1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
|
/**************************** vectorf512.h *******************************
* Author: Agner Fog
* Date created: 2014-07-23
* Last modified: 2017-02-19
* Version: 1.27
* Project: vector classes
* Description:
* Header file defining floating point vector classes as interface to intrinsic
* functions in x86 microprocessors with AVX512 and later instruction sets.
*
* Instructions:
* Use Gnu, Intel or Microsoft C++ compiler. Compile for the desired
* instruction set, which must be at least AVX512F.
*
* The following vector classes are defined here:
* Vec16f Vector of 16 single precision floating point numbers
* Vec16fb Vector of 16 Booleans for use with Vec16f
* Vec8d Vector of 8 double precision floating point numbers
* Vec8db Vector of 8 Booleans for use with Vec8d
*
* Each vector object is represented internally in the CPU as a 512-bit register.
* This header file defines operators and functions for these vectors.
*
* For detailed instructions, see VectorClass.pdf
*
* (c) Copyright 2014-2017 GNU General Public License http://www.gnu.org/licenses
*****************************************************************************/
// check combination of header files
#if defined (VECTORF512_H)
#if VECTORF512_H != 2
#error Two different versions of vectorf512.h included
#endif
#else
#define VECTORF512_H 2
#include "vectori512.h"
#ifdef VCL_NAMESPACE
namespace VCL_NAMESPACE {
#endif
// Define missing intrinsic functions
#if defined (GCC_VERSION) && GCC_VERSION < 41102 && !defined(__INTEL_COMPILER) && !defined(__clang__)
static inline __m512 _mm512_castpd_ps(__m512d x) {
union {
__m512d a;
__m512 b;
} u;
u.a = x;
return u.b;
}
static inline __m512d _mm512_castps_pd(__m512 x) {
union {
__m512 a;
__m512d b;
} u;
u.a = x;
return u.b;
}
static inline __m512i _mm512_castps_si512(__m512 x) {
union {
__m512 a;
__m512i b;
} u;
u.a = x;
return u.b;
}
static inline __m512 _mm512_castsi512_ps(__m512i x) {
union {
__m512i a;
__m512 b;
} u;
u.a = x;
return u.b;
}
static inline __m512i _mm512_castpd_si512(__m512d x) {
union {
__m512d a;
__m512i b;
} u;
u.a = x;
return u.b;
}
static inline __m512d _mm512_castsi512_pd(__m512i x) {
union {
__m512i a;
__m512d b;
} u;
u.a = x;
return u.b;
}
static inline __m512 _mm512_castps256_ps512(__m256 x) {
union {
__m256 a;
__m512 b;
} u;
u.a = x;
return u.b;
}
static inline __m256 _mm512_castps512_ps256(__m512 x) {
union {
__m512 a;
__m256 b;
} u;
u.a = x;
return u.b;
}
static inline __m512d _mm512_castpd256_pd512(__m256d x) {
union {
__m256d a;
__m512d b;
} u;
u.a = x;
return u.b;
}
static inline __m256d _mm512_castpd512_pd256(__m512d x) {
union {
__m512d a;
__m256d b;
} u;
u.a = x;
return u.b;
}
#endif
/*****************************************************************************
*
* Vec16fb: Vector of 16 Booleans for use with Vec16f
*
*****************************************************************************/
class Vec16fb : public Vec16b {
public:
// Default constructor:
Vec16fb () {
}
Vec16fb (Vec16b x) {
m16 = x;
}
// Constructor to build from all elements:
Vec16fb(bool x0, bool x1, bool x2, bool x3, bool x4, bool x5, bool x6, bool x7,
bool x8, bool x9, bool x10, bool x11, bool x12, bool x13, bool x14, bool x15) :
Vec16b(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15) {
}
// Constructor to convert from type __mmask16 used in intrinsics:
Vec16fb (__mmask16 x) {
m16 = x;
}
// Constructor to broadcast single value:
Vec16fb(bool b) : Vec16b(b) {}
private: // Prevent constructing from int, etc.
Vec16fb(int b);
public:
// Constructor to make from two halves
Vec16fb (Vec8fb const & x0, Vec8fb const & x1) {
m16 = Vec16b(Vec8ib(x0), Vec8ib(x1));
}
// Assignment operator to convert from type __mmask16 used in intrinsics:
Vec16fb & operator = (__mmask16 x) {
m16 = x;
return *this;
}
// Assignment operator to broadcast scalar value:
Vec16fb & operator = (bool b) {
m16 = Vec16b(b);
return *this;
}
private: // Prevent assigning int because of ambiguity
Vec16fb & operator = (int x);
public:
};
// Define operators for Vec16fb
// vector operator & : bitwise and
static inline Vec16fb operator & (Vec16fb a, Vec16fb b) {
return Vec16b(a) & Vec16b(b);
}
static inline Vec16fb operator && (Vec16fb a, Vec16fb b) {
return a & b;
}
// vector operator | : bitwise or
static inline Vec16fb operator | (Vec16fb a, Vec16fb b) {
return Vec16b(a) | Vec16b(b);
}
static inline Vec16fb operator || (Vec16fb a, Vec16fb b) {
return a | b;
}
// vector operator ^ : bitwise xor
static inline Vec16fb operator ^ (Vec16fb a, Vec16fb b) {
return Vec16b(a) ^ Vec16b(b);
}
// vector operator ~ : bitwise not
static inline Vec16fb operator ~ (Vec16fb a) {
return ~Vec16b(a);
}
// vector operator ! : element not
static inline Vec16fb operator ! (Vec16fb a) {
return ~a;
}
// vector operator &= : bitwise and
static inline Vec16fb & operator &= (Vec16fb & a, Vec16fb b) {
a = a & b;
return a;
}
// vector operator |= : bitwise or
static inline Vec16fb & operator |= (Vec16fb & a, Vec16fb b) {
a = a | b;
return a;
}
// vector operator ^= : bitwise xor
static inline Vec16fb & operator ^= (Vec16fb & a, Vec16fb b) {
a = a ^ b;
return a;
}
/*****************************************************************************
*
* Vec8db: Vector of 8 Booleans for use with Vec8d
*
*****************************************************************************/
class Vec8db : public Vec8b {
public:
// Default constructor:
Vec8db () {
}
Vec8db (Vec16b x) {
m16 = x;
}
// Constructor to build from all elements:
Vec8db(bool x0, bool x1, bool x2, bool x3, bool x4, bool x5, bool x6, bool x7) :
Vec8b(x0, x1, x2, x3, x4, x5, x6, x7) {
}
// Constructor to convert from type __mmask8 used in intrinsics:
Vec8db (__mmask8 x) {
m16 = x;
}
// Constructor to convert from type __mmask16 used in intrinsics:
Vec8db (__mmask16 x) {
m16 = x;
}
// Constructor to build from two halves
Vec8db (Vec4db const & x0, Vec4db const & x1) {
m16 = Vec8qb(Vec4qb(x0), Vec4qb(x1));
}
// Assignment operator to convert from type __mmask8 used in intrinsics:
Vec8db & operator = (__mmask8 x) {
m16 = (__mmask16)x;
return *this;
}
// Assignment operator to convert from type __mmask16 used in intrinsics:
Vec8db & operator = (__mmask16 x) {
m16 = x;
return *this;
}
// Constructor to broadcast single value:
Vec8db(bool b) : Vec8b(b) {}
// Assignment operator to broadcast scalar:
Vec8db & operator = (bool b) {
m16 = Vec8b(b);
return *this;
}
private: // Prevent constructing from int, etc.
Vec8db(int b);
Vec8db & operator = (int x);
public:
static int size () {
return 8;
}
};
// Define operators for Vec8db
// vector operator & : bitwise and
static inline Vec8db operator & (Vec8db a, Vec8db b) {
return Vec16b(a) & Vec16b(b);
}
static inline Vec8db operator && (Vec8db a, Vec8db b) {
return a & b;
}
// vector operator | : bitwise or
static inline Vec8db operator | (Vec8db a, Vec8db b) {
return Vec16b(a) | Vec16b(b);
}
static inline Vec8db operator || (Vec8db a, Vec8db b) {
return a | b;
}
// vector operator ^ : bitwise xor
static inline Vec8db operator ^ (Vec8db a, Vec8db b) {
return Vec16b(a) ^ Vec16b(b);
}
// vector operator ~ : bitwise not
static inline Vec8db operator ~ (Vec8db a) {
return ~Vec16b(a);
}
// vector operator ! : element not
static inline Vec8db operator ! (Vec8db a) {
return ~a;
}
// vector operator &= : bitwise and
static inline Vec8db & operator &= (Vec8db & a, Vec8db b) {
a = a & b;
return a;
}
// vector operator |= : bitwise or
static inline Vec8db & operator |= (Vec8db & a, Vec8db b) {
a = a | b;
return a;
}
// vector operator ^= : bitwise xor
static inline Vec8db & operator ^= (Vec8db & a, Vec8db b) {
a = a ^ b;
return a;
}
/*****************************************************************************
*
* Vec16f: Vector of 16 single precision floating point values
*
*****************************************************************************/
class Vec16f {
protected:
__m512 zmm; // Float vector
public:
// Default constructor:
Vec16f() {
}
// Constructor to broadcast the same value into all elements:
Vec16f(float f) {
zmm = _mm512_set1_ps(f);
}
// Constructor to build from all elements:
Vec16f(float f0, float f1, float f2, float f3, float f4, float f5, float f6, float f7,
float f8, float f9, float f10, float f11, float f12, float f13, float f14, float f15) {
zmm = _mm512_setr_ps(f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f13, f14, f15);
}
// Constructor to build from two Vec8f:
Vec16f(Vec8f const & a0, Vec8f const & a1) {
zmm = _mm512_castpd_ps(_mm512_insertf64x4(_mm512_castps_pd(_mm512_castps256_ps512(a0)), _mm256_castps_pd(a1), 1));
}
// Constructor to convert from type __m512 used in intrinsics:
Vec16f(__m512 const & x) {
zmm = x;
}
// Assignment operator to convert from type __m512 used in intrinsics:
Vec16f & operator = (__m512 const & x) {
zmm = x;
return *this;
}
// Type cast operator to convert to __m512 used in intrinsics
operator __m512() const {
return zmm;
}
// Member function to load from array (unaligned)
Vec16f & load(float const * p) {
zmm = _mm512_loadu_ps(p);
return *this;
}
// Member function to load from array, aligned by 64
// You may use load_a instead of load if you are certain that p points to an address
// divisible by 64.
Vec16f & load_a(float const * p) {
zmm = _mm512_load_ps(p);
return *this;
}
// Member function to store into array (unaligned)
void store(float * p) const {
_mm512_storeu_ps(p, zmm);
}
// Member function to store into array, aligned by 64
// You may use store_a instead of store if you are certain that p points to an address
// divisible by 64.
void store_a(float * p) const {
_mm512_store_ps(p, zmm);
}
// Partial load. Load n elements and set the rest to 0
Vec16f & load_partial(int n, float const * p) {
zmm = _mm512_maskz_loadu_ps(__mmask16((1 << n) - 1), p);
return *this;
}
// Partial store. Store n elements
void store_partial(int n, float * p) const {
_mm512_mask_storeu_ps(p, __mmask16((1 << n) - 1), zmm);
}
// cut off vector to n elements. The last 8-n elements are set to zero
Vec16f & cutoff(int n) {
zmm = _mm512_maskz_mov_ps(__mmask16((1 << n) - 1), zmm);
return *this;
}
// Member function to change a single element in vector
Vec16f const & insert(uint32_t index, float value) {
//zmm = _mm512_mask_set1_ps(zmm, __mmask16(1 << index), value); // this intrinsic function does not exist (yet?)
zmm = _mm512_castsi512_ps(_mm512_mask_set1_epi32(_mm512_castps_si512(zmm), __mmask16(1 << index), *(int32_t*)&value)); // ignore warning
return *this;
}
// Member function extract a single element from vector
float extract(uint32_t index) const {
float a[16];
store(a);
return a[index & 15];
}
// Extract a single element. Use store function if extracting more than one element.
// Operator [] can only read an element, not write.
float operator [] (uint32_t index) const {
return extract(index);
}
// Member functions to split into two Vec4f:
Vec8f get_low() const {
return _mm512_castps512_ps256(zmm);
}
Vec8f get_high() const {
return _mm256_castpd_ps(_mm512_extractf64x4_pd(_mm512_castps_pd(zmm),1));
}
static int size () {
return 16;
}
};
/*****************************************************************************
*
* Operators for Vec16f
*
*****************************************************************************/
// vector operator + : add element by element
static inline Vec16f operator + (Vec16f const & a, Vec16f const & b) {
return _mm512_add_ps(a, b);
}
// vector operator + : add vector and scalar
static inline Vec16f operator + (Vec16f const & a, float b) {
return a + Vec16f(b);
}
static inline Vec16f operator + (float a, Vec16f const & b) {
return Vec16f(a) + b;
}
// vector operator += : add
static inline Vec16f & operator += (Vec16f & a, Vec16f const & b) {
a = a + b;
return a;
}
// postfix operator ++
static inline Vec16f operator ++ (Vec16f & a, int) {
Vec16f a0 = a;
a = a + 1.0f;
return a0;
}
// prefix operator ++
static inline Vec16f & operator ++ (Vec16f & a) {
a = a + 1.0f;
return a;
}
// vector operator - : subtract element by element
static inline Vec16f operator - (Vec16f const & a, Vec16f const & b) {
return _mm512_sub_ps(a, b);
}
// vector operator - : subtract vector and scalar
static inline Vec16f operator - (Vec16f const & a, float b) {
return a - Vec16f(b);
}
static inline Vec16f operator - (float a, Vec16f const & b) {
return Vec16f(a) - b;
}
// vector operator - : unary minus
// Change sign bit, even for 0, INF and NAN
static inline Vec16f operator - (Vec16f const & a) {
return _mm512_castsi512_ps(Vec16i(_mm512_castps_si512(a)) ^ 0x80000000);
}
// vector operator -= : subtract
static inline Vec16f & operator -= (Vec16f & a, Vec16f const & b) {
a = a - b;
return a;
}
// postfix operator --
static inline Vec16f operator -- (Vec16f & a, int) {
Vec16f a0 = a;
a = a - 1.0f;
return a0;
}
// prefix operator --
static inline Vec16f & operator -- (Vec16f & a) {
a = a - 1.0f;
return a;
}
// vector operator * : multiply element by element
static inline Vec16f operator * (Vec16f const & a, Vec16f const & b) {
return _mm512_mul_ps(a, b);
}
// vector operator * : multiply vector and scalar
static inline Vec16f operator * (Vec16f const & a, float b) {
return a * Vec16f(b);
}
static inline Vec16f operator * (float a, Vec16f const & b) {
return Vec16f(a) * b;
}
// vector operator *= : multiply
static inline Vec16f & operator *= (Vec16f & a, Vec16f const & b) {
a = a * b;
return a;
}
// vector operator / : divide all elements by same integer
static inline Vec16f operator / (Vec16f const & a, Vec16f const & b) {
return _mm512_div_ps(a, b);
}
// vector operator / : divide vector and scalar
static inline Vec16f operator / (Vec16f const & a, float b) {
return a / Vec16f(b);
}
static inline Vec16f operator / (float a, Vec16f const & b) {
return Vec16f(a) / b;
}
// vector operator /= : divide
static inline Vec16f & operator /= (Vec16f & a, Vec16f const & b) {
a = a / b;
return a;
}
// vector operator == : returns true for elements for which a == b
static inline Vec16fb operator == (Vec16f const & a, Vec16f const & b) {
// return _mm512_cmpeq_ps_mask(a, b);
return _mm512_cmp_ps_mask(a, b, 0);
}
// vector operator != : returns true for elements for which a != b
static inline Vec16fb operator != (Vec16f const & a, Vec16f const & b) {
// return _mm512_cmpneq_ps_mask(a, b);
return _mm512_cmp_ps_mask(a, b, 4);
}
// vector operator < : returns true for elements for which a < b
static inline Vec16fb operator < (Vec16f const & a, Vec16f const & b) {
// return _mm512_cmplt_ps_mask(a, b);
return _mm512_cmp_ps_mask(a, b, 1);
}
// vector operator <= : returns true for elements for which a <= b
static inline Vec16fb operator <= (Vec16f const & a, Vec16f const & b) {
// return _mm512_cmple_ps_mask(a, b);
return _mm512_cmp_ps_mask(a, b, 2);
}
// vector operator > : returns true for elements for which a > b
static inline Vec16fb operator > (Vec16f const & a, Vec16f const & b) {
return b < a;
}
// vector operator >= : returns true for elements for which a >= b
static inline Vec16fb operator >= (Vec16f const & a, Vec16f const & b) {
return b <= a;
}
// Bitwise logical operators
// vector operator & : bitwise and
static inline Vec16f operator & (Vec16f const & a, Vec16f const & b) {
return _mm512_castsi512_ps(Vec16i(_mm512_castps_si512(a)) & Vec16i(_mm512_castps_si512(b)));
}
// vector operator &= : bitwise and
static inline Vec16f & operator &= (Vec16f & a, Vec16f const & b) {
a = a & b;
return a;
}
// vector operator & : bitwise and of Vec16f and Vec16fb
static inline Vec16f operator & (Vec16f const & a, Vec16fb const & b) {
return _mm512_maskz_mov_ps(b, a);
}
static inline Vec16f operator & (Vec16fb const & a, Vec16f const & b) {
return b & a;
}
// vector operator | : bitwise or
static inline Vec16f operator | (Vec16f const & a, Vec16f const & b) {
return _mm512_castsi512_ps(Vec16i(_mm512_castps_si512(a)) | Vec16i(_mm512_castps_si512(b)));
}
// vector operator |= : bitwise or
static inline Vec16f & operator |= (Vec16f & a, Vec16f const & b) {
a = a | b;
return a;
}
// vector operator ^ : bitwise xor
static inline Vec16f operator ^ (Vec16f const & a, Vec16f const & b) {
return _mm512_castsi512_ps(Vec16i(_mm512_castps_si512(a)) ^ Vec16i(_mm512_castps_si512(b)));
}
// vector operator ^= : bitwise xor
static inline Vec16f & operator ^= (Vec16f & a, Vec16f const & b) {
a = a ^ b;
return a;
}
// vector operator ! : logical not. Returns Boolean vector
static inline Vec16fb operator ! (Vec16f const & a) {
return a == Vec16f(0.0f);
}
/*****************************************************************************
*
* Functions for Vec16f
*
*****************************************************************************/
// Select between two operands. Corresponds to this pseudocode:
// for (int i = 0; i < 8; i++) result[i] = s[i] ? a[i] : b[i];
// Each byte in s must be either 0 (false) or 0xFFFFFFFF (true). No other values are allowed.
static inline Vec16f select (Vec16fb const & s, Vec16f const & a, Vec16f const & b) {
return _mm512_mask_mov_ps(b, s, a);
}
// Conditional add: For all vector elements i: result[i] = f[i] ? (a[i] + b[i]) : a[i]
static inline Vec16f if_add (Vec16fb const & f, Vec16f const & a, Vec16f const & b) {
return _mm512_mask_add_ps(a, f, a, b);
}
// Conditional multiply: For all vector elements i: result[i] = f[i] ? (a[i] * b[i]) : a[i]
static inline Vec16f if_mul (Vec16fb const & f, Vec16f const & a, Vec16f const & b) {
return _mm512_mask_mul_ps(a, f, a, b);
}
// Horizontal add: Calculates the sum of all vector elements.
static inline float horizontal_add (Vec16f const & a) {
#if defined(__INTEL_COMPILER)
return _mm512_reduce_add_ps(a);
#else
return horizontal_add(a.get_low() + a.get_high());
#endif
}
// function max: a > b ? a : b
static inline Vec16f max(Vec16f const & a, Vec16f const & b) {
return _mm512_max_ps(a,b);
}
// function min: a < b ? a : b
static inline Vec16f min(Vec16f const & a, Vec16f const & b) {
return _mm512_min_ps(a,b);
}
// function abs: absolute value
// Removes sign bit, even for -0.0f, -INF and -NAN
static inline Vec16f abs(Vec16f const & a) {
union {
int32_t i;
float f;
} u = {0x7FFFFFFF};
return a & Vec16f(u.f);
}
// function sqrt: square root
static inline Vec16f sqrt(Vec16f const & a) {
return _mm512_sqrt_ps(a);
}
// function square: a * a
static inline Vec16f square(Vec16f const & a) {
return a * a;
}
// pow(Vec16f, int):
template <typename TT> static Vec16f pow(Vec16f const & a, TT const & n);
// Raise floating point numbers to integer power n
template <>
inline Vec16f pow<int>(Vec16f const & x0, int const & n) {
return pow_template_i<Vec16f>(x0, n);
}
// allow conversion from unsigned int
template <>
inline Vec16f pow<uint32_t>(Vec16f const & x0, uint32_t const & n) {
return pow_template_i<Vec16f>(x0, (int)n);
}
// Raise floating point numbers to integer power n, where n is a compile-time constant
template <int n>
static inline Vec16f pow_n(Vec16f const & a) {
if (n < 0) return Vec16f(1.0f) / pow_n<-n>(a);
if (n == 0) return Vec16f(1.0f);
if (n >= 256) return pow(a, n);
Vec16f x = a; // a^(2^i)
Vec16f y; // accumulator
const int lowest = n - (n & (n-1));// lowest set bit in n
if (n & 1) y = x;
if (n < 2) return y;
x = x*x; // x^2
if (n & 2) {
if (lowest == 2) y = x; else y *= x;
}
if (n < 4) return y;
x = x*x; // x^4
if (n & 4) {
if (lowest == 4) y = x; else y *= x;
}
if (n < 8) return y;
x = x*x; // x^8
if (n & 8) {
if (lowest == 8) y = x; else y *= x;
}
if (n < 16) return y;
x = x*x; // x^16
if (n & 16) {
if (lowest == 16) y = x; else y *= x;
}
if (n < 32) return y;
x = x*x; // x^32
if (n & 32) {
if (lowest == 32) y = x; else y *= x;
}
if (n < 64) return y;
x = x*x; // x^64
if (n & 64) {
if (lowest == 64) y = x; else y *= x;
}
if (n < 128) return y;
x = x*x; // x^128
if (n & 128) {
if (lowest == 128) y = x; else y *= x;
}
return y;
}
template <int n>
static inline Vec16f pow(Vec16f const & a, Const_int_t<n>) {
return pow_n<n>(a);
}
// function round: round to nearest integer (even). (result as float vector)
static inline Vec16f round(Vec16f const & a) {
return _mm512_roundscale_ps(a, 0+8);
}
// function truncate: round towards zero. (result as float vector)
static inline Vec16f truncate(Vec16f const & a) {
return _mm512_roundscale_ps(a, 3+8);
}
// function floor: round towards minus infinity. (result as float vector)
static inline Vec16f floor(Vec16f const & a) {
return _mm512_roundscale_ps(a, 1+8);
}
// function ceil: round towards plus infinity. (result as float vector)
static inline Vec16f ceil(Vec16f const & a) {
return _mm512_roundscale_ps(a, 2+8);
}
// function round_to_int: round to nearest integer (even). (result as integer vector)
static inline Vec16i round_to_int(Vec16f const & a) {
return _mm512_cvt_roundps_epi32(a, 0+8 /*_MM_FROUND_NO_EXC*/);
}
// function truncate_to_int: round towards zero. (result as integer vector)
static inline Vec16i truncate_to_int(Vec16f const & a) {
return _mm512_cvtt_roundps_epi32(a, 0+8 /*_MM_FROUND_NO_EXC*/);
}
// function to_float: convert integer vector to float vector
static inline Vec16f to_float(Vec16i const & a) {
return _mm512_cvtepi32_ps(a);
}
// function to_float: convert unsigned integer vector to float vector
static inline Vec16f to_float(Vec16ui const & a) {
return _mm512_cvtepu32_ps(a);
}
// Approximate math functions
// approximate reciprocal (Faster than 1.f / a.
// relative accuracy better than 2^-11 without AVX512, 2^-14 with AVX512F, full precision with AVX512ER)
static inline Vec16f approx_recipr(Vec16f const & a) {
#ifdef __AVX512ER__ // AVX512ER instruction set includes fast reciprocal with better precision
return _mm512_rcp28_round_ps(a, _MM_FROUND_NO_EXC);
#else
return _mm512_rcp14_ps(a);
#endif
}
// approximate reciprocal squareroot (Faster than 1.f / sqrt(a).
// Relative accuracy better than 2^-11 without AVX512, 2^-14 with AVX512F, full precision with AVX512ER)
static inline Vec16f approx_rsqrt(Vec16f const & a) {
#ifdef __AVX512ER__ // AVX512ER instruction set includes fast reciprocal squareroot with better precision
return _mm512_rsqrt28_round_ps(a, _MM_FROUND_NO_EXC);
#else
return _mm512_rsqrt14_ps(a);
#endif
}
// Fused multiply and add functions
// Multiply and add
static inline Vec16f mul_add(Vec16f const & a, Vec16f const & b, Vec16f const & c) {
return _mm512_fmadd_ps(a, b, c);
}
// Multiply and subtract
static inline Vec16f mul_sub(Vec16f const & a, Vec16f const & b, Vec16f const & c) {
return _mm512_fmsub_ps(a, b, c);
}
// Multiply and inverse subtract
static inline Vec16f nmul_add(Vec16f const & a, Vec16f const & b, Vec16f const & c) {
return _mm512_fnmadd_ps(a, b, c);
}
// Multiply and subtract with extra precision on the intermediate calculations,
static inline Vec16f mul_sub_x(Vec16f const & a, Vec16f const & b, Vec16f const & c) {
return _mm512_fmsub_ps(a, b, c);
}
// Math functions using fast bit manipulation
// Extract the exponent as an integer
// exponent(a) = floor(log2(abs(a)));
// exponent(1.0f) = 0, exponent(0.0f) = -127, exponent(INF) = +128, exponent(NAN) = +128
static inline Vec16i exponent(Vec16f const & a) {
// return round_to_int(Vec16i(_mm512_getexp_ps(a)));
Vec16ui t1 = _mm512_castps_si512(a);// reinterpret as 32-bit integers
Vec16ui t2 = t1 << 1; // shift out sign bit
Vec16ui t3 = t2 >> 24; // shift down logical to position 0
Vec16i t4 = Vec16i(t3) - 0x7F; // subtract bias from exponent
return t4;
}
// Extract the fraction part of a floating point number
// a = 2^exponent(a) * fraction(a), except for a = 0
// fraction(1.0f) = 1.0f, fraction(5.0f) = 1.25f
static inline Vec16f fraction(Vec16f const & a) {
#if 1
return _mm512_getmant_ps(a, _MM_MANT_NORM_1_2, _MM_MANT_SIGN_zero);
#else
Vec8ui t1 = _mm512_castps_si512(a); // reinterpret as 32-bit integer
Vec8ui t2 = (t1 & 0x007FFFFF) | 0x3F800000; // set exponent to 0 + bias
return _mm512_castsi512_ps(t2);
#endif
}
// Fast calculation of pow(2,n) with n integer
// n = 0 gives 1.0f
// n >= 128 gives +INF
// n <= -127 gives 0.0f
// This function will never produce denormals, and never raise exceptions
static inline Vec16f exp2(Vec16i const & n) {
Vec16i t1 = max(n, -0x7F); // limit to allowed range
Vec16i t2 = min(t1, 0x80);
Vec16i t3 = t2 + 0x7F; // add bias
Vec16i t4 = t3 << 23; // put exponent into position 23
return _mm512_castsi512_ps(t4); // reinterpret as float
}
//static Vec16f exp2(Vec16f const & x); // defined in vectormath_exp.h
// Categorization functions
// Function sign_bit: gives true for elements that have the sign bit set
// even for -0.0f, -INF and -NAN
// Note that sign_bit(Vec16f(-0.0f)) gives true, while Vec16f(-0.0f) < Vec16f(0.0f) gives false
// (the underscore in the name avoids a conflict with a macro in Intel's mathimf.h)
static inline Vec16fb sign_bit(Vec16f const & a) {
Vec16i t1 = _mm512_castps_si512(a); // reinterpret as 32-bit integer
return Vec16fb(t1 < 0);
}
// Function sign_combine: changes the sign of a when b has the sign bit set
// same as select(sign_bit(b), -a, a)
static inline Vec16f sign_combine(Vec16f const & a, Vec16f const & b) {
union {
uint32_t i;
float f;
} signmask = {0x80000000};
return a ^ (b & Vec16f(signmask.f));
}
// Function is_finite: gives true for elements that are normal, denormal or zero,
// false for INF and NAN
// (the underscore in the name avoids a conflict with a macro in Intel's mathimf.h)
static inline Vec16fb is_finite(Vec16f const & a) {
#ifdef __AVX512DQ__
__mmask16 f = _mm512_fpclass_ps_mask(a, 0x99);
return _mm512_knot(f);
#else
Vec16i t1 = _mm512_castps_si512(a); // reinterpret as 32-bit integer
Vec16i t2 = t1 << 1; // shift out sign bit
Vec16ib t3 = Vec16i(t2 & 0xFF000000) != 0xFF000000; // exponent field is not all 1s
return Vec16fb(t3);
#endif
}
// Function is_inf: gives true for elements that are +INF or -INF
// false for finite numbers and NAN
// (the underscore in the name avoids a conflict with a macro in Intel's mathimf.h)
static inline Vec16fb is_inf(Vec16f const & a) {
Vec16i t1 = _mm512_castps_si512(a); // reinterpret as 32-bit integer
Vec16i t2 = t1 << 1; // shift out sign bit
return Vec16fb(t2 == 0xFF000000); // exponent is all 1s, fraction is 0
}
// Function is_nan: gives true for elements that are +NAN or -NAN
// false for finite numbers and +/-INF
// (the underscore in the name avoids a conflict with a macro in Intel's mathimf.h)
static inline Vec16fb is_nan(Vec16f const & a) {
Vec16i t1 = _mm512_castps_si512(a); // reinterpret as 32-bit integer
Vec16i t2 = t1 << 1; // shift out sign bit
Vec16i t3 = 0xFF000000; // exponent mask
Vec16i t4 = t2 & t3; // exponent
Vec16i t5 = _mm512_andnot_si512(t3,t2);// fraction
return Vec16fb(t4 == t3 && t5 != 0);// exponent = all 1s and fraction != 0
}
// Function is_subnormal: gives true for elements that are denormal (subnormal)
// false for finite numbers, zero, NAN and INF
static inline Vec16fb is_subnormal(Vec16f const & a) {
Vec16i t1 = _mm512_castps_si512(a); // reinterpret as 32-bit integer
Vec16i t2 = t1 << 1; // shift out sign bit
Vec16i t3 = 0xFF000000; // exponent mask
Vec16i t4 = t2 & t3; // exponent
Vec16i t5 = _mm512_andnot_si512(t3,t2);// fraction
return Vec16fb(t4 == 0 && t5 != 0); // exponent = 0 and fraction != 0
}
// Function is_zero_or_subnormal: gives true for elements that are zero or subnormal (denormal)
// false for finite numbers, NAN and INF
static inline Vec16fb is_zero_or_subnormal(Vec16f const & a) {
Vec16i t = _mm512_castps_si512(a); // reinterpret as 32-bit integer
t &= 0x7F800000; // isolate exponent
return Vec16fb(t == 0); // exponent = 0
}
// Function infinite4f: returns a vector where all elements are +INF
static inline Vec16f infinite16f() {
union {
int32_t i;
float f;
} inf = {0x7F800000};
return Vec16f(inf.f);
}
// Function nan4f: returns a vector where all elements are +NAN (quiet)
static inline Vec16f nan16f(int n = 0x10) {
union {
int32_t i;
float f;
} nanf = {0x7FC00000 + n};
return Vec16f(nanf.f);
}
// change signs on vectors Vec16f
// Each index i0 - i7 is 1 for changing sign on the corresponding element, 0 for no change
template <int i0, int i1, int i2, int i3, int i4, int i5, int i6, int i7, int i8, int i9, int i10, int i11, int i12, int i13, int i14, int i15>
static inline Vec16f change_sign(Vec16f const & a) {
const __mmask16 m = __mmask16((i0&1) | (i1&1)<<1 | (i2&1)<< 2 | (i3&1)<<3 | (i4&1)<<4 | (i5&1)<<5 | (i6&1)<<6 | (i7&1)<<7
| (i8&1)<<8 | (i9&1)<<9 | (i10&1)<<10 | (i11&1)<<11 | (i12&1)<<12 | (i13&1)<<13 | (i14&1)<<14 | (i15&1)<<15);
if ((uint16_t)m == 0) return a;
__m512 s = _mm512_castsi512_ps(_mm512_maskz_set1_epi32(m, 0x80000000));
return a ^ s;
}
/*****************************************************************************
*
* Vec8d: Vector of 8 double precision floating point values
*
*****************************************************************************/
class Vec8d {
protected:
__m512d zmm; // double vector
public:
// Default constructor:
Vec8d() {
}
// Constructor to broadcast the same value into all elements:
Vec8d(double d) {
zmm = _mm512_set1_pd(d);
}
// Constructor to build from all elements:
Vec8d(double d0, double d1, double d2, double d3, double d4, double d5, double d6, double d7) {
zmm = _mm512_setr_pd(d0, d1, d2, d3, d4, d5, d6, d7);
}
// Constructor to build from two Vec4d:
Vec8d(Vec4d const & a0, Vec4d const & a1) {
zmm = _mm512_insertf64x4(_mm512_castpd256_pd512(a0), a1, 1);
}
// Constructor to convert from type __m512d used in intrinsics:
Vec8d(__m512d const & x) {
zmm = x;
}
// Assignment operator to convert from type __m512d used in intrinsics:
Vec8d & operator = (__m512d const & x) {
zmm = x;
return *this;
}
// Type cast operator to convert to __m512d used in intrinsics
operator __m512d() const {
return zmm;
}
// Member function to load from array (unaligned)
Vec8d & load(double const * p) {
zmm = _mm512_loadu_pd(p);
return *this;
}
// Member function to load from array, aligned by 64
// You may use load_a instead of load if you are certain that p points to an address
// divisible by 64
Vec8d & load_a(double const * p) {
zmm = _mm512_load_pd(p);
return *this;
}
// Member function to store into array (unaligned)
void store(double * p) const {
_mm512_storeu_pd(p, zmm);
}
// Member function to store into array, aligned by 64
// You may use store_a instead of store if you are certain that p points to an address
// divisible by 64
void store_a(double * p) const {
_mm512_store_pd(p, zmm);
}
// Partial load. Load n elements and set the rest to 0
Vec8d & load_partial(int n, double const * p) {
zmm = _mm512_maskz_loadu_pd(__mmask16((1<<n)-1), p);
return *this;
}
// Partial store. Store n elements
void store_partial(int n, double * p) const {
_mm512_mask_storeu_pd(p, __mmask16((1<<n)-1), zmm);
}
// cut off vector to n elements. The last 8-n elements are set to zero
Vec8d & cutoff(int n) {
zmm = _mm512_maskz_mov_pd(__mmask16((1<<n)-1), zmm);
return *this;
}
// Member function to change a single element in vector
// Note: This function is inefficient. Use load function if changing more than one element
Vec8d const & insert(uint32_t index, double value) {
//zmm = _mm512_mask_set1_pd(zmm, __mmask16(1 << index), value); // this intrinsic function does not exist (yet?)
zmm = _mm512_castsi512_pd(_mm512_mask_set1_epi64(_mm512_castpd_si512(zmm), __mmask16(1 << index), *(int64_t*)&value)); // ignore warning
return *this;
}
// Member function extract a single element from vector
double extract(uint32_t index) const {
double a[8];
store(a);
return a[index & 7];
}
// Extract a single element. Use store function if extracting more than one element.
// Operator [] can only read an element, not write.
double operator [] (uint32_t index) const {
return extract(index);
}
// Member functions to split into two Vec4d:
Vec4d get_low() const {
return _mm512_castpd512_pd256(zmm);
}
Vec4d get_high() const {
return _mm512_extractf64x4_pd(zmm,1);
}
static int size () {
return 8;
}
};
/*****************************************************************************
*
* Operators for Vec8d
*
*****************************************************************************/
// vector operator + : add element by element
static inline Vec8d operator + (Vec8d const & a, Vec8d const & b) {
return _mm512_add_pd(a, b);
}
// vector operator + : add vector and scalar
static inline Vec8d operator + (Vec8d const & a, double b) {
return a + Vec8d(b);
}
static inline Vec8d operator + (double a, Vec8d const & b) {
return Vec8d(a) + b;
}
// vector operator += : add
static inline Vec8d & operator += (Vec8d & a, Vec8d const & b) {
a = a + b;
return a;
}
// postfix operator ++
static inline Vec8d operator ++ (Vec8d & a, int) {
Vec8d a0 = a;
a = a + 1.0;
return a0;
}
// prefix operator ++
static inline Vec8d & operator ++ (Vec8d & a) {
a = a + 1.0;
return a;
}
// vector operator - : subtract element by element
static inline Vec8d operator - (Vec8d const & a, Vec8d const & b) {
return _mm512_sub_pd(a, b);
}
// vector operator - : subtract vector and scalar
static inline Vec8d operator - (Vec8d const & a, double b) {
return a - Vec8d(b);
}
static inline Vec8d operator - (double a, Vec8d const & b) {
return Vec8d(a) - b;
}
// vector operator - : unary minus
// Change sign bit, even for 0, INF and NAN
static inline Vec8d operator - (Vec8d const & a) {
return _mm512_castsi512_pd(Vec8q(_mm512_castpd_si512(a)) ^ Vec8q(0x8000000000000000));
}
// vector operator -= : subtract
static inline Vec8d & operator -= (Vec8d & a, Vec8d const & b) {
a = a - b;
return a;
}
// postfix operator --
static inline Vec8d operator -- (Vec8d & a, int) {
Vec8d a0 = a;
a = a - 1.0;
return a0;
}
// prefix operator --
static inline Vec8d & operator -- (Vec8d & a) {
a = a - 1.0;
return a;
}
// vector operator * : multiply element by element
static inline Vec8d operator * (Vec8d const & a, Vec8d const & b) {
return _mm512_mul_pd(a, b);
}
// vector operator * : multiply vector and scalar
static inline Vec8d operator * (Vec8d const & a, double b) {
return a * Vec8d(b);
}
static inline Vec8d operator * (double a, Vec8d const & b) {
return Vec8d(a) * b;
}
// vector operator *= : multiply
static inline Vec8d & operator *= (Vec8d & a, Vec8d const & b) {
a = a * b;
return a;
}
// vector operator / : divide all elements by same integer
static inline Vec8d operator / (Vec8d const & a, Vec8d const & b) {
return _mm512_div_pd(a, b);
}
// vector operator / : divide vector and scalar
static inline Vec8d operator / (Vec8d const & a, double b) {
return a / Vec8d(b);
}
static inline Vec8d operator / (double a, Vec8d const & b) {
return Vec8d(a) / b;
}
// vector operator /= : divide
static inline Vec8d & operator /= (Vec8d & a, Vec8d const & b) {
a = a / b;
return a;
}
// vector operator == : returns true for elements for which a == b
static inline Vec8db operator == (Vec8d const & a, Vec8d const & b) {
return _mm512_cmp_pd_mask(a, b, 0);
}
// vector operator != : returns true for elements for which a != b
static inline Vec8db operator != (Vec8d const & a, Vec8d const & b) {
return _mm512_cmp_pd_mask(a, b, 4);
}
// vector operator < : returns true for elements for which a < b
static inline Vec8db operator < (Vec8d const & a, Vec8d const & b) {
return _mm512_cmp_pd_mask(a, b, 1);
}
// vector operator <= : returns true for elements for which a <= b
static inline Vec8db operator <= (Vec8d const & a, Vec8d const & b) {
return _mm512_cmp_pd_mask(a, b, 2);
}
// vector operator > : returns true for elements for which a > b
static inline Vec8db operator > (Vec8d const & a, Vec8d const & b) {
return b < a;
}
// vector operator >= : returns true for elements for which a >= b
static inline Vec8db operator >= (Vec8d const & a, Vec8d const & b) {
return b <= a;
}
// Bitwise logical operators
// vector operator & : bitwise and
static inline Vec8d operator & (Vec8d const & a, Vec8d const & b) {
return _mm512_castsi512_pd(Vec8q(_mm512_castpd_si512(a)) & Vec8q(_mm512_castpd_si512(b)));
}
// vector operator &= : bitwise and
static inline Vec8d & operator &= (Vec8d & a, Vec8d const & b) {
a = a & b;
return a;
}
// vector operator & : bitwise and of Vec8d and Vec8db
static inline Vec8d operator & (Vec8d const & a, Vec8db const & b) {
return _mm512_maskz_mov_pd(b, a);
}
static inline Vec8d operator & (Vec8db const & a, Vec8d const & b) {
return b & a;
}
// vector operator | : bitwise or
static inline Vec8d operator | (Vec8d const & a, Vec8d const & b) {
return _mm512_castsi512_pd(Vec8q(_mm512_castpd_si512(a)) | Vec8q(_mm512_castpd_si512(b)));
}
// vector operator |= : bitwise or
static inline Vec8d & operator |= (Vec8d & a, Vec8d const & b) {
a = a | b;
return a;
}
// vector operator ^ : bitwise xor
static inline Vec8d operator ^ (Vec8d const & a, Vec8d const & b) {
return _mm512_castsi512_pd(Vec8q(_mm512_castpd_si512(a)) ^ Vec8q(_mm512_castpd_si512(b)));
}
// vector operator ^= : bitwise xor
static inline Vec8d & operator ^= (Vec8d & a, Vec8d const & b) {
a = a ^ b;
return a;
}
// vector operator ! : logical not. Returns Boolean vector
static inline Vec8db operator ! (Vec8d const & a) {
return a == Vec8d(0.0);
}
/*****************************************************************************
*
* Functions for Vec8d
*
*****************************************************************************/
// Select between two operands. Corresponds to this pseudocode:
// for (int i = 0; i < 2; i++) result[i] = s[i] ? a[i] : b[i];
static inline Vec8d select (Vec8db const & s, Vec8d const & a, Vec8d const & b) {
return _mm512_mask_mov_pd (b, s, a);
}
// Conditional add: For all vector elements i: result[i] = f[i] ? (a[i] + b[i]) : a[i]
static inline Vec8d if_add (Vec8db const & f, Vec8d const & a, Vec8d const & b) {
return _mm512_mask_add_pd(a, f, a, b);
}
// Conditional multiply: For all vector elements i: result[i] = f[i] ? (a[i] * b[i]) : a[i]
static inline Vec8d if_mul (Vec8db const & f, Vec8d const & a, Vec8d const & b) {
return _mm512_mask_mul_pd(a, f, a, b);
}
// General arithmetic functions, etc.
// Horizontal add: Calculates the sum of all vector elements.
static inline double horizontal_add (Vec8d const & a) {
#if defined(__INTEL_COMPILER)
return _mm512_reduce_add_pd(a);
#else
return horizontal_add(a.get_low() + a.get_high());
#endif
}
// function max: a > b ? a : b
static inline Vec8d max(Vec8d const & a, Vec8d const & b) {
return _mm512_max_pd(a,b);
}
// function min: a < b ? a : b
static inline Vec8d min(Vec8d const & a, Vec8d const & b) {
return _mm512_min_pd(a,b);
}
// function abs: absolute value
// Removes sign bit, even for -0.0f, -INF and -NAN
static inline Vec8d abs(Vec8d const & a) {
return _mm512_castsi512_pd(Vec8q(_mm512_castpd_si512(a)) & Vec8q(0x7FFFFFFFFFFFFFFF));
}
// function sqrt: square root
static inline Vec8d sqrt(Vec8d const & a) {
return _mm512_sqrt_pd(a);
}
// function square: a * a
static inline Vec8d square(Vec8d const & a) {
return a * a;
}
// pow(Vec8d, int):
template <typename TT> static Vec8d pow(Vec8d const & a, TT const & n);
// Raise floating point numbers to integer power n
template <>
inline Vec8d pow<int>(Vec8d const & x0, int const & n) {
return pow_template_i<Vec8d>(x0, n);
}
// allow conversion from unsigned int
template <>
inline Vec8d pow<uint32_t>(Vec8d const & x0, uint32_t const & n) {
return pow_template_i<Vec8d>(x0, (int)n);
}
// Raise floating point numbers to integer power n, where n is a compile-time constant
template <int n>
static inline Vec8d pow_n(Vec8d const & a) {
if (n < 0) return Vec8d(1.0) / pow_n<-n>(a);
if (n == 0) return Vec8d(1.0);
if (n >= 256) return pow(a, n);
Vec8d x = a; // a^(2^i)
Vec8d y; // accumulator
const int lowest = n - (n & (n-1));// lowest set bit in n
if (n & 1) y = x;
if (n < 2) return y;
x = x*x; // x^2
if (n & 2) {
if (lowest == 2) y = x; else y *= x;
}
if (n < 4) return y;
x = x*x; // x^4
if (n & 4) {
if (lowest == 4) y = x; else y *= x;
}
if (n < 8) return y;
x = x*x; // x^8
if (n & 8) {
if (lowest == 8) y = x; else y *= x;
}
if (n < 16) return y;
x = x*x; // x^16
if (n & 16) {
if (lowest == 16) y = x; else y *= x;
}
if (n < 32) return y;
x = x*x; // x^32
if (n & 32) {
if (lowest == 32) y = x; else y *= x;
}
if (n < 64) return y;
x = x*x; // x^64
if (n & 64) {
if (lowest == 64) y = x; else y *= x;
}
if (n < 128) return y;
x = x*x; // x^128
if (n & 128) {
if (lowest == 128) y = x; else y *= x;
}
return y;
}
template <int n>
static inline Vec8d pow(Vec8d const & a, Const_int_t<n>) {
return pow_n<n>(a);
}
// function round: round to nearest integer (even). (result as double vector)
static inline Vec8d round(Vec8d const & a) {
return _mm512_roundscale_pd(a, 0);
}
// function truncate: round towards zero. (result as double vector)
static inline Vec8d truncate(Vec8d const & a) {
return _mm512_roundscale_pd(a, 3);
}
// function floor: round towards minus infinity. (result as double vector)
static inline Vec8d floor(Vec8d const & a) {
return _mm512_roundscale_pd(a, 1);
}
// function ceil: round towards plus infinity. (result as double vector)
static inline Vec8d ceil(Vec8d const & a) {
return _mm512_roundscale_pd(a, 2);
}
// function round_to_int: round to nearest integer (even). (result as integer vector)
static inline Vec8i round_to_int(Vec8d const & a) {
//return _mm512_cvtpd_epi32(a);
return _mm512_cvt_roundpd_epi32(a, 0+8);
}
// function truncate_to_int: round towards zero. (result as integer vector)
static inline Vec8i truncate_to_int(Vec8d const & a) {
return _mm512_cvttpd_epi32(a);
}
// function truncate_to_int64: round towards zero. (inefficient)
static inline Vec8q truncate_to_int64(Vec8d const & a) {
#ifdef __AVX512DQ__
return _mm512_cvttpd_epi64(a);
#else
double aa[8];
a.store(aa);
return Vec8q(int64_t(aa[0]), int64_t(aa[1]), int64_t(aa[2]), int64_t(aa[3]), int64_t(aa[4]), int64_t(aa[5]), int64_t(aa[6]), int64_t(aa[7]));
#endif
}
// function truncate_to_int64_limited: round towards zero.
// result as 64-bit integer vector, but with limited range. Deprecated!
static inline Vec8q truncate_to_int64_limited(Vec8d const & a) {
#ifdef __AVX512DQ__
return truncate_to_int64(a);
#else
// Note: assume MXCSR control register is set to rounding
Vec4q b = _mm512_cvttpd_epi32(a); // round to 32-bit integers
__m512i c = permute8q<0,-256,1,-256,2,-256,3,-256>(Vec8q(b,b)); // get bits 64-127 to position 128-191, etc.
__m512i s = _mm512_srai_epi32(c, 31); // sign extension bits
return _mm512_unpacklo_epi32(c, s); // interleave with sign extensions
#endif
}
// function round_to_int64: round to nearest or even. (inefficient)
static inline Vec8q round_to_int64(Vec8d const & a) {
#ifdef __AVX512DQ__
return _mm512_cvtpd_epi64(a);
#else
return truncate_to_int64(round(a));
#endif
}
// function round_to_int64_limited: round to nearest integer (even)
// result as 64-bit integer vector, but with limited range. Deprecated!
static inline Vec8q round_to_int64_limited(Vec8d const & a) {
#ifdef __AVX512DQ__
return round_to_int64(a);
#else
Vec4q b = _mm512_cvt_roundpd_epi32(a, 0+8); // round to 32-bit integers
__m512i c = permute8q<0,-256,1,-256,2,-256,3,-256>(Vec8q(b,b)); // get bits 64-127 to position 128-191, etc.
__m512i s = _mm512_srai_epi32(c, 31); // sign extension bits
return _mm512_unpacklo_epi32(c, s); // interleave with sign extensions
#endif
}
// function to_double: convert integer vector elements to double vector (inefficient)
static inline Vec8d to_double(Vec8q const & a) {
#if defined (__AVX512DQ__)
return _mm512_cvtepi64_pd(a);
#else
int64_t aa[8];
a.store(aa);
return Vec8d(double(aa[0]), double(aa[1]), double(aa[2]), double(aa[3]), double(aa[4]), double(aa[5]), double(aa[6]), double(aa[7]));
#endif
}
// function to_double_limited: convert integer vector elements to double vector
// limited to abs(x) < 2^31. Deprecated!
static inline Vec8d to_double_limited(Vec8q const & x) {
#if defined (__AVX512DQ__)
return to_double(x);
#else
Vec16i compressed = permute16i<0,2,4,6,8,10,12,14,-256,-256,-256,-256,-256,-256,-256,-256>(Vec16i(x));
return _mm512_cvtepi32_pd(compressed.get_low());
#endif
}
// function to_double: convert integer vector to double vector
static inline Vec8d to_double(Vec8i const & a) {
return _mm512_cvtepi32_pd(a);
}
// function compress: convert two Vec8d to one Vec16f
static inline Vec16f compress (Vec8d const & low, Vec8d const & high) {
__m256 t1 = _mm512_cvtpd_ps(low);
__m256 t2 = _mm512_cvtpd_ps(high);
return Vec16f(t1, t2);
}
// Function extend_low : convert Vec16f vector elements 0 - 3 to Vec8d
static inline Vec8d extend_low(Vec16f const & a) {
return _mm512_cvtps_pd(_mm512_castps512_ps256(a));
}
// Function extend_high : convert Vec16f vector elements 4 - 7 to Vec8d
static inline Vec8d extend_high (Vec16f const & a) {
return _mm512_cvtps_pd(a.get_high());
}
// Fused multiply and add functions
// Multiply and add
static inline Vec8d mul_add(Vec8d const & a, Vec8d const & b, Vec8d const & c) {
return _mm512_fmadd_pd(a, b, c);
}
// Multiply and subtract
static inline Vec8d mul_sub(Vec8d const & a, Vec8d const & b, Vec8d const & c) {
return _mm512_fmsub_pd(a, b, c);
}
// Multiply and inverse subtract
static inline Vec8d nmul_add(Vec8d const & a, Vec8d const & b, Vec8d const & c) {
return _mm512_fnmadd_pd(a, b, c);
}
// Multiply and subtract with extra precision on the intermediate calculations,
static inline Vec8d mul_sub_x(Vec8d const & a, Vec8d const & b, Vec8d const & c) {
return _mm512_fmsub_pd(a, b, c);
}
// Math functions using fast bit manipulation
// Extract the exponent as an integer
// exponent(a) = floor(log2(abs(a)));
// exponent(1.0) = 0, exponent(0.0) = -1023, exponent(INF) = +1024, exponent(NAN) = +1024
static inline Vec8q exponent(Vec8d const & a) {
Vec8uq t1 = _mm512_castpd_si512(a);// reinterpret as 64-bit integer
Vec8uq t2 = t1 << 1; // shift out sign bit
Vec8uq t3 = t2 >> 53; // shift down logical to position 0
Vec8q t4 = Vec8q(t3) - 0x3FF; // subtract bias from exponent
return t4;
}
// Extract the fraction part of a floating point number
// a = 2^exponent(a) * fraction(a), except for a = 0
// fraction(1.0) = 1.0, fraction(5.0) = 1.25
static inline Vec8d fraction(Vec8d const & a) {
return _mm512_getmant_pd(a, _MM_MANT_NORM_1_2, _MM_MANT_SIGN_zero);
}
// Fast calculation of pow(2,n) with n integer
// n = 0 gives 1.0
// n >= 1024 gives +INF
// n <= -1023 gives 0.0
// This function will never produce denormals, and never raise exceptions
static inline Vec8d exp2(Vec8q const & n) {
Vec8q t1 = max(n, -0x3FF); // limit to allowed range
Vec8q t2 = min(t1, 0x400);
Vec8q t3 = t2 + 0x3FF; // add bias
Vec8q t4 = t3 << 52; // put exponent into position 52
return _mm512_castsi512_pd(t4); // reinterpret as double
}
//static Vec8d exp2(Vec8d const & x); // defined in vectormath_exp.h
// Categorization functions
// Function sign_bit: gives true for elements that have the sign bit set
// even for -0.0, -INF and -NAN
// Note that sign_bit(Vec8d(-0.0)) gives true, while Vec8d(-0.0) < Vec8d(0.0) gives false
static inline Vec8db sign_bit(Vec8d const & a) {
Vec8q t1 = _mm512_castpd_si512(a); // reinterpret as 64-bit integer
return Vec8db(t1 < 0);
}
// Function sign_combine: changes the sign of a when b has the sign bit set
// same as select(sign_bit(b), -a, a)
static inline Vec8d sign_combine(Vec8d const & a, Vec8d const & b) {
union {
uint64_t i;
double f;
} u = {0x8000000000000000}; // mask for sign bit
return a ^ (b & Vec8d(u.f));
}
// Function is_finite: gives true for elements that are normal, denormal or zero,
// false for INF and NAN
static inline Vec8db is_finite(Vec8d const & a) {
#ifdef __AVX512DQ__
__mmask8 f = _mm512_fpclass_pd_mask(a, 0x99);
return _mm512_knot(f);
#else
Vec8q t1 = _mm512_castpd_si512(a); // reinterpret as 64-bit integer
Vec8q t2 = t1 << 1; // shift out sign bit
Vec8q t3 = 0xFFE0000000000000ll; // exponent mask
Vec8qb t4 = Vec8q(t2 & t3) != t3; // exponent field is not all 1s
return Vec8db(t4);
#endif
}
// Function is_inf: gives true for elements that are +INF or -INF
// false for finite numbers and NAN
static inline Vec8db is_inf(Vec8d const & a) {
Vec8q t1 = _mm512_castpd_si512(a); // reinterpret as 64-bit integer
Vec8q t2 = t1 << 1; // shift out sign bit
return Vec8db(t2 == 0xFFE0000000000000ll); // exponent is all 1s, fraction is 0
}
// Function is_nan: gives true for elements that are +NAN or -NAN
// false for finite numbers and +/-INF
static inline Vec8db is_nan(Vec8d const & a) {
Vec8q t1 = _mm512_castpd_si512(a); // reinterpret as 64-bit integer
Vec8q t2 = t1 << 1; // shift out sign bit
Vec8q t3 = 0xFFE0000000000000ll; // exponent mask
Vec8q t4 = t2 & t3; // exponent
Vec8q t5 = _mm512_andnot_si512(t3,t2);// fraction
return Vec8db(t4 == t3 && t5 != 0);// exponent = all 1s and fraction != 0
}
// Function is_subnormal: gives true for elements that are denormal (subnormal)
// false for finite numbers, zero, NAN and INF
static inline Vec8db is_subnormal(Vec8d const & a) {
Vec8q t1 = _mm512_castpd_si512(a); // reinterpret as 64-bit integer
Vec8q t2 = t1 << 1; // shift out sign bit
Vec8q t3 = 0xFFE0000000000000ll; // exponent mask
Vec8q t4 = t2 & t3; // exponent
Vec8q t5 = _mm512_andnot_si512(t3,t2);// fraction
return Vec8db(t4 == 0 && t5 != 0); // exponent = 0 and fraction != 0
}
// Function is_zero_or_subnormal: gives true for elements that are zero or subnormal (denormal)
// false for finite numbers, NAN and INF
static inline Vec8db is_zero_or_subnormal(Vec8d const & a) {
Vec8q t = _mm512_castpd_si512(a); // reinterpret as 32-bit integer
t &= 0x7FF0000000000000ll; // isolate exponent
return Vec8db(t == 0); // exponent = 0
}
// Function infinite2d: returns a vector where all elements are +INF
static inline Vec8d infinite8d() {
union {
uint64_t i;
double f;
} u = {0x7FF0000000000000};
return Vec8d(u.f);
}
// Function nan8d: returns a vector where all elements are +NAN (quiet NAN)
static inline Vec8d nan8d(int n = 0x10) {
union {
uint64_t i;
double f;
} u = {0x7FF8000000000000 + uint64_t(n)};
return Vec8d(u.f);
}
// change signs on vectors Vec8d
// Each index i0 - i3 is 1 for changing sign on the corresponding element, 0 for no change
template <int i0, int i1, int i2, int i3, int i4, int i5, int i6, int i7>
static inline Vec8d change_sign(Vec8d const & a) {
const __mmask16 m = __mmask16((i0&1) | (i1&1)<<1 | (i2&1)<< 2 | (i3&1)<<3 | (i4&1)<<4 | (i5&1)<<5 | (i6&1)<<6 | (i7&1)<<7);
if ((uint8_t)m == 0) return a;
__m512d s = _mm512_castsi512_pd(_mm512_maskz_set1_epi64(m, 0x8000000000000000));
return a ^ s;
}
/*****************************************************************************
*
* Functions for reinterpretation between vector types
*
*****************************************************************************/
// AVX512 requires gcc version 4.9 or higher. Apparently the problem with mangling intrinsic vector types no longer exists in gcc 4.x
static inline __m512i reinterpret_i (__m512i const & x) {
return x;
}
static inline __m512i reinterpret_i (__m512 const & x) {
return _mm512_castps_si512(x);
}
static inline __m512i reinterpret_i (__m512d const & x) {
return _mm512_castpd_si512(x);
}
static inline __m512 reinterpret_f (__m512i const & x) {
return _mm512_castsi512_ps(x);
}
static inline __m512 reinterpret_f (__m512 const & x) {
return x;
}
static inline __m512 reinterpret_f (__m512d const & x) {
return _mm512_castpd_ps(x);
}
static inline __m512d reinterpret_d (__m512i const & x) {
return _mm512_castsi512_pd(x);
}
static inline __m512d reinterpret_d (__m512 const & x) {
return _mm512_castps_pd(x);
}
static inline __m512d reinterpret_d (__m512d const & x) {
return x;
}
/*****************************************************************************
*
* Vector permute functions
*
******************************************************************************
*
* These permute functions can reorder the elements of a vector and optionally
* set some elements to zero.
*
* The indexes are inserted as template parameters in <>. These indexes must be
* constants. Each template parameter is an index to the element you want to select.
* An index of -1 will generate zero. An index of -256 means don't care.
*
* Example:
* Vec8d a(10,11,12,13,14,15,16,17); // a is (10,11,12,13,14,15,16,17)
* Vec8d b;
* b = permute8d<0,2,7,7,-1,-1,1,1>(a); // b is (10,12,17,17, 0, 0,11,11)
*
* A lot of the code here is metaprogramming aiming to find the instructions
* that best fit the template parameters and instruction set. The metacode
* will be reduced out to leave only a few vector instructions in release
* mode with optimization on.
*****************************************************************************/
// Permute vector of 8 64-bit integers.
// Index -1 gives 0, index -256 means don't care.
template <int i0, int i1, int i2, int i3, int i4, int i5, int i6, int i7>
static inline Vec8d permute8d(Vec8d const & a) {
// Combine indexes into a single bitfield, with 4 bits for each
const int m1 = (i0&7) | (i1&7)<<4 | (i2&7)<< 8 | (i3&7)<<12 | (i4&7)<<16 | (i5&7)<<20 | (i6&7)<<24 | (i7&7)<<28;
// Mask to zero out negative indexes
const int mz = (i0<0?0:0xF) | (i1<0?0:0xF0) | (i2<0?0:0xF00) | (i3<0?0:0xF000) | (i4<0?0:0xF0000) | (i5<0?0:0xF00000) | (i6<0?0:0xF000000) | (i7<0?0:0xF0000000);
const int m2 = m1 & mz;
// zeroing needed
const bool dozero = ((i0|i1|i2|i3|i4|i5|i6|i7) & 0x80) != 0;
// special case: all zero
if (mz == 0) return _mm512_setzero_pd();
// mask for elements not zeroed
const __mmask16 z = __mmask16((i0>=0)<<0 | (i1>=0)<<1 | (i2>=0)<<2 | (i3>=0)<<3 | (i4>=0)<<4 | (i5>=0)<<5 | (i6>=0)<<6 | (i7>=0)<<7);
// same with 2 bits for each element
const __mmask16 zz = __mmask16((i0>=0?3:0) | (i1>=0?0xC:0) | (i2>=0?0x30:0) | (i3>=0?0xC0:0) | (i4>=0?0x300:0) | (i5>=0?0xC00:0) | (i6>=0?0x3000:0) | (i7>=0?0xC000:0));
if (((m1 ^ 0x76543210) & mz) == 0) {
// no shuffling
if (dozero) {
// zero some elements
return _mm512_maskz_mov_pd(z, a);
}
return a; // do nothing
}
if (((m1 ^ 0x66442200) & 0x66666666 & mz) == 0) {
// no exchange of data between the four 128-bit lanes
const int pat = ((m2 | m2 >> 8 | m2 >> 16 | m2 >> 24) & 0x11) * 0x01010101;
const int pmask = ((pat & 1) * 10 + 4) | ((((pat >> 4) & 1) * 10 + 4) << 4);
if (((m1 ^ pat) & mz & 0x11111111) == 0) {
// same permute pattern in all lanes
if (dozero) { // permute within lanes and zero
return _mm512_castsi512_pd(_mm512_maskz_shuffle_epi32(zz, _mm512_castpd_si512(a), (_MM_PERM_ENUM)pmask));
}
else { // permute within lanes
return _mm512_castsi512_pd(_mm512_shuffle_epi32(_mm512_castpd_si512(a), (_MM_PERM_ENUM)pmask));
}
}
// different permute patterns in each lane. It's faster to do a full permute than four masked permutes within lanes
}
if ((((m1 ^ 0x10101010) & 0x11111111 & mz) == 0)
&& ((m1 ^ (m1 >> 4)) & 0x06060606 & mz & (mz >> 4)) == 0) {
// permute lanes only. no permutation within each lane
const int m3 = m2 | (m2 >> 4);
const int s = ((m3 >> 1) & 3) | (((m3 >> 9) & 3) << 2) | (((m3 >> 17) & 3) << 4) | (((m3 >> 25) & 3) << 6);
if (dozero) {
// permute lanes and zero some 64-bit elements
return _mm512_maskz_shuffle_f64x2(z, a, a, (_MM_PERM_ENUM)s);
}
else {
// permute lanes
return _mm512_shuffle_f64x2(a, a, (_MM_PERM_ENUM)s);
}
}
// full permute needed
const __m512i pmask = constant16i<i0&7, 0, i1&7, 0, i2&7, 0, i3&7, 0, i4&7, 0, i5&7, 0, i6&7, 0, i7&7, 0>();
if (dozero) {
// full permute and zeroing
return _mm512_maskz_permutexvar_pd(z, pmask, a);
}
else {
return _mm512_permutexvar_pd(pmask, a);
}
}
// Permute vector of 16 32-bit integers.
// Index -1 gives 0, index -256 means don't care.
template <int i0, int i1, int i2, int i3, int i4, int i5, int i6, int i7, int i8, int i9, int i10, int i11, int i12, int i13, int i14, int i15>
static inline Vec16f permute16f(Vec16f const & a) {
// Combine indexes into a single bitfield, with 4 bits for each
const uint64_t m1 = (i0&15) | (i1&15)<<4 | (i2&15)<< 8 | (i3&15)<<12 | (i4&15)<<16 | (i5&15)<<20 | (i6&15)<<24 | (i7&15LL)<<28 // 15LL avoids sign extension of (int32_t | int64_t)
| (i8&15LL)<<32 | (i9&15LL)<<36 | (i10&15LL)<<40 | (i11&15LL)<<44 | (i12&15LL)<<48 | (i13&15LL)<<52 | (i14&15LL)<<56 | (i15&15LL)<<60;
// Mask to zero out negative indexes
const uint64_t mz = (i0<0?0:0xF) | (i1<0?0:0xF0) | (i2<0?0:0xF00) | (i3<0?0:0xF000) | (i4<0?0:0xF0000) | (i5<0?0:0xF00000) | (i6<0?0:0xF000000) | (i7<0?0:0xF0000000ULL) | (i8<0?0:0xF00000000)
| (i9<0?0:0xF000000000) | (i10<0?0:0xF0000000000) | (i11<0?0:0xF00000000000) | (i12<0?0:0xF000000000000) | (i13<0?0:0xF0000000000000) | (i14<0?0:0xF00000000000000) | (i15<0?0:0xF000000000000000);
const uint64_t m2 = m1 & mz;
// zeroing needed
const bool dozero = ((i0|i1|i2|i3|i4|i5|i6|i7|i8|i9|i10|i11|i12|i13|i14|i15) & 0x80) != 0;
// special case: all zero
if (mz == 0) return _mm512_setzero_ps();
// mask for elements not zeroed
const __mmask16 z = __mmask16((i0>=0)<<0 | (i1>=0)<<1 | (i2>=0)<<2 | (i3>=0)<<3 | (i4>=0)<<4 | (i5>=0)<<5 | (i6>=0)<<6 | (i7>=0)<<7
| (i8>=0)<<8 | (i9>=0)<<9 | (i10>=0)<<10 | (i11>=0)<<11 | (i12>=0)<<12 | (i13>=0)<<13 | (i14>=0)<<14 | (i15>=0)<<15);
if (((m1 ^ 0xFEDCBA9876543210) & mz) == 0) {
// no shuffling
if (dozero) {
// zero some elements
return _mm512_maskz_mov_ps(z, a);
}
return a; // do nothing
}
if (((m1 ^ 0xCCCC888844440000) & 0xCCCCCCCCCCCCCCCC & mz) == 0) {
// no exchange of data between the four 128-bit lanes
const uint64_t pat = ((m2 | (m2 >> 16) | (m2 >> 32) | (m2 >> 48)) & 0x3333) * 0x0001000100010001;
const int pmask = (pat & 3) | (((pat >> 4) & 3) << 2) | (((pat >> 8) & 3) << 4) | (((pat >> 12) & 3) << 6);
if (((m1 ^ pat) & 0x3333333333333333 & mz) == 0) {
// same permute pattern in all lanes
if (dozero) { // permute within lanes and zero
return _mm512_castsi512_ps(_mm512_maskz_shuffle_epi32(z, _mm512_castps_si512(a), (_MM_PERM_ENUM)pmask));
}
else { // permute within lanes
return _mm512_castsi512_ps(_mm512_shuffle_epi32(_mm512_castps_si512(a), (_MM_PERM_ENUM)pmask));
}
}
// different permute patterns in each lane. It's faster to do a full permute than four masked permutes within lanes
}
const uint64_t lane = (m2 | m2 >> 4 | m2 >> 8 | m2 >> 12) & 0x000C000C000C000C;
if ((((m1 ^ 0x3210321032103210) & 0x3333333333333333 & mz) == 0)
&& ((m1 ^ (lane * 0x1111)) & 0xCCCCCCCCCCCCCCCC & mz) == 0) {
// permute lanes only. no permutation within each lane
const uint64_t s = ((lane >> 2) & 3) | (((lane >> 18) & 3) << 2) | (((lane >> 34) & 3) << 4) | (((lane >> 50) & 3) << 6);
if (dozero) {
// permute lanes and zero some 64-bit elements
return _mm512_maskz_shuffle_f32x4(z, a, a, (_MM_PERM_ENUM)s);
}
else {
// permute lanes
return _mm512_shuffle_f32x4(a, a, (_MM_PERM_ENUM)s);
}
}
// full permute needed
const __m512i pmask = constant16i<i0&15, i1&15, i2&15, i3&15, i4&15, i5&15, i6&15, i7&15, i8&15, i9&15, i10&15, i11&15, i12&15, i13&15, i14&15, i15&15>();
if (dozero) {
// full permute and zeroing
return _mm512_maskz_permutexvar_ps(z, pmask, a);
}
else {
return _mm512_permutexvar_ps(pmask, a);
}
}
/*****************************************************************************
*
* Vector blend functions
*
******************************************************************************
*
* These blend functions can mix elements from two different vectors and
* optionally set some elements to zero.
*
* The indexes are inserted as template parameters in <>. These indexes must be
* constants. Each template parameter is an index to the element you want to
* select, where higher indexes indicate an element from the second source
* vector. For example, if each vector has 8 elements, then indexes 0 - 7
* will select an element from the first vector and indexes 8 - 15 will select
* an element from the second vector. A negative index will generate zero.
*
* Example:
* Vec8d a(100,101,102,103,104,105,106,107); // a is (100, 101, 102, 103, 104, 105, 106, 107)
* Vec8d b(200,201,202,203,204,205,206,207); // b is (200, 201, 202, 203, 204, 205, 206, 207)
* Vec8d c;
* c = blend8d<1,0,9,8,7,-1,15,15> (a,b); // c is (101, 100, 201, 200, 107, 0, 207, 207)
*
* A lot of the code here is metaprogramming aiming to find the instructions
* that best fit the template parameters and instruction set. The metacode
* will be reduced out to leave only a few vector instructions in release
* mode with optimization on.
*****************************************************************************/
template <int i0, int i1, int i2, int i3, int i4, int i5, int i6, int i7>
static inline Vec8d blend8d(Vec8d const & a, Vec8d const & b) {
// Combine indexes into a single bitfield, with 4 bits for each
const int m1 = (i0&0xF) | (i1&0xF)<<4 | (i2&0xF)<< 8 | (i3&0xF)<<12 | (i4&0xF)<<16 | (i5&0xF)<<20 | (i6&0xF)<<24 | (i7&0xF)<<28;
// Mask to zero out negative indexes
const int mz = (i0<0?0:0xF) | (i1<0?0:0xF0) | (i2<0?0:0xF00) | (i3<0?0:0xF000) | (i4<0?0:0xF0000) | (i5<0?0:0xF00000) | (i6<0?0:0xF000000) | (i7<0?0:0xF0000000);
const int m2 = m1 & mz;
// zeroing needed
const bool dozero = ((i0|i1|i2|i3|i4|i5|i6|i7) & 0x80) != 0;
// mask for elements not zeroed
const __mmask16 z = __mmask16((i0>=0)<<0 | (i1>=0)<<1 | (i2>=0)<<2 | (i3>=0)<<3 | (i4>=0)<<4 | (i5>=0)<<5 | (i6>=0)<<6 | (i7>=0)<<7);
// special case: all zero
if (mz == 0) return _mm512_setzero_pd();
// special case: all from a
if ((m1 & 0x88888888 & mz) == 0) {
return permute8d <i0, i1, i2, i3, i4, i5, i6, i7> (a);
}
// special case: all from b
if ((~m1 & 0x88888888 & mz) == 0) {
return permute8d <i0^8, i1^8, i2^8, i3^8, i4^8, i5^8, i6^8, i7^8> (b);
}
// special case: blend without permute
if (((m1 ^ 0x76543210) & 0x77777777 & mz) == 0) {
__mmask16 blendmask = __mmask16((i0&8)>>3 | (i1&8)>>2 | (i2&8)>>1 | (i3&8)>>0 | (i4&8)<<1 | (i5&8)<<2 | (i6&8)<<3 | (i7&8)<<4 );
__m512d t = _mm512_mask_blend_pd(blendmask, a, b);
if (dozero) {
t = _mm512_maskz_mov_pd(z, t);
}
return t;
}
// special case: all data stay within their lane
if (((m1 ^ 0x66442200) & 0x66666666 & mz) == 0) {
// mask for elements from a and b
const uint32_t mb = ((i0&8)?0xF:0) | ((i1&8)?0xF0:0) | ((i2&8)?0xF00:0) | ((i3&8)?0xF000:0) | ((i4&8)?0xF0000:0) | ((i5&8)?0xF00000:0) | ((i6&8)?0xF000000:0) | ((i7&8)?0xF0000000:0);
const uint32_t mbz = mb & mz; // mask for nonzero elements from b
const uint32_t maz = ~mb & mz; // mask for nonzero elements from a
const uint32_t m1a = m1 & maz;
const uint32_t m1b = m1 & mbz;
const uint32_t pata = ((m1a | m1a >> 8 | m1a >> 16 | m1a >> 24) & 0xFF) * 0x01010101; // permute pattern for elements from a
const uint32_t patb = ((m1b | m1b >> 8 | m1b >> 16 | m1b >> 24) & 0xFF) * 0x01010101; // permute pattern for elements from b
if (((m1 ^ pata) & 0x11111111 & maz) == 0 && ((m1 ^ patb) & 0x11111111 & mbz) == 0) {
// Same permute pattern in all lanes:
// todo!: make special case for PSHUFD
// This code generates two instructions instead of one, but we are avoiding the slow lane-crossing instruction,
// and we are saving 64 bytes of data cache.
// 1. Permute a, zero elements not from a (using _mm512_maskz_shuffle_epi32)
__m512d ta = permute8d< (maz&0xF)?i0&7:-1, (maz&0xF0)?i1&7:-1, (maz&0xF00)?i2&7:-1, (maz&0xF000)?i3&7:-1,
(maz&0xF0000)?i4&7:-1, (maz&0xF00000)?i5&7:-1, (maz&0xF000000)?i6&7:-1, (maz&0xF0000000)?i7&7:-1> (a);
// write mask for elements from b
const __mmask16 sb = ((mbz&0xF)?3:0) | ((mbz&0xF0)?0xC:0) | ((mbz&0xF00)?0x30:0) | ((mbz&0xF000)?0xC0:0) | ((mbz&0xF0000)?0x300:0) | ((mbz&0xF00000)?0xC00:0) | ((mbz&0xF000000)?0x3000:0) | ((mbz&0xF0000000)?0xC000:0);
// permute index for elements from b
const int pi = ((patb & 1) * 10 + 4) | ((((patb >> 4) & 1) * 10 + 4) << 4);
// 2. Permute elements from b and combine with elements from a through write mask
return _mm512_castsi512_pd(_mm512_mask_shuffle_epi32(_mm512_castpd_si512(ta), sb, _mm512_castpd_si512(b), (_MM_PERM_ENUM)pi));
}
// not same permute pattern in all lanes. use full permute
}
// general case: full permute
const __m512i pmask = constant16i<i0&0xF, 0, i1&0xF, 0, i2&0xF, 0, i3&0xF, 0, i4&0xF, 0, i5&0xF, 0, i6&0xF, 0, i7&0xF, 0>();
if (dozero) {
return _mm512_maskz_permutex2var_pd(z, a, pmask, b);
}
else {
return _mm512_permutex2var_pd(a, pmask, b);
}
}
template <int i0, int i1, int i2, int i3, int i4, int i5, int i6, int i7,
int i8, int i9, int i10, int i11, int i12, int i13, int i14, int i15 >
static inline Vec16f blend16f(Vec16f const & a, Vec16f const & b) {
// Combine indexes into a single bitfield, with 4 bits for each indicating shuffle, but not source
const uint64_t m1 = (i0&0xF) | (i1&0xF)<<4 | (i2&0xF)<<8 | (i3&0xF)<<12 | (i4&0xF)<<16 | (i5&0xF)<<20 | (i6&0xF)<<24 | (i7&0xFLL)<<28
| (i8&0xFLL)<<32 | (i9&0xFLL)<<36 | (i10&0xFLL)<<40 | (i11&0xFLL)<<44 | (i12&0xFLL)<<48 | (i13&0xFLL)<<52 | (i14&0xFLL)<<56 | (i15&0xFLL)<<60;
// Mask to zero out negative indexes
const uint64_t mz = (i0<0?0:0xF) | (i1<0?0:0xF0) | (i2<0?0:0xF00) | (i3<0?0:0xF000) | (i4<0?0:0xF0000) | (i5<0?0:0xF00000) | (i6<0?0:0xF000000) | (i7<0?0:0xF0000000ULL)
| (i8<0?0:0xF00000000) | (i9<0?0:0xF000000000) | (i10<0?0:0xF0000000000) | (i11<0?0:0xF00000000000) | (i12<0?0:0xF000000000000) | (i13<0?0:0xF0000000000000) | (i14<0?0:0xF00000000000000) | (i15<0?0:0xF000000000000000);
const uint64_t m2 = m1 & mz;
// collect bit 4 of each index = select source
const uint64_t ms = ((i0&16)?0xF:0) | ((i1&16)?0xF0:0) | ((i2&16)?0xF00:0) | ((i3&16)?0xF000:0) | ((i4&16)?0xF0000:0) | ((i5&16)?0xF00000:0) | ((i6&16)?0xF000000:0) | ((i7&16)?0xF0000000ULL:0)
| ((i8&16)?0xF00000000:0) | ((i9&16)?0xF000000000:0) | ((i10&16)?0xF0000000000:0) | ((i11&16)?0xF00000000000:0) | ((i12&16)?0xF000000000000:0) | ((i13&16)?0xF0000000000000:0) | ((i14&16)?0xF00000000000000:0) | ((i15&16)?0xF000000000000000:0);
// zeroing needed
const bool dozero = ((i0|i1|i2|i3|i4|i5|i6|i7|i8|i9|i10|i11|i12|i13|i14|i15) & 0x80) != 0;
// mask for elements not zeroed
const __mmask16 z = __mmask16((i0>=0)<<0 | (i1>=0)<<1 | (i2>=0)<<2 | (i3>=0)<<3 | (i4>=0)<<4 | (i5>=0)<<5 | (i6>=0)<<6 | (i7>=0)<<7
| (i8>=0)<<8 | (i9>=0)<<9 | (i10>=0)<<10 | (i11>=0)<<11 | (i12>=0)<<12 | (i13>=0)<<13 | (i14>=0)<<14 | (i15>=0)<<15);
// special case: all zero
if (mz == 0) return _mm512_setzero_ps();
// special case: all from a
if ((ms & mz) == 0) {
return permute16f<i0,i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14,i15> (a);
}
// special case: all from b
if ((~ms & mz) == 0) {
return permute16f<i0^16,i1^16,i2^16,i3^16,i4^16,i5^16,i6^16,i7^16,i8^16,i9^16,i10^16,i11^16,i12^16,i13^16,i14^16,i15^16 > (b);
}
// special case: blend without permute
if (((m1 ^ 0xFEDCBA9876543210) & mz) == 0) {
__mmask16 blendmask = __mmask16((i0&16)>>4 | (i1&16)>>3 | (i2&16)>>2 | (i3&16)>>1 | (i4&16) | (i5&16)<<1 | (i6&16)<<2 | (i7&16)<<3
| (i8&16)<<4 | (i9&16)<<5 | (i10&16)<<6 | (i11&16)<<7 | (i12&16)<<8 | (i13&16)<<9 | (i14&16)<<10 | (i15&16)<<11);
__m512 t = _mm512_mask_blend_ps(blendmask, a, b);
if (dozero) {
t = _mm512_maskz_mov_ps(z, t);
}
return t;
}
// special case: all data stay within their lane
if (((m1 ^ 0xCCCC888844440000) & 0xCCCCCCCCCCCCCCCC & mz) == 0) {
// mask for elements from a and b
const uint64_t mb = ms;
const uint64_t mbz = mb & mz; // mask for nonzero elements from b
const uint64_t maz = ~mb & mz; // mask for nonzero elements from a
const uint64_t m1a = m1 & maz;
const uint64_t m1b = m1 & mbz;
const uint64_t pata = ((m1a | m1a >> 16 | m1a >> 32 | m1a >> 48) & 0xFFFF) * 0x0001000100010001; // permute pattern for elements from a
const uint64_t patb = ((m1b | m1b >> 16 | m1b >> 32 | m1b >> 48) & 0xFFFF) * 0x0001000100010001; // permute pattern for elements from b
if (((m1 ^ pata) & 0x3333333333333333 & maz) == 0 && ((m1 ^ patb) & 0x3333333333333333 & mbz) == 0) {
// Same permute pattern in all lanes:
// todo!: special case for SHUFPS
// This code generates two instructions instead of one, but we are avoiding the slow lane-crossing instruction,
// and we are saving 64 bytes of data cache.
// 1. Permute a, zero elements not from a (using _mm512_maskz_shuffle_epi32)
__m512 ta = permute16f< (maz&0xF)?i0&15:-1, (maz&0xF0)?i1&15:-1, (maz&0xF00)?i2&15:-1, (maz&0xF000)?i3&15:-1,
(maz&0xF0000)?i4&15:-1, (maz&0xF00000)?i5&15:-1, (maz&0xF000000)?i6&15:-1, (maz&0xF0000000)?i7&15:-1,
(maz&0xF00000000)?i8&15:-1, (maz&0xF000000000)?i9&15:-1, (maz&0xF0000000000)?i10&15:-1, (maz&0xF00000000000)?i11&15:-1,
(maz&0xF000000000000)?i12&15:-1, (maz&0xF0000000000000)?i13&15:-1, (maz&0xF00000000000000)?i14&15:-1, (maz&0xF000000000000000)?i15&15:-1> (a);
// write mask for elements from b
const __mmask16 sb = ((mbz&0xF)?1:0) | ((mbz&0xF0)?0x2:0) | ((mbz&0xF00)?0x4:0) | ((mbz&0xF000)?0x8:0) | ((mbz&0xF0000)?0x10:0) | ((mbz&0xF00000)?0x20:0) | ((mbz&0xF000000)?0x40:0) | ((mbz&0xF0000000)?0x80:0)
| ((mbz&0xF00000000)?0x100:0) | ((mbz&0xF000000000)?0x200:0) | ((mbz&0xF0000000000)?0x400:0) | ((mbz&0xF00000000000)?0x800:0) | ((mbz&0xF000000000000)?0x1000:0) | ((mbz&0xF0000000000000)?0x2000:0) | ((mbz&0xF00000000000000)?0x4000:0) | ((mbz&0xF000000000000000)?0x8000:0);
// permute index for elements from b
const int pi = (patb & 3) | (((patb >> 4) & 3) << 2) | (((patb >> 8) & 3) << 4) | (((patb >> 12) & 3) << 6);
// 2. Permute elements from b and combine with elements from a through write mask
return _mm512_castsi512_ps(_mm512_mask_shuffle_epi32(_mm512_castps_si512(ta), sb, _mm512_castps_si512(b), (_MM_PERM_ENUM)pi));
}
// not same permute pattern in all lanes. use full permute
}
// general case: full permute
const __m512i pmask = constant16i<i0&0x1F, i1&0x1F, i2&0x1F, i3&0x1F, i4&0x1F, i5&0x1F, i6&0x1F, i7&0x1F,
i8&0x1F, i9&0x1F, i10&0x1F, i11&0x1F, i12&0x1F, i13&0x1F, i14&0x1F, i15&0x1F>();
if (dozero) {
return _mm512_maskz_permutex2var_ps(z, a, pmask, b);
}
else {
return _mm512_permutex2var_ps(a, pmask, b);
}
}
/*****************************************************************************
*
* Vector lookup functions
*
******************************************************************************
*
* These functions use vector elements as indexes into a table.
* The table is given as one or more vectors or as an array.
*
* This can be used for several purposes:
* - table lookup
* - permute or blend with variable indexes
* - blend from more than two sources
* - gather non-contiguous data
*
* An index out of range may produce any value - the actual value produced is
* implementation dependent and may be different for different instruction
* sets. An index out of range does not produce an error message or exception.
*
* Example:
* Vec8d a(2,0,0,6,4,3,5,0); // index a is ( 2, 0, 0, 6, 4, 3, 5, 0)
* Vec8d b(100,101,102,103,104,105,106,107); // table b is (100, 101, 102, 103, 104, 105, 106, 107)
* Vec8d c;
* c = lookup8 (a,b); // c is (102, 100, 100, 106, 104, 103, 105, 100)
*
*****************************************************************************/
static inline Vec16f lookup16(Vec16i const & index, Vec16f const & table) {
return _mm512_permutexvar_ps(index, table);
}
template <int n>
static inline Vec16f lookup(Vec16i const & index, float const * table) {
if (n <= 0) return 0;
if (n <= 16) {
Vec16f table1 = Vec16f().load((float*)table);
return lookup16(index, table1);
}
if (n <= 32) {
Vec16f table1 = Vec16f().load((float*)table);
Vec16f table2 = Vec16f().load((float*)table + 16);
return _mm512_permutex2var_ps(table1, index, table2);
}
// n > 32. Limit index
Vec16ui index1;
if ((n & (n-1)) == 0) {
// n is a power of 2, make index modulo n
index1 = Vec16ui(index) & (n-1);
}
else {
// n is not a power of 2, limit to n-1
index1 = min(Vec16ui(index), uint32_t(n-1));
}
return _mm512_i32gather_ps(index1, (const float*)table, 4);
}
static inline Vec8d lookup8(Vec8q const & index, Vec8d const & table) {
return _mm512_permutexvar_pd(index, table);
}
template <int n>
static inline Vec8d lookup(Vec8q const & index, double const * table) {
if (n <= 0) return 0;
if (n <= 8) {
Vec8d table1 = Vec8d().load((double*)table);
return lookup8(index, table1);
}
if (n <= 16) {
Vec8d table1 = Vec8d().load((double*)table);
Vec8d table2 = Vec8d().load((double*)table + 8);
return _mm512_permutex2var_pd(table1, index, table2);
}
// n > 16. Limit index
Vec8uq index1;
if ((n & (n-1)) == 0) {
// n is a power of 2, make index modulo n
index1 = Vec8uq(index) & (n-1);
}
else {
// n is not a power of 2, limit to n-1
index1 = min(Vec8uq(index), uint32_t(n-1));
}
return _mm512_i64gather_pd(index1, (const double*)table, 8);
}
/*****************************************************************************
*
* Gather functions with fixed indexes
*
*****************************************************************************/
// Load elements from array a with indices i0,i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14,i15
template <int i0, int i1, int i2, int i3, int i4, int i5, int i6, int i7,
int i8, int i9, int i10, int i11, int i12, int i13, int i14, int i15>
static inline Vec16f gather16f(void const * a) {
Static_error_check<(i0|i1|i2|i3|i4|i5|i6|i7|i8|i9|i10|i11|i12|i13|i14|i15)>=0> Negative_array_index; // Error message if index is negative
// find smallest and biggest index, using only compile-time constant expressions
const int i01min = i0 < i1 ? i0 : i1;
const int i23min = i2 < i3 ? i2 : i3;
const int i45min = i4 < i5 ? i4 : i5;
const int i67min = i6 < i7 ? i6 : i7;
const int i89min = i8 < i9 ? i8 : i9;
const int i1011min = i10 < i11 ? i10 : i11;
const int i1213min = i12 < i13 ? i12 : i13;
const int i1415min = i14 < i15 ? i14 : i15;
const int i0_3min = i01min < i23min ? i01min : i23min;
const int i4_7min = i45min < i67min ? i45min : i67min;
const int i8_11min = i89min < i1011min ? i89min : i1011min;
const int i12_15min = i1213min < i1415min ? i1213min : i1415min;
const int i0_7min = i0_3min < i4_7min ? i0_3min : i4_7min;
const int i8_15min = i8_11min < i12_15min ? i8_11min : i12_15min;
const int imin = i0_7min < i8_15min ? i0_7min : i8_15min;
const int i01max = i0 > i1 ? i0 : i1;
const int i23max = i2 > i3 ? i2 : i3;
const int i45max = i4 > i5 ? i4 : i5;
const int i67max = i6 > i7 ? i6 : i7;
const int i89max = i8 > i9 ? i8 : i9;
const int i1011max = i10 > i11 ? i10 : i11;
const int i1213max = i12 > i13 ? i12 : i13;
const int i1415max = i14 > i15 ? i14 : i15;
const int i0_3max = i01max > i23max ? i01max : i23max;
const int i4_7max = i45max > i67max ? i45max : i67max;
const int i8_11max = i89max > i1011max ? i89max : i1011max;
const int i12_15max = i1213max > i1415max ? i1213max : i1415max;
const int i0_7max = i0_3max > i4_7max ? i0_3max : i4_7max;
const int i8_15max = i8_11max > i12_15max ? i8_11max : i12_15max;
const int imax = i0_7max > i8_15max ? i0_7max : i8_15max;
if (imax - imin <= 15) {
// load one contiguous block and permute
if (imax > 15) {
// make sure we don't read past the end of the array
Vec16f b = Vec16f().load((float const *)a + imax-15);
return permute16f<i0-imax+15, i1-imax+15, i2-imax+15, i3-imax+15, i4-imax+15, i5-imax+15, i6-imax+15, i7-imax+15,
i8-imax+15, i9-imax+15, i10-imax+15, i11-imax+15, i12-imax+15, i13-imax+15, i14-imax+15, i15-imax+15> (b);
}
else {
Vec16f b = Vec16f().load((float const *)a + imin);
return permute16f<i0-imin, i1-imin, i2-imin, i3-imin, i4-imin, i5-imin, i6-imin, i7-imin,
i8-imin, i9-imin, i10-imin, i11-imin, i12-imin, i13-imin, i14-imin, i15-imin> (b);
}
}
if ((i0<imin+16 || i0>imax-16) && (i1<imin+16 || i1>imax-16) && (i2<imin+16 || i2>imax-16) && (i3<imin+16 || i3>imax-16)
&& (i4<imin+16 || i4>imax-16) && (i5<imin+16 || i5>imax-16) && (i6<imin+16 || i6>imax-16) && (i7<imin+16 || i7>imax-16)
&& (i8<imin+16 || i8>imax-16) && (i9<imin+16 || i9>imax-16) && (i10<imin+16 || i10>imax-16) && (i11<imin+16 || i11>imax-16)
&& (i12<imin+16 || i12>imax-16) && (i13<imin+16 || i13>imax-16) && (i14<imin+16 || i14>imax-16) && (i15<imin+16 || i15>imax-16) ) {
// load two contiguous blocks and blend
Vec16f b = Vec16f().load((float const *)a + imin);
Vec16f c = Vec16f().load((float const *)a + imax-15);
const int j0 = i0 <imin+16 ? i0 -imin : 31-imax+i0;
const int j1 = i1 <imin+16 ? i1 -imin : 31-imax+i1;
const int j2 = i2 <imin+16 ? i2 -imin : 31-imax+i2;
const int j3 = i3 <imin+16 ? i3 -imin : 31-imax+i3;
const int j4 = i4 <imin+16 ? i4 -imin : 31-imax+i4;
const int j5 = i5 <imin+16 ? i5 -imin : 31-imax+i5;
const int j6 = i6 <imin+16 ? i6 -imin : 31-imax+i6;
const int j7 = i7 <imin+16 ? i7 -imin : 31-imax+i7;
const int j8 = i8 <imin+16 ? i8 -imin : 31-imax+i8;
const int j9 = i9 <imin+16 ? i9 -imin : 31-imax+i9;
const int j10 = i10<imin+16 ? i10-imin : 31-imax+i10;
const int j11 = i11<imin+16 ? i11-imin : 31-imax+i11;
const int j12 = i12<imin+16 ? i12-imin : 31-imax+i12;
const int j13 = i13<imin+16 ? i13-imin : 31-imax+i13;
const int j14 = i14<imin+16 ? i14-imin : 31-imax+i14;
const int j15 = i15<imin+16 ? i15-imin : 31-imax+i15;
return blend16f<j0,j1,j2,j3,j4,j5,j6,j7,j8,j9,j10,j11,j12,j13,j14,j15>(b, c);
}
// use gather instruction
return _mm512_i32gather_ps(Vec16i(i0,i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14,i15), (const float *)a, 4);
}
template <int i0, int i1, int i2, int i3, int i4, int i5, int i6, int i7>
static inline Vec8d gather8d(void const * a) {
Static_error_check<(i0|i1|i2|i3|i4|i5|i6|i7)>=0> Negative_array_index; // Error message if index is negative
const int i01min = i0 < i1 ? i0 : i1;
const int i23min = i2 < i3 ? i2 : i3;
const int i45min = i4 < i5 ? i4 : i5;
const int i67min = i6 < i7 ? i6 : i7;
const int i0123min = i01min < i23min ? i01min : i23min;
const int i4567min = i45min < i67min ? i45min : i67min;
const int imin = i0123min < i4567min ? i0123min : i4567min;
const int i01max = i0 > i1 ? i0 : i1;
const int i23max = i2 > i3 ? i2 : i3;
const int i45max = i4 > i5 ? i4 : i5;
const int i67max = i6 > i7 ? i6 : i7;
const int i0123max = i01max > i23max ? i01max : i23max;
const int i4567max = i45max > i67max ? i45max : i67max;
const int imax = i0123max > i4567max ? i0123max : i4567max;
if (imax - imin <= 7) {
// load one contiguous block and permute
if (imax > 7) {
// make sure we don't read past the end of the array
Vec8d b = Vec8d().load((double const *)a + imax-7);
return permute8d<i0-imax+7, i1-imax+7, i2-imax+7, i3-imax+7, i4-imax+7, i5-imax+7, i6-imax+7, i7-imax+7> (b);
}
else {
Vec8d b = Vec8d().load((double const *)a + imin);
return permute8d<i0-imin, i1-imin, i2-imin, i3-imin, i4-imin, i5-imin, i6-imin, i7-imin> (b);
}
}
if ((i0<imin+8 || i0>imax-8) && (i1<imin+8 || i1>imax-8) && (i2<imin+8 || i2>imax-8) && (i3<imin+8 || i3>imax-8)
&& (i4<imin+8 || i4>imax-8) && (i5<imin+8 || i5>imax-8) && (i6<imin+8 || i6>imax-8) && (i7<imin+8 || i7>imax-8)) {
// load two contiguous blocks and blend
Vec8d b = Vec8d().load((double const *)a + imin);
Vec8d c = Vec8d().load((double const *)a + imax-7);
const int j0 = i0<imin+8 ? i0-imin : 15-imax+i0;
const int j1 = i1<imin+8 ? i1-imin : 15-imax+i1;
const int j2 = i2<imin+8 ? i2-imin : 15-imax+i2;
const int j3 = i3<imin+8 ? i3-imin : 15-imax+i3;
const int j4 = i4<imin+8 ? i4-imin : 15-imax+i4;
const int j5 = i5<imin+8 ? i5-imin : 15-imax+i5;
const int j6 = i6<imin+8 ? i6-imin : 15-imax+i6;
const int j7 = i7<imin+8 ? i7-imin : 15-imax+i7;
return blend8d<j0, j1, j2, j3, j4, j5, j6, j7>(b, c);
}
// use gather instruction
return _mm512_i64gather_pd(Vec8q(i0,i1,i2,i3,i4,i5,i6,i7), (const double *)a, 8);
}
/*****************************************************************************
*
* Vector scatter functions
*
******************************************************************************
*
* These functions write the elements of a vector to arbitrary positions in an
* array in memory. Each vector element is written to an array position
* determined by an index. An element is not written if the corresponding
* index is out of range.
* The indexes can be specified as constant template parameters or as an
* integer vector.
*
* The scatter functions are useful if the data are distributed in a sparce
* manner into the array. If the array is dense then it is more efficient
* to permute the data into the right positions and then write the whole
* permuted vector into the array.
*
* Example:
* Vec8d a(10,11,12,13,14,15,16,17);
* double b[16] = {0};
* scatter<0,2,14,10,1,-1,5,9>(a,b);
* // Now, b = {10,14,11,0,0,16,0,0,0,17,13,0,0,0,12,0}
*
*****************************************************************************/
template <int i0, int i1, int i2, int i3, int i4, int i5, int i6, int i7,
int i8, int i9, int i10, int i11, int i12, int i13, int i14, int i15>
static inline void scatter(Vec16f const & data, float * array) {
__m512i indx = constant16i<i0,i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14,i15>();
Vec16fb mask(i0>=0, i1>=0, i2>=0, i3>=0, i4>=0, i5>=0, i6>=0, i7>=0,
i8>=0, i9>=0, i10>=0, i11>=0, i12>=0, i13>=0, i14>=0, i15>=0);
_mm512_mask_i32scatter_ps(array, mask, indx, data, 4);
}
template <int i0, int i1, int i2, int i3, int i4, int i5, int i6, int i7>
static inline void scatter(Vec8d const & data, double * array) {
__m256i indx = constant8i<i0,i1,i2,i3,i4,i5,i6,i7>();
Vec8db mask(i0>=0, i1>=0, i2>=0, i3>=0, i4>=0, i5>=0, i6>=0, i7>=0);
_mm512_mask_i32scatter_pd(array, mask, indx, data, 8);
}
static inline void scatter(Vec16i const & index, uint32_t limit, Vec16f const & data, float * array) {
Vec16fb mask = Vec16ui(index) < limit;
_mm512_mask_i32scatter_ps(array, mask, index, data, 4);
}
static inline void scatter(Vec8q const & index, uint32_t limit, Vec8d const & data, double * array) {
Vec8db mask = Vec8uq(index) < uint64_t(limit);
_mm512_mask_i64scatter_pd(array, mask, index, data, 8);
}
static inline void scatter(Vec8i const & index, uint32_t limit, Vec8d const & data, double * array) {
#if defined (__AVX512VL__)
__mmask16 mask = _mm256_cmplt_epu32_mask(index, Vec8ui(limit));
#else
__mmask16 mask = _mm512_cmplt_epu32_mask(_mm512_castsi256_si512(index), _mm512_castsi256_si512(Vec8ui(limit)));
#endif
_mm512_mask_i32scatter_pd(array, mask, index, data, 8);
}
/*****************************************************************************
*
* Horizontal scan functions
*
*****************************************************************************/
// Get index to the first element that is true. Return -1 if all are false
static inline int horizontal_find_first(Vec16fb const & x) {
return horizontal_find_first(Vec16ib(x));
}
static inline int horizontal_find_first(Vec8db const & x) {
return horizontal_find_first(Vec8qb(x));
}
// Count the number of elements that are true
static inline uint32_t horizontal_count(Vec16fb const & x) {
return horizontal_count(Vec16ib(x));
}
static inline uint32_t horizontal_count(Vec8db const & x) {
return horizontal_count(Vec8qb(x));
}
/*****************************************************************************
*
* Boolean <-> bitfield conversion functions
*
*****************************************************************************/
// to_bits: convert boolean vector to integer bitfield
static inline uint16_t to_bits(Vec16fb x) {
return to_bits(Vec16ib(x));
}
// to_Vec16fb: convert integer bitfield to boolean vector
static inline Vec16fb to_Vec16fb(uint16_t x) {
return Vec16fb(to_Vec16ib(x));
}
// to_bits: convert boolean vector to integer bitfield
static inline uint8_t to_bits(Vec8db x) {
return to_bits(Vec8qb(x));
}
// to_Vec8db: convert integer bitfield to boolean vector
static inline Vec8db to_Vec8db(uint8_t x) {
return Vec8db(to_Vec8qb(x));
}
#ifdef VCL_NAMESPACE
}
#endif
#endif // VECTORF512_H
|