_cmplt_epu64_mask(_mm512_castsi256_si512(index), _mm512_castsi256_si512(Vec4uq(uint64_t(limit))));
_mm512_mask_i64scatter_pd(array, mask, _mm512_castsi256_si512(index), _mm512_castpd256_pd512(data), 8);
#else
for (int i = 0; i < 4; i++) {
if (uint64_t(index[i]) < uint64_t(limit)) array[index[i]] = data[i];
}
#endif
}
static inline void scatter(Vec4i const & index, uint32_t limit, Vec4d const & data, double * array) {
#if defined (__AVX512VL__)
__mmask16 mask = _mm_cmplt_epu32_mask(index, Vec4ui(limit));
_mm256_mask_i32scatter_pd(array, mask, index, data, 8);
#elif defined (__AVX512F__)
// 16 bit mask. upper 12 bits are (0<0) = false
__mmask16 mask = _mm512_cmplt_epu32_mask(_mm512_castsi128_si512(index), _mm512_castsi128_si512(Vec4ui(limit)));
_mm512_mask_i32scatter_pd(array, mask, _mm256_castsi128_si256(index), _mm512_castpd256_pd512(data), 8);
#else
for (int i = 0; i < 4; i++) {
if (uint32_t(index[i]) < limit) array[index[i]] = data[i];
}
#endif
}
/*****************************************************************************
*
* Horizontal scan functions
*
*****************************************************************************/
// Get index to the first element that is true. Return -1 if all are false
static inline int horizontal_find_first(Vec8fb const & x) {
return horizontal_find_first(Vec8ib(x));
}
static inline int horizontal_find_first(Vec4db const & x) {
return horizontal_find_first(Vec4qb(x));
}
// Count the number of elements that are true
static inline uint32_t horizontal_count(Vec8fb const & x) {
return horizontal_count(Vec8ib(x));
}
static inline uint32_t horizontal_count(Vec4db const & x) {
return horizontal_count(Vec4qb(x));
}
/*****************************************************************************
*
* Boolean <-> bitfield conversion functions
*
*****************************************************************************/
// to_bits: convert boolean vector to integer bitfield
static inline uint8_t to_bits(Vec8fb const & x) {
return to_bits(Vec8ib(x));
}
// to_Vec8fb: convert integer bitfield to boolean vector
static inline Vec8fb to_Vec8fb(uint8_t x) {
return Vec8fb(to_Vec8ib(x));
}
// to_bits: convert boolean vector to integer bitfield
static inline uint8_t to_bits(Vec4db const & x) {
return to_bits(Vec4qb(x));
}
// to_Vec4db: convert integer bitfield to boolean vector
static inline Vec4db to_Vec4db(uint8_t x) {
return Vec4db(to_Vec4qb(x));
}
#ifdef VCL_NAMESPACE
}
#endif
#endif // VECTORF256_H
|