File: vectori256.h

package info (click to toggle)
iqtree 1.6.12%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 12,140 kB
  • sloc: cpp: 111,752; ansic: 53,619; python: 242; sh: 195; makefile: 52
file content (5646 lines) | stat: -rwxr-xr-x 244,702 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
/****************************  vectori256.h   *******************************
* Author:        Agner Fog
* Date created:  2012-05-30
* Last modified: 2017-02-19
* Version:       1.27
* Project:       vector classes
* Description:
* Header file defining integer vector classes as interface to intrinsic 
* functions in x86 microprocessors with AVX2 and later instruction sets.
*
* Instructions:
* Use Gnu, Intel or Microsoft C++ compiler. Compile for the desired 
* instruction set, which must be at least AVX2. 
*
* The following vector classes are defined here:
* Vec256b   Vector of 256  1-bit unsigned  integers or Booleans
* Vec32c    Vector of  32  8-bit signed    integers
* Vec32uc   Vector of  32  8-bit unsigned  integers
* Vec32cb   Vector of  32  Booleans for use with Vec32c and Vec32uc
* Vec16s    Vector of  16  16-bit signed   integers
* Vec16us   Vector of  16  16-bit unsigned integers
* Vec16sb   Vector of  16  Booleans for use with Vec16s and Vec16us
* Vec8i     Vector of   8  32-bit signed   integers
* Vec8ui    Vector of   8  32-bit unsigned integers
* Vec8ib    Vector of   8  Booleans for use with Vec8i and Vec8ui
* Vec4q     Vector of   4  64-bit signed   integers
* Vec4uq    Vector of   4  64-bit unsigned integers
* Vec4qb    Vector of   4  Booleans for use with Vec4q and Vec4uq
*
* Each vector object is represented internally in the CPU as a 256-bit register.
* This header file defines operators and functions for these vectors.
*
* For example:
* Vec8i a(1,2,3,4,5,6,7,8), b(9,10,11,12,13,14,15,16), c;
* c = a + b;     // now c contains (10,12,14,16,18,20,22,24)
*
* For detailed instructions, see VectorClass.pdf
*
* (c) Copyright 2012-2017 GNU General Public License http://www.gnu.org/licenses
*****************************************************************************/

// check combination of header files
#if defined (VECTORI256_H)
#if    VECTORI256_H != 2
#error Two different versions of vectori256.h included
#endif
#else
#define VECTORI256_H  2

#ifdef VECTORF256_H
#error Please put header file vectori256.h before vectorf256.h
#endif


#if INSTRSET < 8   // AVX2 required
#error Wrong instruction set for vectori256.h, AVX2 required or use vectori256e.h
#endif

#include "vectori128.h"

#ifdef VCL_NAMESPACE
namespace VCL_NAMESPACE {
#endif

/*****************************************************************************
*
*         Join two 128-bit vectors
*
*****************************************************************************/
#define set_m128ir(lo,hi) _mm256_inserti128_si256(_mm256_castsi128_si256(lo),(hi),1)


/*****************************************************************************
*
*          Vector of 256 1-bit unsigned integers or Booleans
*
*****************************************************************************/
class Vec256b {
protected:
    __m256i ymm; // Integer vector
public:
    // Default constructor:
    Vec256b() {
    }
    // Constructor to broadcast the same value into all elements
    // Removed because of undesired implicit conversions
    //Vec256b(int i) {
    //    ymm = _mm256_set1_epi32(-(i & 1));}

    // Constructor to build from two Vec128b:
    Vec256b(Vec128b const & a0, Vec128b const & a1) {
        ymm = set_m128ir(a0, a1);
    }
    // Constructor to convert from type __m256i used in intrinsics:
    Vec256b(__m256i const & x) {
        ymm = x;
    }
    // Assignment operator to convert from type __m256i used in intrinsics:
    Vec256b & operator = (__m256i const & x) {
        ymm = x;
        return *this;
    }
    // Type cast operator to convert to __m256i used in intrinsics
    operator __m256i() const {
        return ymm;
    }
    // Member function to load from array (unaligned)
    Vec256b & load(void const * p) {
        ymm = _mm256_loadu_si256((__m256i const*)p);
        return *this;
    }
    // Member function to load from array, aligned by 32
    // You may use load_a instead of load if you are certain that p points to an address
    // divisible by 32, but there is hardly any speed advantage of load_a on modern processors
    Vec256b & load_a(void const * p) {
        ymm = _mm256_load_si256((__m256i const*)p);
        return *this;
    }
    // Member function to store into array (unaligned)
    void store(void * p) const {
        _mm256_storeu_si256((__m256i*)p, ymm);
    }
    // Member function to store into array, aligned by 32
    // You may use store_a instead of store if you are certain that p points to an address
    // divisible by 32, but there is hardly any speed advantage of load_a on modern processors
    void store_a(void * p) const {
        _mm256_store_si256((__m256i*)p, ymm);
    }
    // Member function to change a single bit
    // Note: This function is inefficient. Use load function if changing more than one bit
    Vec256b const & set_bit(uint32_t index, int value) {
        static uint64_t m[8] = {0,0,0,0,1,0,0,0};
        int wi = (index >> 6) & 3;               // qword index
        int bi = index & 0x3F;                   // bit index within qword w

        __m256i mask = Vec256b().load(m+4-wi);   // 1 in qword number wi
        mask = _mm256_sll_epi64(mask,_mm_cvtsi32_si128(bi)); // mask with bit number b set
        if (value & 1) {
            ymm = _mm256_or_si256(mask,ymm);
        }
        else {
            ymm = _mm256_andnot_si256(mask,ymm);
        }
        return *this;
    }
    // Member function to get a single bit
    // Note: This function is inefficient. Use store function if reading more than one bit
    int get_bit(uint32_t index) const {
        union {
            __m256i x;
            uint8_t i[32];
        } u;
        u.x = ymm; 
        int wi = (index >> 3) & 0x1F;            // byte index
        int bi = index & 7;                      // bit index within byte w
        return (u.i[wi] >> bi) & 1;
    }
    // Extract a single element. Use store function if extracting more than one element.
    // Operator [] can only read an element, not write.
    bool operator [] (uint32_t index) const {
        return get_bit(index) != 0;
    }
    // Member functions to split into two Vec128b:
    Vec128b get_low() const {
        return _mm256_castsi256_si128(ymm);
    }
    Vec128b get_high() const {
        return _mm256_extractf128_si256(ymm,1);
    }
    static int size() {
        return 256;
    }
};


// Define operators for this class

// vector operator & : bitwise and
static inline Vec256b operator & (Vec256b const & a, Vec256b const & b) {
    return _mm256_and_si256(a, b);
}
static inline Vec256b operator && (Vec256b const & a, Vec256b const & b) {
    return a & b;
}

// vector operator | : bitwise or
static inline Vec256b operator | (Vec256b const & a, Vec256b const & b) {
    return _mm256_or_si256(a, b);
}
static inline Vec256b operator || (Vec256b const & a, Vec256b const & b) {
    return a | b;
}

// vector operator ^ : bitwise xor
static inline Vec256b operator ^ (Vec256b const & a, Vec256b const & b) {
    return _mm256_xor_si256(a, b);
}

// vector operator ~ : bitwise not
static inline Vec256b operator ~ (Vec256b const & a) {
    return _mm256_xor_si256(a, _mm256_set1_epi32(-1));
}

// vector operator &= : bitwise and
static inline Vec256b & operator &= (Vec256b & a, Vec256b const & b) {
    a = a & b;
    return a;
}

// vector operator |= : bitwise or
static inline Vec256b & operator |= (Vec256b & a, Vec256b const & b) {
    a = a | b;
    return a;
}

// vector operator ^= : bitwise xor
static inline Vec256b & operator ^= (Vec256b & a, Vec256b const & b) {
    a = a ^ b;
    return a;
}

// Define functions for this class

// function andnot: a & ~ b
static inline Vec256b andnot (Vec256b const & a, Vec256b const & b) {
    return _mm256_andnot_si256(b, a);
}


/*****************************************************************************
*
*          Generate compile-time constant vector
*
*****************************************************************************/
// Generate a constant vector of 8 integers stored in memory.
// Can be converted to any integer vector type
template <int32_t i0, int32_t i1, int32_t i2, int32_t i3, int32_t i4, int32_t i5, int32_t i6, int32_t i7>
static inline __m256i constant8i() {
    static const union {
        int32_t i[8];
        __m256i ymm;
    } u = {{i0,i1,i2,i3,i4,i5,i6,i7}};
    return u.ymm;
}

template <uint32_t i0, uint32_t i1, uint32_t i2, uint32_t i3, uint32_t i4, uint32_t i5, uint32_t i6, uint32_t i7>
static inline __m256i constant8ui() {
    return constant8i<int32_t(i0), int32_t(i1), int32_t(i2), int32_t(i3), int32_t(i4), int32_t(i5), int32_t(i6), int32_t(i7)>();
}

/*****************************************************************************
*
*          selectb function
*
*****************************************************************************/
// Select between two sources, byte by byte. Used in various functions and operators
// Corresponds to this pseudocode:
// for (int i = 0; i < 32; i++) result[i] = s[i] ? a[i] : b[i];
// Each byte in s must be either 0 (false) or 0xFF (true). No other values are allowed.
// Only bit 7 in each byte of s is checked, 
static inline __m256i selectb (__m256i const & s, __m256i const & a, __m256i const & b) {
    return _mm256_blendv_epi8 (b, a, s);
}



/*****************************************************************************
*
*          Horizontal Boolean functions
*
*****************************************************************************/

// horizontal_and. Returns true if all bits are 1
static inline bool horizontal_and (Vec256b const & a) {
    return _mm256_testc_si256(a,constant8i<-1,-1,-1,-1,-1,-1,-1,-1>()) != 0;
}

// horizontal_or. Returns true if at least one bit is 1
static inline bool horizontal_or (Vec256b const & a) {
    return ! _mm256_testz_si256(a,a);
}



/*****************************************************************************
*
*          Vector of 32 8-bit signed integers
*
*****************************************************************************/

class Vec32c : public Vec256b {
public:
    // Default constructor:
    Vec32c(){
    }
    // Constructor to broadcast the same value into all elements:
    Vec32c(int i) {
        ymm = _mm256_set1_epi8((char)i);
    }
    // Constructor to build from all elements:
    Vec32c(int8_t i0, int8_t i1, int8_t i2, int8_t i3, int8_t i4, int8_t i5, int8_t i6, int8_t i7,
        int8_t i8, int8_t i9, int8_t i10, int8_t i11, int8_t i12, int8_t i13, int8_t i14, int8_t i15,        
        int8_t i16, int8_t i17, int8_t i18, int8_t i19, int8_t i20, int8_t i21, int8_t i22, int8_t i23,
        int8_t i24, int8_t i25, int8_t i26, int8_t i27, int8_t i28, int8_t i29, int8_t i30, int8_t i31) {
        ymm = _mm256_setr_epi8(i0, i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11, i12, i13, i14, i15,
            i16, i17, i18, i19, i20, i21, i22, i23, i24, i25, i26, i27, i28, i29, i30, i31);
    }
    // Constructor to build from two Vec16c:
    Vec32c(Vec16c const & a0, Vec16c const & a1) {
        ymm = set_m128ir(a0, a1);
    }
    // Constructor to convert from type __m256i used in intrinsics:
    Vec32c(__m256i const & x) {
        ymm = x;
    }
    // Assignment operator to convert from type __m256i used in intrinsics:
    Vec32c & operator = (__m256i const & x) {
        ymm = x;
        return *this;
    }
    // Type cast operator to convert to __m256i used in intrinsics
    operator __m256i() const {
        return ymm;
    }
    // Member function to load from array (unaligned)
    Vec32c & load(void const * p) {
        ymm = _mm256_loadu_si256((__m256i const*)p);
        return *this;
    }
    // Member function to load from array, aligned by 32
    Vec32c & load_a(void const * p) {
        ymm = _mm256_load_si256((__m256i const*)p);
        return *this;
    }
    // Partial load. Load n elements and set the rest to 0
    Vec32c & load_partial(int n, void const * p) {
        if (n <= 0) {
            *this = 0;
        }
        else if (n <= 16) {
            *this = Vec32c(Vec16c().load_partial(n, p), 0);
        }
        else if (n < 32) {
            *this = Vec32c(Vec16c().load(p), Vec16c().load_partial(n-16, (char const*)p+16));
        }
        else {
            load(p);
        }
        return *this;
    }
    // Partial store. Store n elements
    void store_partial(int n, void * p) const {
        if (n <= 0) {
            return;
        }
        else if (n <= 16) {
            get_low().store_partial(n, p);
        }
        else if (n < 32) {
            get_low().store(p);
            get_high().store_partial(n-16, (char*)p+16);
        }
        else {
            store(p);
        }
    }
    // cut off vector to n elements. The last 32-n elements are set to zero
    Vec32c & cutoff(int n) {
        if (uint32_t(n) >= 32) return *this;
        static const union {
            int32_t i[16];
            char    c[64];
        } mask = {{-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0}};
        *this &= Vec32c().load(mask.c+32-n);
        return *this;
    }
    // Member function to change a single element in vector
    // Note: This function is inefficient. Use load function if changing more than one element
    Vec32c const & insert(uint32_t index, int8_t value) {
        static const int8_t maskl[64] = {0,0,0,0, 0,0,0,0, 0,0,0,0 ,0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0,
            -1,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 ,0,0,0,0, 0,0,0,0, 0,0,0,0};
        __m256i broad = _mm256_set1_epi8(value);  // broadcast value into all elements
        __m256i mask  = _mm256_loadu_si256((__m256i const*)(maskl+32-(index & 0x1F))); // mask with FF at index position
        ymm = selectb(mask,broad,ymm);
        return *this;
    }
    // Member function extract a single element from vector
    int8_t extract(uint32_t index) const {
        int8_t x[32];
        store(x);
        return x[index & 0x1F];
    }
    // Extract a single element. Use store function if extracting more than one element.
    // Operator [] can only read an element, not write.
    int8_t operator [] (uint32_t index) const {
        return extract(index);
    }
    // Member functions to split into two Vec16c:
    Vec16c get_low() const {
        return _mm256_castsi256_si128(ymm);
    }
    Vec16c get_high() const {
#if defined (_MSC_VER) && _MSC_VER <= 1700 && ! defined(__INTEL_COMPILER)
        return _mm256_extractf128_si256(ymm,1);    // workaround bug in MS compiler VS 11
#else
        return _mm256_extracti128_si256(ymm,1);
#endif
    }
    static int size() {
        return 32;
    }
};


/*****************************************************************************
*
*          Vec32cb: Vector of 32 Booleans for use with Vec32c and Vec32uc
*
*****************************************************************************/

class Vec32cb : public Vec32c {
public:
    // Default constructor:
    Vec32cb(){
    }
    // Constructor to build from all elements:
    Vec32cb(bool x0, bool x1, bool x2, bool x3, bool x4, bool x5, bool x6, bool x7,
        bool x8, bool x9, bool x10, bool x11, bool x12, bool x13, bool x14, bool x15,
        bool x16, bool x17, bool x18, bool x19, bool x20, bool x21, bool x22, bool x23,
        bool x24, bool x25, bool x26, bool x27, bool x28, bool x29, bool x30, bool x31) :
        Vec32c(-int8_t(x0), -int8_t(x1), -int8_t(x2), -int8_t(x3), -int8_t(x4), -int8_t(x5), -int8_t(x6), -int8_t(x7), 
            -int8_t(x8), -int8_t(x9), -int8_t(x10), -int8_t(x11), -int8_t(x12), -int8_t(x13), -int8_t(x14), -int8_t(x15),
            -int8_t(x16), -int8_t(x17), -int8_t(x18), -int8_t(x19), -int8_t(x20), -int8_t(x21), -int8_t(x22), -int8_t(x23),
            -int8_t(x24), -int8_t(x25), -int8_t(x26), -int8_t(x27), -int8_t(x28), -int8_t(x29), -int8_t(x30), -int8_t(x31))
        {}
    // Constructor to convert from type __m256i used in intrinsics:
    Vec32cb(__m256i const & x) {
        ymm = x;
    }
    // Assignment operator to convert from type __m256i used in intrinsics:
    Vec32cb & operator = (__m256i const & x) {
        ymm = x;
        return *this;
    }
    // Constructor to broadcast scalar value:
    Vec32cb(bool b) : Vec32c(-int8_t(b)) {
    }
    // Assignment operator to broadcast scalar value:
    Vec32cb & operator = (bool b) {
        *this = Vec32cb(b);
        return *this;
    }
private: // Prevent constructing from int, etc.
    Vec32cb(int b);
    Vec32cb & operator = (int x);
public:
    // Member functions to split into two Vec16c:
    Vec16cb get_low() const {
        return Vec16cb(Vec32c::get_low());
    }
    Vec16cb get_high() const {
        return Vec16cb(Vec32c::get_high());
    }
    Vec32cb & insert (int index, bool a) {
        Vec32c::insert(index, -(int)a);
        return *this;
    }    
    // Member function extract a single element from vector
    bool extract(uint32_t index) const {
        return Vec32c::extract(index) != 0;
    }
    // Extract a single element. Use store function if extracting more than one element.
    // Operator [] can only read an element, not write.
    bool operator [] (uint32_t index) const {
        return extract(index);
    }
};


/*****************************************************************************
*
*          Define operators for Vec32cb
*
*****************************************************************************/

// vector operator & : bitwise and
static inline Vec32cb operator & (Vec32cb const & a, Vec32cb const & b) {
    return Vec32cb(Vec256b(a) & Vec256b(b));
}
static inline Vec32cb operator && (Vec32cb const & a, Vec32cb const & b) {
    return a & b;
}
// vector operator &= : bitwise and
static inline Vec32cb & operator &= (Vec32cb & a, Vec32cb const & b) {
    a = a & b;
    return a;
}

// vector operator | : bitwise or
static inline Vec32cb operator | (Vec32cb const & a, Vec32cb const & b) {
    return Vec32cb(Vec256b(a) | Vec256b(b));
}
static inline Vec32cb operator || (Vec32cb const & a, Vec32cb const & b) {
    return a | b;
}
// vector operator |= : bitwise or
static inline Vec32cb & operator |= (Vec32cb & a, Vec32cb const & b) {
    a = a | b;
    return a;
}

// vector operator ^ : bitwise xor
static inline Vec32cb operator ^ (Vec32cb const & a, Vec32cb const & b) {
    return Vec32cb(Vec256b(a) ^ Vec256b(b));
}
// vector operator ^= : bitwise xor
static inline Vec32cb & operator ^= (Vec32cb & a, Vec32cb const & b) {
    a = a ^ b;
    return a;
}

// vector operator ~ : bitwise not
static inline Vec32cb operator ~ (Vec32cb const & a) {
    return Vec32cb( ~ Vec256b(a));
}

// vector operator ! : element not
static inline Vec32cb operator ! (Vec32cb const & a) {
    return ~ a;
}

// vector function andnot
static inline Vec32cb andnot (Vec32cb const & a, Vec32cb const & b) {
    return Vec32cb(andnot(Vec256b(a), Vec256b(b)));
}


/*****************************************************************************
*
*          Operators for Vec32c
*
*****************************************************************************/

// vector operator + : add element by element
static inline Vec32c operator + (Vec32c const & a, Vec32c const & b) {
    return _mm256_add_epi8(a, b);
}

// vector operator += : add
static inline Vec32c & operator += (Vec32c & a, Vec32c const & b) {
    a = a + b;
    return a;
}

// postfix operator ++
static inline Vec32c operator ++ (Vec32c & a, int) {
    Vec32c a0 = a;
    a = a + 1;
    return a0;
}

// prefix operator ++
static inline Vec32c & operator ++ (Vec32c & a) {
    a = a + 1;
    return a;
}

// vector operator - : subtract element by element
static inline Vec32c operator - (Vec32c const & a, Vec32c const & b) {
    return _mm256_sub_epi8(a, b);
}

// vector operator - : unary minus
static inline Vec32c operator - (Vec32c const & a) {
    return _mm256_sub_epi8(_mm256_setzero_si256(), a);
}

// vector operator -= : add
static inline Vec32c & operator -= (Vec32c & a, Vec32c const & b) {
    a = a - b;
    return a;
}

// postfix operator --
static inline Vec32c operator -- (Vec32c & a, int) {
    Vec32c a0 = a;
    a = a - 1;
    return a0;
}

// prefix operator --
static inline Vec32c & operator -- (Vec32c & a) {
    a = a - 1;
    return a;
}

// vector operator * : multiply element by element
static inline Vec32c operator * (Vec32c const & a, Vec32c const & b) {
    // There is no 8-bit multiply in SSE2. Split into two 16-bit multiplies
    __m256i aodd    = _mm256_srli_epi16(a,8);                 // odd numbered elements of a
    __m256i bodd    = _mm256_srli_epi16(b,8);                 // odd numbered elements of b
    __m256i muleven = _mm256_mullo_epi16(a,b);                // product of even numbered elements
    __m256i mulodd  = _mm256_mullo_epi16(aodd,bodd);          // product of odd  numbered elements
            mulodd  = _mm256_slli_epi16(mulodd,8);            // put odd numbered elements back in place
    __m256i mask    = _mm256_set1_epi32(0x00FF00FF);          // mask for even positions
    __m256i product = selectb(mask,muleven,mulodd);           // interleave even and odd
    return product;
}

// vector operator *= : multiply
static inline Vec32c & operator *= (Vec32c & a, Vec32c const & b) {
    a = a * b;
    return a;
}

// vector operator << : shift left all elements
static inline Vec32c operator << (Vec32c const & a, int b) {
    uint32_t mask = (uint32_t)0xFF >> (uint32_t)b;                // mask to remove bits that are shifted out
    __m256i am    = _mm256_and_si256(a,_mm256_set1_epi8((char)mask));// remove bits that will overflow
    __m256i res   = _mm256_sll_epi16(am,_mm_cvtsi32_si128(b));   // 16-bit shifts
    return res;
}

// vector operator <<= : shift left
static inline Vec32c & operator <<= (Vec32c & a, int b) {
    a = a << b;
    return a;
}

// vector operator >> : shift right arithmetic all elements
static inline Vec32c operator >> (Vec32c const & a, int b) {
    __m256i aeven = _mm256_slli_epi16(a,8);                            // even numbered elements of a. get sign bit in position
            aeven = _mm256_sra_epi16(aeven,_mm_cvtsi32_si128(b+8));    // shift arithmetic, back to position
    __m256i aodd  = _mm256_sra_epi16(a,_mm_cvtsi32_si128(b));          // shift odd numbered elements arithmetic
    __m256i mask  = _mm256_set1_epi32(0x00FF00FF);                     // mask for even positions
    __m256i res   = selectb(mask,aeven,aodd);                          // interleave even and odd
    return res;
}

// vector operator >>= : shift right artihmetic
static inline Vec32c & operator >>= (Vec32c & a, int b) {
    a = a >> b;
    return a;
}

// vector operator == : returns true for elements for which a == b
static inline Vec32cb operator == (Vec32c const & a, Vec32c const & b) {
    return _mm256_cmpeq_epi8(a,b);
}

// vector operator != : returns true for elements for which a != b
static inline Vec32cb operator != (Vec32c const & a, Vec32c const & b) {
    return Vec32cb(Vec32c(~(a == b)));
}

// vector operator > : returns true for elements for which a > b (signed)
static inline Vec32cb operator > (Vec32c const & a, Vec32c const & b) {
    return _mm256_cmpgt_epi8(a,b);
}

// vector operator < : returns true for elements for which a < b (signed)
static inline Vec32cb operator < (Vec32c const & a, Vec32c const & b) {
    return b > a;
}

// vector operator >= : returns true for elements for which a >= b (signed)
static inline Vec32cb operator >= (Vec32c const & a, Vec32c const & b) {
    return Vec32cb(Vec32c(~(b > a)));
}

// vector operator <= : returns true for elements for which a <= b (signed)
static inline Vec32cb operator <= (Vec32c const & a, Vec32c const & b) {
    return b >= a;
}

// vector operator & : bitwise and
static inline Vec32c operator & (Vec32c const & a, Vec32c const & b) {
    return Vec32c(Vec256b(a) & Vec256b(b));
}
static inline Vec32c operator && (Vec32c const & a, Vec32c const & b) {
    return a & b;
}
// vector operator &= : bitwise and
static inline Vec32c & operator &= (Vec32c & a, Vec32c const & b) {
    a = a & b;
    return a;
}

// vector operator | : bitwise or
static inline Vec32c operator | (Vec32c const & a, Vec32c const & b) {
    return Vec32c(Vec256b(a) | Vec256b(b));
}
static inline Vec32c operator || (Vec32c const & a, Vec32c const & b) {
    return a | b;
}
// vector operator |= : bitwise or
static inline Vec32c & operator |= (Vec32c & a, Vec32c const & b) {
    a = a | b;
    return a;
}

// vector operator ^ : bitwise xor
static inline Vec32c operator ^ (Vec32c const & a, Vec32c const & b) {
    return Vec32c(Vec256b(a) ^ Vec256b(b));
}
// vector operator ^= : bitwise xor
static inline Vec32c & operator ^= (Vec32c & a, Vec32c const & b) {
    a = a ^ b;
    return a;
}

// vector operator ~ : bitwise not
static inline Vec32c operator ~ (Vec32c const & a) {
    return Vec32c( ~ Vec256b(a));
}

// vector operator ! : logical not, returns true for elements == 0
static inline Vec32cb operator ! (Vec32c const & a) {
    return _mm256_cmpeq_epi8(a,_mm256_setzero_si256());
}

// Functions for this class

// Select between two operands. Corresponds to this pseudocode:
// for (int i = 0; i < 16; i++) result[i] = s[i] ? a[i] : b[i];
// Each byte in s must be either 0 (false) or -1 (true). No other values are allowed.
static inline Vec32c select (Vec32cb const & s, Vec32c const & a, Vec32c const & b) {
    return selectb(s,a,b);
}

// Conditional add: For all vector elements i: result[i] = f[i] ? (a[i] + b[i]) : a[i]
static inline Vec32c if_add (Vec32cb const & f, Vec32c const & a, Vec32c const & b) {
    return a + (Vec32c(f) & b);
}

// Horizontal add: Calculates the sum of all vector elements.
// Overflow will wrap around
static inline int32_t horizontal_add (Vec32c const & a) {
    __m256i sum1 = _mm256_sad_epu8(a,_mm256_setzero_si256());
    __m256i sum2 = _mm256_shuffle_epi32(sum1,2);
    __m256i sum3 = _mm256_add_epi16(sum1,sum2);
#if defined (_MSC_VER) && _MSC_VER <= 1700 && ! defined(__INTEL_COMPILER)
    __m128i sum4 = _mm256_extractf128_si256(sum3,1);                // bug in MS VS 11
#else
    __m128i sum4 = _mm256_extracti128_si256(sum3,1);
#endif
    __m128i sum5 = _mm_add_epi16(_mm256_castsi256_si128(sum3),sum4);
    int8_t  sum6 = (int8_t)_mm_cvtsi128_si32(sum5);                  // truncate to 8 bits
    return  sum6;                                                    // sign extend to 32 bits
}

// Horizontal add extended: Calculates the sum of all vector elements.
// Each element is sign-extended before addition to avoid overflow
static inline int32_t horizontal_add_x (Vec32c const & a) {
    __m256i aeven = _mm256_slli_epi16(a,8);                          // even numbered elements of a. get sign bit in position
            aeven = _mm256_srai_epi16(aeven,8);                      // sign extend even numbered elements
    __m256i aodd  = _mm256_srai_epi16(a,8);                          // sign extend odd  numbered elements
    __m256i sum1  = _mm256_add_epi16(aeven,aodd);                    // add even and odd elements
    __m256i sum2  = _mm256_hadd_epi16(sum1,sum1);                    // horizontally add 2x8 elements in 3 steps
    __m256i sum3  = _mm256_hadd_epi16(sum2,sum2);
    __m256i sum4  = _mm256_hadd_epi16(sum3,sum3);
#if defined (_MSC_VER) && _MSC_VER <= 1700 && ! defined(__INTEL_COMPILER)
    __m128i sum5  = _mm256_extractf128_si256(sum4,1);                // bug in MS VS 11
#else
    __m128i sum5  = _mm256_extracti128_si256(sum4,1);                // get high sum
#endif
    __m128i sum6  = _mm_add_epi16(_mm256_castsi256_si128(sum4),sum5);// add high and low sum
    int16_t sum7  = (int16_t)_mm_cvtsi128_si32(sum6);                // 16 bit sum
    return  sum7;                                                    // sign extend to 32 bits
}

// function add_saturated: add element by element, signed with saturation
static inline Vec32c add_saturated(Vec32c const & a, Vec32c const & b) {
    return _mm256_adds_epi8(a, b);
}

// function sub_saturated: subtract element by element, signed with saturation
static inline Vec32c sub_saturated(Vec32c const & a, Vec32c const & b) {
    return _mm256_subs_epi8(a, b);
}

// function max: a > b ? a : b
static inline Vec32c max(Vec32c const & a, Vec32c const & b) {
    return _mm256_max_epi8(a,b);
}

// function min: a < b ? a : b
static inline Vec32c min(Vec32c const & a, Vec32c const & b) {
    return _mm256_min_epi8(a,b);
}

// function abs: a >= 0 ? a : -a
static inline Vec32c abs(Vec32c const & a) {
    return _mm256_sign_epi8(a,a);
}

// function abs_saturated: same as abs, saturate if overflow
static inline Vec32c abs_saturated(Vec32c const & a) {
    __m256i absa   = abs(a);                                         // abs(a)
    __m256i overfl = _mm256_cmpgt_epi8(_mm256_setzero_si256(),absa); // 0 > a
    return           _mm256_add_epi8(absa,overfl);                   // subtract 1 if 0x80
}

// function rotate_left all elements
// Use negative count to rotate right
static inline Vec32c rotate_left(Vec32c const & a, int b) {
    __m128i bb        = _mm_cvtsi32_si128(b & 7);             // b modulo 8
    __m128i mbb       = _mm_cvtsi32_si128((8-b) & 7);         // 8-b modulo 8
    __m256i maskeven  = _mm256_set1_epi32(0x00FF00FF);        // mask for even numbered bytes
    __m256i even      = _mm256_and_si256(a,maskeven);         // even numbered bytes of a
    __m256i odd       = _mm256_andnot_si256(maskeven,a);      // odd numbered bytes of a
    __m256i evenleft  = _mm256_sll_epi16(even,bb);            // even bytes of a << b
    __m256i oddleft   = _mm256_sll_epi16(odd,bb);             // odd  bytes of a << b
    __m256i evenright = _mm256_srl_epi16(even,mbb);           // even bytes of a >> 8-b
    __m256i oddright  = _mm256_srl_epi16(odd,mbb);            // odd  bytes of a >> 8-b
    __m256i evenrot   = _mm256_or_si256(evenleft,evenright);  // even bytes of a rotated
    __m256i oddrot    = _mm256_or_si256(oddleft,oddright);    // odd  bytes of a rotated
    __m256i allrot    = selectb(maskeven,evenrot,oddrot);     // all  bytes rotated
    return  allrot;
}



/*****************************************************************************
*
*          Vector of 16 8-bit unsigned integers
*
*****************************************************************************/

class Vec32uc : public Vec32c {
public:
    // Default constructor:
    Vec32uc(){
    }
    // Constructor to broadcast the same value into all elements:
    Vec32uc(uint32_t i) {
        ymm = _mm256_set1_epi8((char)i);
    }
    // Constructor to build from all elements:
    Vec32uc(uint8_t i0, uint8_t i1, uint8_t i2, uint8_t i3, uint8_t i4, uint8_t i5, uint8_t i6, uint8_t i7,
        uint8_t i8, uint8_t i9, uint8_t i10, uint8_t i11, uint8_t i12, uint8_t i13, uint8_t i14, uint8_t i15,        
        uint8_t i16, uint8_t i17, uint8_t i18, uint8_t i19, uint8_t i20, uint8_t i21, uint8_t i22, uint8_t i23,
        uint8_t i24, uint8_t i25, uint8_t i26, uint8_t i27, uint8_t i28, uint8_t i29, uint8_t i30, uint8_t i31) {
        ymm = _mm256_setr_epi8(i0, i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11, i12, i13, i14, i15,
            i16, i17, i18, i19, i20, i21, i22, i23, i24, i25, i26, i27, i28, i29, i30, i31);
    }
    // Constructor to build from two Vec16uc:
    Vec32uc(Vec16uc const & a0, Vec16uc const & a1) {
        ymm = set_m128ir(a0, a1);
    }
    // Constructor to convert from type __m256i used in intrinsics:
    Vec32uc(__m256i const & x) {
        ymm = x;
    }
    // Assignment operator to convert from type __m256i used in intrinsics:
    Vec32uc & operator = (__m256i const & x) {
        ymm = x;
        return *this;
    }
    // Member function to load from array (unaligned)
    Vec32uc & load(void const * p) {
        ymm = _mm256_loadu_si256((__m256i const*)p);
        return *this;
    }
    // Member function to load from array, aligned by 32
    Vec32uc & load_a(void const * p) {
        ymm = _mm256_load_si256((__m256i const*)p);
        return *this;
    }
    // Member function to change a single element in vector
    // Note: This function is inefficient. Use load function if changing more than one element
    Vec32uc const & insert(uint32_t index, uint8_t value) {
        Vec32c::insert(index, value);
        return *this;
    }
    // Member function extract a single element from vector
    uint8_t extract(uint32_t index) const {
        return Vec32c::extract(index);
    }
    // Extract a single element. Use store function if extracting more than one element.
    // Operator [] can only read an element, not write.
    uint8_t operator [] (uint32_t index) const {
        return extract(index);
    }
    // Member functions to split into two Vec16uc:
    Vec16uc get_low() const {
        return _mm256_castsi256_si128(ymm);
    }
    Vec16uc get_high() const {
        return _mm256_extractf128_si256(ymm,1);
    }
};

// Define operators for this class

// vector operator + : add
static inline Vec32uc operator + (Vec32uc const & a, Vec32uc const & b) {
    return Vec32uc (Vec32c(a) + Vec32c(b));
}

// vector operator - : subtract
static inline Vec32uc operator - (Vec32uc const & a, Vec32uc const & b) {
    return Vec32uc (Vec32c(a) - Vec32c(b));
}

// vector operator * : multiply
static inline Vec32uc operator * (Vec32uc const & a, Vec32uc const & b) {
    return Vec32uc (Vec32c(a) * Vec32c(b));
}

// vector operator << : shift left all elements
static inline Vec32uc operator << (Vec32uc const & a, uint32_t b) {
    uint32_t mask = (uint32_t)0xFF >> (uint32_t)b;                // mask to remove bits that are shifted out
    __m256i am    = _mm256_and_si256(a,_mm256_set1_epi8((char)mask));// remove bits that will overflow
    __m256i res   = _mm256_sll_epi16(am,_mm_cvtsi32_si128(b));    // 16-bit shifts
    return res;
}

// vector operator << : shift left all elements
static inline Vec32uc operator << (Vec32uc const & a, int32_t b) {
    return a << (uint32_t)b;
}

// vector operator >> : shift right logical all elements
static inline Vec32uc operator >> (Vec32uc const & a, uint32_t b) {
    uint32_t mask = (uint32_t)0xFF << (uint32_t)b;                // mask to remove bits that are shifted out
    __m256i am    = _mm256_and_si256(a,_mm256_set1_epi8((char)mask));// remove bits that will overflow
    __m256i res   = _mm256_srl_epi16(am,_mm_cvtsi32_si128(b));    // 16-bit shifts
    return res;
}

// vector operator >> : shift right logical all elements
static inline Vec32uc operator >> (Vec32uc const & a, int32_t b) {
    return a >> (uint32_t)b;
}

// vector operator >>= : shift right artihmetic
static inline Vec32uc & operator >>= (Vec32uc & a, uint32_t b) {
    a = a >> b;
    return a;
}

// vector operator >= : returns true for elements for which a >= b (unsigned)
static inline Vec32cb operator >= (Vec32uc const & a, Vec32uc const & b) {
    return _mm256_cmpeq_epi8(_mm256_max_epu8(a,b), a); // a == max(a,b)
}

// vector operator <= : returns true for elements for which a <= b (unsigned)
static inline Vec32cb operator <= (Vec32uc const & a, Vec32uc const & b) {
    return b >= a;
}

// vector operator > : returns true for elements for which a > b (unsigned)
static inline Vec32cb operator > (Vec32uc const & a, Vec32uc const & b) {
    return Vec32cb(Vec32c(~(b >= a)));
}

// vector operator < : returns true for elements for which a < b (unsigned)
static inline Vec32cb operator < (Vec32uc const & a, Vec32uc const & b) {
    return b > a;
}

// vector operator & : bitwise and
static inline Vec32uc operator & (Vec32uc const & a, Vec32uc const & b) {
    return Vec32uc(Vec256b(a) & Vec256b(b));
}
static inline Vec32uc operator && (Vec32uc const & a, Vec32uc const & b) {
    return a & b;
}

// vector operator | : bitwise or
static inline Vec32uc operator | (Vec32uc const & a, Vec32uc const & b) {
    return Vec32uc(Vec256b(a) | Vec256b(b));
}
static inline Vec32uc operator || (Vec32uc const & a, Vec32uc const & b) {
    return a | b;
}

// vector operator ^ : bitwise xor
static inline Vec32uc operator ^ (Vec32uc const & a, Vec32uc const & b) {
    return Vec32uc(Vec256b(a) ^ Vec256b(b));
}

// vector operator ~ : bitwise not
static inline Vec32uc operator ~ (Vec32uc const & a) {
    return Vec32uc( ~ Vec256b(a));
}

// Functions for this class

// Select between two operands. Corresponds to this pseudocode:
// for (int i = 0; i < 32; i++) result[i] = s[i] ? a[i] : b[i];
// Each byte in s must be either 0 (false) or -1 (true). No other values are allowed.
// (s is signed)
static inline Vec32uc select (Vec32cb const & s, Vec32uc const & a, Vec32uc const & b) {
    return selectb(s,a,b);
}

// Conditional add: For all vector elements i: result[i] = f[i] ? (a[i] + b[i]) : a[i]
static inline Vec32uc if_add (Vec32cb const & f, Vec32uc const & a, Vec32uc const & b) {
    return a + (Vec32uc(f) & b);
}

// Horizontal add: Calculates the sum of all vector elements.
// Overflow will wrap around
// (Note: horizontal_add_x(Vec32uc) is slightly faster)
static inline uint32_t horizontal_add (Vec32uc const & a) {
    __m256i  sum1 = _mm256_sad_epu8(a,_mm256_setzero_si256());
    __m256i  sum2 = _mm256_shuffle_epi32(sum1,2);
    __m256i  sum3 = _mm256_add_epi16(sum1,sum2);
#if defined (_MSC_VER) && _MSC_VER <= 1700 && ! defined(__INTEL_COMPILER)
    __m128i  sum4 = _mm256_extractf128_si256(sum3,1); // bug in MS compiler VS 11
#else
    __m128i  sum4 = _mm256_extracti128_si256(sum3,1);
#endif
    __m128i  sum5 = _mm_add_epi16(_mm256_castsi256_si128(sum3),sum4);
    uint8_t  sum6 = (uint8_t)_mm_cvtsi128_si32(sum5); // truncate to 8 bits
    return   sum6;                                    // zero extend to 32 bits
}

// Horizontal add extended: Calculates the sum of all vector elements.
// Each element is zero-extended before addition to avoid overflow
static inline uint32_t horizontal_add_x (Vec32uc const & a) {
    __m256i sum1 = _mm256_sad_epu8(a,_mm256_setzero_si256());
    __m256i sum2 = _mm256_shuffle_epi32(sum1,2);
    __m256i sum3 = _mm256_add_epi16(sum1,sum2);
#if defined (_MSC_VER) && _MSC_VER <= 1700 && ! defined(__INTEL_COMPILER)
    __m128i sum4 = _mm256_extractf128_si256(sum3,1); // bug in MS compiler VS 11
#else
    __m128i sum4 = _mm256_extracti128_si256(sum3,1);
#endif
    __m128i sum5 = _mm_add_epi16(_mm256_castsi256_si128(sum3),sum4);
    return         _mm_cvtsi128_si32(sum5);
}

// function add_saturated: add element by element, unsigned with saturation
static inline Vec32uc add_saturated(Vec32uc const & a, Vec32uc const & b) {
    return _mm256_adds_epu8(a, b);
}

// function sub_saturated: subtract element by element, unsigned with saturation
static inline Vec32uc sub_saturated(Vec32uc const & a, Vec32uc const & b) {
    return _mm256_subs_epu8(a, b);
}

// function max: a > b ? a : b
static inline Vec32uc max(Vec32uc const & a, Vec32uc const & b) {
    return _mm256_max_epu8(a,b);
}

// function min: a < b ? a : b
static inline Vec32uc min(Vec32uc const & a, Vec32uc const & b) {
    return _mm256_min_epu8(a,b);
}


    
/*****************************************************************************
*
*          Vector of 16 16-bit signed integers
*
*****************************************************************************/

class Vec16s : public Vec256b {
public:
    // Default constructor:
    Vec16s() {
    }
    // Constructor to broadcast the same value into all elements:
    Vec16s(int i) {
        ymm = _mm256_set1_epi16((int16_t)i);
    }
    // Constructor to build from all elements:
    Vec16s(int16_t i0, int16_t i1, int16_t i2,  int16_t i3,  int16_t i4,  int16_t i5,  int16_t i6,  int16_t i7,
           int16_t i8, int16_t i9, int16_t i10, int16_t i11, int16_t i12, int16_t i13, int16_t i14, int16_t i15) {
        ymm = _mm256_setr_epi16(i0, i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11, i12, i13, i14, i15 );
    }
    // Constructor to build from two Vec8s:
    Vec16s(Vec8s const & a0, Vec8s const & a1) {
        ymm = set_m128ir(a0, a1);
    }
    // Constructor to convert from type __m256i used in intrinsics:
    Vec16s(__m256i const & x) {
        ymm = x;
    }
    // Assignment operator to convert from type __m256i used in intrinsics:
    Vec16s & operator = (__m256i const & x) {
        ymm = x;
        return *this;
    }
    // Type cast operator to convert to __m256i used in intrinsics
    operator __m256i() const {
        return ymm;
    }
    // Member function to load from array (unaligned)
    Vec16s & load(void const * p) {
        ymm = _mm256_loadu_si256((__m256i const*)p);
        return *this;
    }
    // Member function to load from array, aligned by 32
    Vec16s & load_a(void const * p) {
        ymm = _mm256_load_si256((__m256i const*)p);
        return *this;
    }
    // Partial load. Load n elements and set the rest to 0
    Vec16s & load_partial(int n, void const * p) {
        if (n <= 0) {
            *this = 0;
        }
        else if (n <= 8) {
            *this = Vec16s(Vec8s().load_partial(n, p), 0);
        }
        else if (n < 16) {
            *this = Vec16s(Vec8s().load(p), Vec8s().load_partial(n-8, (int16_t const*)p+8));
        }
        else {
            load(p);
        }
        return *this;
    }
    // Partial store. Store n elements
    void store_partial(int n, void * p) const {
        if (n <= 0) {
            return;
        }
        else if (n <= 8) {
            get_low().store_partial(n, p);
        }
        else if (n < 16) {
            get_low().store(p);
            get_high().store_partial(n-8, (int16_t*)p+8);
        }
        else {
            store(p);
        }
    }
    // cut off vector to n elements. The last 16-n elements are set to zero
    Vec16s & cutoff(int n) {
        *this = Vec32c(*this).cutoff(n * 2);
        return *this;
    }
    // Member function to change a single element in vector
    // Note: This function is inefficient. Use load function if changing more than one element
    Vec16s const & insert(uint32_t index, int16_t value) {
        static const int16_t m[32] = {0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, -1,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0};
        __m256i mask  = Vec256b().load(m + 16 - (index & 0x0F));
        __m256i broad = _mm256_set1_epi16(value);
        ymm = selectb(mask, broad, ymm);
        return *this;
    }
    // Member function extract a single element from vector
    int16_t extract(uint32_t index) const {
        int16_t x[16];
        store(x);
        return x[index & 0x0F];
    }
    // Extract a single element. Use store function if extracting more than one element.
    // Operator [] can only read an element, not write.
    int16_t operator [] (uint32_t index) const {
        return extract(index);
    }
    // Member functions to split into two Vec8s:
    Vec8s get_low() const {
        return _mm256_castsi256_si128(ymm);
    }
    Vec8s get_high() const {
        return _mm256_extractf128_si256(ymm,1);
    }
    static int size() {
        return 16;
    }
};


/*****************************************************************************
*
*          Vec16sb: Vector of 16 Booleans for use with Vec16s and Vec16us
*
*****************************************************************************/
class Vec16sb : public Vec16s {
public:
    // Default constructor:
    Vec16sb() {
    }
    // Constructor to build from all elements:
    Vec16sb(bool x0, bool x1, bool x2, bool x3, bool x4, bool x5, bool x6, bool x7,
        bool x8, bool x9, bool x10, bool x11, bool x12, bool x13, bool x14, bool x15) :
        Vec16s(-int16_t(x0), -int16_t(x1), -int16_t(x2), -int16_t(x3), -int16_t(x4), -int16_t(x5), -int16_t(x6), -int16_t(x7), 
            -int16_t(x8), -int16_t(x9), -int16_t(x10), -int16_t(x11), -int16_t(x12), -int16_t(x13), -int16_t(x14), -int16_t(x15))
        {}
    // Constructor to convert from type __m256i used in intrinsics:
    Vec16sb(__m256i const & x) {
        ymm = x;
    }
    // Assignment operator to convert from type __m256i used in intrinsics:
    Vec16sb & operator = (__m256i const & x) {
        ymm = x;
        return *this;
    }
    // Constructor to broadcast scalar value:
    Vec16sb(bool b) : Vec16s(-int16_t(b)) {
    }
    // Assignment operator to broadcast scalar value:
    Vec16sb & operator = (bool b) {
        *this = Vec16sb(b);
        return *this;
    }
private: // Prevent constructing from int, etc.
    Vec16sb(int b);
    Vec16sb & operator = (int x);
public:
    Vec8sb get_low() const {
        return Vec8sb(Vec16s::get_low());
    }
    Vec8sb get_high() const {
        return Vec8sb(Vec16s::get_high());
    }
    Vec16sb & insert (int index, bool a) {
        Vec16s::insert(index, -(int)a);
        return *this;
    }    
    // Member function extract a single element from vector
    bool extract(uint32_t index) const {
        return Vec16s::extract(index) != 0;
    }
    // Extract a single element. Use store function if extracting more than one element.
    // Operator [] can only read an element, not write.
    bool operator [] (uint32_t index) const {
        return extract(index);
    }
};


/*****************************************************************************
*
*          Define operators for Vec16sb
*
*****************************************************************************/

// vector operator & : bitwise and
static inline Vec16sb operator & (Vec16sb const & a, Vec16sb const & b) {
    return Vec16sb(Vec256b(a) & Vec256b(b));
}
static inline Vec16sb operator && (Vec16sb const & a, Vec16sb const & b) {
    return a & b;
}
// vector operator &= : bitwise and
static inline Vec16sb & operator &= (Vec16sb & a, Vec16sb const & b) {
    a = a & b;
    return a;
}

// vector operator | : bitwise or
static inline Vec16sb operator | (Vec16sb const & a, Vec16sb const & b) {
    return Vec16sb(Vec256b(a) | Vec256b(b));
}
static inline Vec16sb operator || (Vec16sb const & a, Vec16sb const & b) {
    return a | b;
}
// vector operator |= : bitwise or
static inline Vec16sb & operator |= (Vec16sb & a, Vec16sb const & b) {
    a = a | b;
    return a;
}

// vector operator ^ : bitwise xor
static inline Vec16sb operator ^ (Vec16sb const & a, Vec16sb const & b) {
    return Vec16sb(Vec256b(a) ^ Vec256b(b));
}
// vector operator ^= : bitwise xor
static inline Vec16sb & operator ^= (Vec16sb & a, Vec16sb const & b) {
    a = a ^ b;
    return a;
}

// vector operator ~ : bitwise not
static inline Vec16sb operator ~ (Vec16sb const & a) {
    return Vec16sb( ~ Vec256b(a));
}

// vector operator ! : element not
static inline Vec16sb operator ! (Vec16sb const & a) {
    return ~ a;
}

// vector function andnot
static inline Vec16sb andnot (Vec16sb const & a, Vec16sb const & b) {
    return Vec16sb(andnot(Vec256b(a), Vec256b(b)));
}


/*****************************************************************************
*
*          Operators for Vec16s
*
*****************************************************************************/

// vector operator + : add element by element
static inline Vec16s operator + (Vec16s const & a, Vec16s const & b) {
    return _mm256_add_epi16(a, b);
}

// vector operator += : add
static inline Vec16s & operator += (Vec16s & a, Vec16s const & b) {
    a = a + b;
    return a;
}

// postfix operator ++
static inline Vec16s operator ++ (Vec16s & a, int) {
    Vec16s a0 = a;
    a = a + 1;
    return a0;
}

// prefix operator ++
static inline Vec16s & operator ++ (Vec16s & a) {
    a = a + 1;
    return a;
}

// vector operator - : subtract element by element
static inline Vec16s operator - (Vec16s const & a, Vec16s const & b) {
    return _mm256_sub_epi16(a, b);
}

// vector operator - : unary minus
static inline Vec16s operator - (Vec16s const & a) {
    return _mm256_sub_epi16(_mm256_setzero_si256(), a);
}

// vector operator -= : subtract
static inline Vec16s & operator -= (Vec16s & a, Vec16s const & b) {
    a = a - b;
    return a;
}

// postfix operator --
static inline Vec16s operator -- (Vec16s & a, int) {
    Vec16s a0 = a;
    a = a - 1;
    return a0;
}

// prefix operator --
static inline Vec16s & operator -- (Vec16s & a) {
    a = a - 1;
    return a;
}

// vector operator * : multiply element by element
static inline Vec16s operator * (Vec16s const & a, Vec16s const & b) {
    return _mm256_mullo_epi16(a, b);
}

// vector operator *= : multiply
static inline Vec16s & operator *= (Vec16s & a, Vec16s const & b) {
    a = a * b;
    return a;
}

// vector operator / : divide all elements by same integer
// See bottom of file


// vector operator << : shift left
static inline Vec16s operator << (Vec16s const & a, int b) {
    return _mm256_sll_epi16(a,_mm_cvtsi32_si128(b));
}

// vector operator <<= : shift left
static inline Vec16s & operator <<= (Vec16s & a, int b) {
    a = a << b;
    return a;
}

// vector operator >> : shift right arithmetic
static inline Vec16s operator >> (Vec16s const & a, int b) {
    return _mm256_sra_epi16(a,_mm_cvtsi32_si128(b));
}

// vector operator >>= : shift right arithmetic
static inline Vec16s & operator >>= (Vec16s & a, int b) {
    a = a >> b;
    return a;
}

// vector operator == : returns true for elements for which a == b
static inline Vec16sb operator == (Vec16s const & a, Vec16s const & b) {
    return _mm256_cmpeq_epi16(a, b);
}

// vector operator != : returns true for elements for which a != b
static inline Vec16sb operator != (Vec16s const & a, Vec16s const & b) {
    return Vec16sb(Vec16s(~(a == b)));
}

// vector operator > : returns true for elements for which a > b
static inline Vec16sb operator > (Vec16s const & a, Vec16s const & b) {
    return _mm256_cmpgt_epi16(a, b);
}

// vector operator < : returns true for elements for which a < b
static inline Vec16sb operator < (Vec16s const & a, Vec16s const & b) {
    return b > a;
}

// vector operator >= : returns true for elements for which a >= b (signed)
static inline Vec16sb operator >= (Vec16s const & a, Vec16s const & b) {
    return Vec16sb(Vec16s(~(b > a)));
}

// vector operator <= : returns true for elements for which a <= b (signed)
static inline Vec16sb operator <= (Vec16s const & a, Vec16s const & b) {
    return b >= a;
}

// vector operator & : bitwise and
static inline Vec16s operator & (Vec16s const & a, Vec16s const & b) {
    return Vec16s(Vec256b(a) & Vec256b(b));
}
static inline Vec16s operator && (Vec16s const & a, Vec16s const & b) {
    return a & b;
}
// vector operator &= : bitwise and
static inline Vec16s & operator &= (Vec16s & a, Vec16s const & b) {
    a = a & b;
    return a;
}

// vector operator | : bitwise or
static inline Vec16s operator | (Vec16s const & a, Vec16s const & b) {
    return Vec16s(Vec256b(a) | Vec256b(b));
}
static inline Vec16s operator || (Vec16s const & a, Vec16s const & b) {
    return a | b;
}
// vector operator |= : bitwise or
static inline Vec16s & operator |= (Vec16s & a, Vec16s const & b) {
    a = a | b;
    return a;
}

// vector operator ^ : bitwise xor
static inline Vec16s operator ^ (Vec16s const & a, Vec16s const & b) {
    return Vec16s(Vec256b(a) ^ Vec256b(b));
}
// vector operator ^= : bitwise xor
static inline Vec16s & operator ^= (Vec16s & a, Vec16s const & b) {
    a = a ^ b;
    return a;
}

// vector operator ~ : bitwise not
static inline Vec16s operator ~ (Vec16s const & a) {
    return Vec16s( ~ Vec256b(a));
}

// vector operator ! : logical not, returns true for elements == 0
static inline Vec16sb operator ! (Vec16s const & a) {
    return _mm256_cmpeq_epi16(a,_mm256_setzero_si256());
}

// Functions for this class

// Select between two operands. Corresponds to this pseudocode:
// for (int i = 0; i < 16; i++) result[i] = s[i] ? a[i] : b[i];
// Each byte in s must be either 0 (false) or -1 (true). No other values are allowed.
// (s is signed)
static inline Vec16s select (Vec16sb const & s, Vec16s const & a, Vec16s const & b) {
    return selectb(s,a,b);
}

// Conditional add: For all vector elements i: result[i] = f[i] ? (a[i] + b[i]) : a[i]
static inline Vec16s if_add (Vec16sb const & f, Vec16s const & a, Vec16s const & b) {
    return a + (Vec16s(f) & b);
}

// Horizontal add: Calculates the sum of all vector elements.
// Overflow will wrap around
static inline int32_t horizontal_add (Vec16s const & a) {
    __m256i sum1  = _mm256_hadd_epi16(a,a);                           // horizontally add 2x8 elements in 3 steps
    __m256i sum2  = _mm256_hadd_epi16(sum1,sum1);
    __m256i sum3  = _mm256_hadd_epi16(sum2,sum2); 
#if defined (_MSC_VER) && _MSC_VER <= 1700 && ! defined(__INTEL_COMPILER)
    __m128i sum4  = _mm256_extractf128_si256(sum3,1);                 // bug in MS compiler VS 11
#else
    __m128i sum4  = _mm256_extracti128_si256(sum3,1);                 // get high part
#endif
    __m128i sum5  = _mm_add_epi16(_mm256_castsi256_si128(sum3),sum4); // add low and high parts
    int16_t sum6  = (int16_t)_mm_cvtsi128_si32(sum5);                 // truncate to 16 bits
    return  sum6;                                                     // sign extend to 32 bits
}

// Horizontal add extended: Calculates the sum of all vector elements.
// Elements are sign extended before adding to avoid overflow
static inline int32_t horizontal_add_x (Vec16s const & a) {
    __m256i aeven = _mm256_slli_epi32(a,16);                  // even numbered elements of a. get sign bit in position
            aeven = _mm256_srai_epi32(aeven,16);              // sign extend even numbered elements
    __m256i aodd  = _mm256_srai_epi32(a,16);                  // sign extend odd  numbered elements
    __m256i sum1  = _mm256_add_epi32(aeven,aodd);             // add even and odd elements
    __m256i sum2  = _mm256_hadd_epi32(sum1,sum1);             // horizontally add 2x4 elements in 2 steps
    __m256i sum3  = _mm256_hadd_epi32(sum2,sum2);
#if defined (_MSC_VER) && _MSC_VER <= 1700 && ! defined(__INTEL_COMPILER)
    __m128i sum4  = _mm256_extractf128_si256(sum3,1);         // bug in MS compiler VS 11
#else
    __m128i sum4  = _mm256_extracti128_si256(sum3,1);
#endif
    __m128i sum5  = _mm_add_epi32(_mm256_castsi256_si128(sum3),sum4);
    return          _mm_cvtsi128_si32(sum5); 
}

// function add_saturated: add element by element, signed with saturation
static inline Vec16s add_saturated(Vec16s const & a, Vec16s const & b) {
    return _mm256_adds_epi16(a, b);
}

// function sub_saturated: subtract element by element, signed with saturation
static inline Vec16s sub_saturated(Vec16s const & a, Vec16s const & b) {
    return _mm256_subs_epi16(a, b);
}

// function max: a > b ? a : b
static inline Vec16s max(Vec16s const & a, Vec16s const & b) {
    return _mm256_max_epi16(a,b);
}

// function min: a < b ? a : b
static inline Vec16s min(Vec16s const & a, Vec16s const & b) {
    return _mm256_min_epi16(a,b);
}

// function abs: a >= 0 ? a : -a
static inline Vec16s abs(Vec16s const & a) {
    return _mm256_sign_epi16(a,a);
}

// function abs_saturated: same as abs, saturate if overflow
static inline Vec16s abs_saturated(Vec16s const & a) {
    __m256i absa   = abs(a);                                  // abs(a)
    __m256i overfl = _mm256_srai_epi16(absa,15);              // sign
    return           _mm256_add_epi16(absa,overfl);           // subtract 1 if 0x8000
}

// function rotate_left all elements
// Use negative count to rotate right
static inline Vec16s rotate_left(Vec16s const & a, int b) {
    __m256i left  = _mm256_sll_epi16(a,_mm_cvtsi32_si128(b & 0x0F));      // a << b 
    __m256i right = _mm256_srl_epi16(a,_mm_cvtsi32_si128((16-b) & 0x0F)); // a >> (16 - b)
    __m256i rot   = _mm256_or_si256(left,right);                          // or
    return  rot;
}


/*****************************************************************************
*
*          Vector of 16 16-bit unsigned integers
*
*****************************************************************************/

class Vec16us : public Vec16s {
public:
    // Default constructor:
    Vec16us(){
    }
    // Constructor to broadcast the same value into all elements:
    Vec16us(uint32_t i) {
        ymm = _mm256_set1_epi16((int16_t)i);
    }
    // Constructor to build from all elements:
    Vec16us(uint16_t i0, uint16_t i1, uint16_t i2,  uint16_t i3,  uint16_t i4,  uint16_t i5,  uint16_t i6,  uint16_t i7,
            uint16_t i8, uint16_t i9, uint16_t i10, uint16_t i11, uint16_t i12, uint16_t i13, uint16_t i14, uint16_t i15) {
        ymm = _mm256_setr_epi16(i0, i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11, i12, i13, i14, i15 );
    }
    // Constructor to build from two Vec8us:
    Vec16us(Vec8us const & a0, Vec8us const & a1) {
        ymm = set_m128ir(a0, a1);
    }
    // Constructor to convert from type __m256i used in intrinsics:
    Vec16us(__m256i const & x) {
        ymm = x;
    }
    // Assignment operator to convert from type __m256i used in intrinsics:
    Vec16us & operator = (__m256i const & x) {
        ymm = x;
        return *this;
    }
    // Member function to load from array (unaligned)
    Vec16us & load(void const * p) {
        ymm = _mm256_loadu_si256((__m256i const*)p);
        return *this;
    }
    // Member function to load from array, aligned by 32
    Vec16us & load_a(void const * p) {
        ymm = _mm256_load_si256((__m256i const*)p);
        return *this;
    }
    // Member function to change a single element in vector
    // Note: This function is inefficient. Use load function if changing more than one element
    Vec16us const & insert(uint32_t index, uint16_t value) {
        Vec16s::insert(index, value);
        return *this;
    }
    // Member function extract a single element from vector
    uint16_t extract(uint32_t index) const {
        return Vec16s::extract(index);
    }
    // Extract a single element. Use store function if extracting more than one element.
    // Operator [] can only read an element, not write.
    uint16_t operator [] (uint32_t index) const {
        return extract(index);
    }
    // Member functions to split into two Vec8us:
    Vec8us get_low() const {
        return _mm256_castsi256_si128(ymm);
    }
    Vec8us get_high() const {
        return _mm256_extractf128_si256(ymm,1);
    }
};

// Define operators for this class

// vector operator + : add
static inline Vec16us operator + (Vec16us const & a, Vec16us const & b) {
    return Vec16us (Vec16s(a) + Vec16s(b));
}

// vector operator - : subtract
static inline Vec16us operator - (Vec16us const & a, Vec16us const & b) {
    return Vec16us (Vec16s(a) - Vec16s(b));
}

// vector operator * : multiply
static inline Vec16us operator * (Vec16us const & a, Vec16us const & b) {
    return Vec16us (Vec16s(a) * Vec16s(b));
}

// vector operator / : divide
// See bottom of file

// vector operator >> : shift right logical all elements
static inline Vec16us operator >> (Vec16us const & a, uint32_t b) {
    return _mm256_srl_epi16(a,_mm_cvtsi32_si128(b)); 
}

// vector operator >> : shift right logical all elements
static inline Vec16us operator >> (Vec16us const & a, int32_t b) {
    return a >> (uint32_t)b;
}

// vector operator >>= : shift right artihmetic
static inline Vec16us & operator >>= (Vec16us & a, uint32_t b) {
    a = a >> b;
    return a;
}

// vector operator << : shift left all elements
static inline Vec16us operator << (Vec16us const & a, uint32_t b) {
    return _mm256_sll_epi16(a,_mm_cvtsi32_si128(b)); 
}

// vector operator << : shift left all elements
static inline Vec16us operator << (Vec16us const & a, int32_t b) {
    return a << (uint32_t)b;
}

// vector operator >= : returns true for elements for which a >= b (unsigned)
static inline Vec16sb operator >= (Vec16us const & a, Vec16us const & b) {
    __m256i max_ab = _mm256_max_epu16(a,b);                   // max(a,b), unsigned
    return _mm256_cmpeq_epi16(a,max_ab);                      // a == max(a,b)
}

// vector operator <= : returns true for elements for which a <= b (unsigned)
static inline Vec16sb operator <= (Vec16us const & a, Vec16us const & b) {
    return b >= a;
}

// vector operator > : returns true for elements for which a > b (unsigned)
static inline Vec16sb operator > (Vec16us const & a, Vec16us const & b) {
    return Vec16sb(Vec16s(~(b >= a)));
}

// vector operator < : returns true for elements for which a < b (unsigned)
static inline Vec16sb operator < (Vec16us const & a, Vec16us const & b) {
    return b > a;
}

// vector operator & : bitwise and
static inline Vec16us operator & (Vec16us const & a, Vec16us const & b) {
    return Vec16us(Vec256b(a) & Vec256b(b));
}
static inline Vec16us operator && (Vec16us const & a, Vec16us const & b) {
    return a & b;
}

// vector operator | : bitwise or
static inline Vec16us operator | (Vec16us const & a, Vec16us const & b) {
    return Vec16us(Vec256b(a) | Vec256b(b));
}
static inline Vec16us operator || (Vec16us const & a, Vec16us const & b) {
    return a | b;
}

// vector operator ^ : bitwise xor
static inline Vec16us operator ^ (Vec16us const & a, Vec16us const & b) {
    return Vec16us(Vec256b(a) ^ Vec256b(b));
}

// vector operator ~ : bitwise not
static inline Vec16us operator ~ (Vec16us const & a) {
    return Vec16us( ~ Vec256b(a));
}

// Functions for this class

// Select between two operands. Corresponds to this pseudocode:
// for (int i = 0; i < 8; i++) result[i] = s[i] ? a[i] : b[i];
// Each word in s must be either 0 (false) or -1 (true). No other values are allowed.
// (s is signed)
static inline Vec16us select (Vec16sb const & s, Vec16us const & a, Vec16us const & b) {
    return selectb(s,a,b);
}

// Conditional add: For all vector elements i: result[i] = f[i] ? (a[i] + b[i]) : a[i]
static inline Vec16us if_add (Vec16sb const & f, Vec16us const & a, Vec16us const & b) {
    return a + (Vec16us(f) & b);
}

// Horizontal add: Calculates the sum of all vector elements.
// Overflow will wrap around
static inline uint32_t horizontal_add (Vec16us const & a) {
    __m256i sum1  = _mm256_hadd_epi16(a,a);                           // horizontally add 2x8 elements in 3 steps
    __m256i sum2  = _mm256_hadd_epi16(sum1,sum1);
    __m256i sum3  = _mm256_hadd_epi16(sum2,sum2);
#if defined (_MSC_VER) && _MSC_VER <= 1700 && ! defined(__INTEL_COMPILER)
    __m128i sum4  = _mm256_extractf128_si256(sum3,1);                 // bug in MS compiler VS 11
#else
    __m128i sum4  = _mm256_extracti128_si256(sum3,1);                 // get high part
#endif
    __m128i sum5  = _mm_add_epi32(_mm256_castsi256_si128(sum3),sum4); // add low and high parts
    return          _mm_cvtsi128_si32(sum5);  
}

// Horizontal add extended: Calculates the sum of all vector elements.
// Each element is zero-extended before addition to avoid overflow
static inline uint32_t horizontal_add_x (Vec16us const & a) {
    __m256i mask  = _mm256_set1_epi32(0x0000FFFF);                    // mask for even positions
    __m256i aeven = _mm256_and_si256(a,mask);                         // even numbered elements of a
    __m256i aodd  = _mm256_srli_epi32(a,16);                          // zero extend odd numbered elements
    __m256i sum1  = _mm256_add_epi32(aeven,aodd);                     // add even and odd elements
    __m256i sum2  = _mm256_hadd_epi32(sum1,sum1);                     // horizontally add 2x4 elements in 2 steps
    __m256i sum3  = _mm256_hadd_epi32(sum2,sum2);
#if defined (_MSC_VER) && _MSC_VER <= 1700 && ! defined(__INTEL_COMPILER)
    __m128i sum4  = _mm256_extractf128_si256(sum3,1);                 // bug in MS compiler VS 11
#else
    __m128i sum4  = _mm256_extracti128_si256(sum3,1);                 // get high part
#endif
    __m128i sum5  = _mm_add_epi32(_mm256_castsi256_si128(sum3),sum4); // add low and high parts
    return          _mm_cvtsi128_si32(sum5);  
}

// function add_saturated: add element by element, unsigned with saturation
static inline Vec16us add_saturated(Vec16us const & a, Vec16us const & b) {
    return _mm256_adds_epu16(a, b);
}

// function sub_saturated: subtract element by element, unsigned with saturation
static inline Vec16us sub_saturated(Vec16us const & a, Vec16us const & b) {
    return _mm256_subs_epu16(a, b);
}

// function max: a > b ? a : b
static inline Vec16us max(Vec16us const & a, Vec16us const & b) {
    return _mm256_max_epu16(a,b);
}

// function min: a < b ? a : b
static inline Vec16us min(Vec16us const & a, Vec16us const & b) {
    return _mm256_min_epu16(a,b);
}


/*****************************************************************************
*
*          Vector of 8 32-bit signed integers
*
*****************************************************************************/

class Vec8i : public Vec256b {
public:
    // Default constructor:
    Vec8i() {
    }
    // Constructor to broadcast the same value into all elements:
    Vec8i(int i) {
        ymm = _mm256_set1_epi32(i);
    }
    // Constructor to build from all elements:
    Vec8i(int32_t i0, int32_t i1, int32_t i2, int32_t i3, int32_t i4, int32_t i5, int32_t i6, int32_t i7) {
        ymm = _mm256_setr_epi32(i0, i1, i2, i3, i4, i5, i6, i7);
    }
    // Constructor to build from two Vec4i:
    Vec8i(Vec4i const & a0, Vec4i const & a1) {
        ymm = set_m128ir(a0, a1);
    }
    // Constructor to convert from type __m256i used in intrinsics:
    Vec8i(__m256i const & x) {
        ymm = x;
    }
    // Assignment operator to convert from type __m256i used in intrinsics:
    Vec8i & operator = (__m256i const & x) {
        ymm = x;
        return *this;
    }
    // Type cast operator to convert to __m256i used in intrinsics
    operator __m256i() const {
        return ymm;
    }
    // Member function to load from array (unaligned)
    Vec8i & load(void const * p) {
        ymm = _mm256_loadu_si256((__m256i const*)p);
        return *this;
    }
    // Member function to load from array, aligned by 32
    Vec8i & load_a(void const * p) {
        ymm = _mm256_load_si256((__m256i const*)p);
        return *this;
    }
    // Partial load. Load n elements and set the rest to 0
    Vec8i & load_partial(int n, void const * p) {
        if (n <= 0) {
            *this = 0;
        }
        else if (n <= 4) {
            *this = Vec8i(Vec4i().load_partial(n, p), 0);
        }
        else if (n < 8) {
            *this = Vec8i(Vec4i().load(p), Vec4i().load_partial(n-4, (int32_t const*)p+4));
        }
        else {
            load(p);
        }
        return *this;
    }
    // Partial store. Store n elements
    void store_partial(int n, void * p) const {
        if (n <= 0) {
            return;
        }
        else if (n <= 4) {
            get_low().store_partial(n, p);
        }
        else if (n < 8) {
            get_low().store(p);
            get_high().store_partial(n-4, (int32_t*)p+4);
        }
        else {
            store(p);
        }
    }
    // cut off vector to n elements. The last 8-n elements are set to zero
    Vec8i & cutoff(int n) {
        *this = Vec32c(*this).cutoff(n * 4);
        return *this;
    }
    // Member function to change a single element in vector
    // Note: This function is inefficient. Use load function if changing more than one element
    Vec8i const & insert(uint32_t index, int32_t value) {
        static const int32_t maskl[16] = {0,0,0,0,0,0,0,0, -1,0,0,0,0,0,0,0};
        __m256i broad = _mm256_set1_epi32(value);  // broadcast value into all elements
        __m256i mask  = Vec256b().load(maskl + 8 - (index & 7)); // mask with FFFFFFFF at index position
        ymm = selectb (mask, broad, ymm);
        return *this;
    }
    // Member function extract a single element from vector
    int32_t extract(uint32_t index) const {
        int32_t x[8];
        store(x);
        return x[index & 7];
    }
    // Extract a single element. Use store function if extracting more than one element.
    // Operator [] can only read an element, not write.
    int32_t operator [] (uint32_t index) const {
        return extract(index);
    }
    // Member functions to split into two Vec4i:
    Vec4i get_low() const {
        return _mm256_castsi256_si128(ymm);
    }
    Vec4i get_high() const {
        return _mm256_extractf128_si256(ymm,1);
    }
    static int size() {
        return 8;
    }
};


/*****************************************************************************
*
*          Vec8ib: Vector of 8 Booleans for use with Vec8i and Vec8ui
*
*****************************************************************************/

class Vec8ib : public Vec8i {
public:
    // Default constructor:
    Vec8ib() {
    }
    // Constructor to build from all elements:
    Vec8ib(bool x0, bool x1, bool x2, bool x3, bool x4, bool x5, bool x6, bool x7) :
        Vec8i(-int32_t(x0), -int32_t(x1), -int32_t(x2), -int32_t(x3), -int32_t(x4), -int32_t(x5), -int32_t(x6), -int32_t(x7))
        {}
    // Constructor to convert from type __m256i used in intrinsics:
    Vec8ib(__m256i const & x) {
        ymm = x;
    }
    // Assignment operator to convert from type __m256i used in intrinsics:
    Vec8ib & operator = (__m256i const & x) {
        ymm = x;
        return *this;
    }
    // Constructor to broadcast scalar value:
    Vec8ib(bool b) : Vec8i(-int32_t(b)) {
    }
    // Assignment operator to broadcast scalar value:
    Vec8ib & operator = (bool b) {
        *this = Vec8ib(b);
        return *this;
    }
private: // Prevent constructing from int, etc.
    Vec8ib(int b);
    Vec8ib & operator = (int x);
public:
    Vec4ib get_low() const {
        return Vec4ib(Vec8i::get_low());
    }
    Vec4ib get_high() const {
        return Vec4ib(Vec8i::get_high());
    }
    Vec8ib & insert (int index, bool a) {
        Vec8i::insert(index, -(int)a);
        return *this;
    }
    // Member function extract a single element from vector
    bool extract(uint32_t index) const {
        return Vec8i::extract(index) != 0;
    }
    // Extract a single element. Use store function if extracting more than one element.
    // Operator [] can only read an element, not write.
    bool operator [] (uint32_t index) const {
        return extract(index);
    }
};


/*****************************************************************************
*
*          Define operators for Vec8ib
*
*****************************************************************************/

// vector operator & : bitwise and
static inline Vec8ib operator & (Vec8ib const & a, Vec8ib const & b) {
    return Vec8ib(Vec256b(a) & Vec256b(b));
}
static inline Vec8ib operator && (Vec8ib const & a, Vec8ib const & b) {
    return a & b;
}
// vector operator &= : bitwise and
static inline Vec8ib & operator &= (Vec8ib & a, Vec8ib const & b) {
    a = a & b;
    return a;
}

// vector operator | : bitwise or
static inline Vec8ib operator | (Vec8ib const & a, Vec8ib const & b) {
    return Vec8ib(Vec256b(a) | Vec256b(b));
}
static inline Vec8ib operator || (Vec8ib const & a, Vec8ib const & b) {
    return a | b;
}
// vector operator |= : bitwise or
static inline Vec8ib & operator |= (Vec8ib & a, Vec8ib const & b) {
    a = a | b;
    return a;
}

// vector operator ^ : bitwise xor
static inline Vec8ib operator ^ (Vec8ib const & a, Vec8ib const & b) {
    return Vec8ib(Vec256b(a) ^ Vec256b(b));
}
// vector operator ^= : bitwise xor
static inline Vec8ib & operator ^= (Vec8ib & a, Vec8ib const & b) {
    a = a ^ b;
    return a;
}

// vector operator ~ : bitwise not
static inline Vec8ib operator ~ (Vec8ib const & a) {
    return Vec8ib( ~ Vec256b(a));
}

// vector operator ! : element not
static inline Vec8ib operator ! (Vec8ib const & a) {
    return ~ a;
}

// vector function andnot
static inline Vec8ib andnot (Vec8ib const & a, Vec8ib const & b) {
    return Vec8ib(andnot(Vec256b(a), Vec256b(b)));
}


/*****************************************************************************
*
*          Operators for Vec8i
*
*****************************************************************************/

// vector operator + : add element by element
static inline Vec8i operator + (Vec8i const & a, Vec8i const & b) {
    return _mm256_add_epi32(a, b);
}

// vector operator += : add
static inline Vec8i & operator += (Vec8i & a, Vec8i const & b) {
    a = a + b;
    return a;
}

// postfix operator ++
static inline Vec8i operator ++ (Vec8i & a, int) {
    Vec8i a0 = a;
    a = a + 1;
    return a0;
}

// prefix operator ++
static inline Vec8i & operator ++ (Vec8i & a) {
    a = a + 1;
    return a;
}

// vector operator - : subtract element by element
static inline Vec8i operator - (Vec8i const & a, Vec8i const & b) {
    return _mm256_sub_epi32(a, b);
}

// vector operator - : unary minus
static inline Vec8i operator - (Vec8i const & a) {
    return _mm256_sub_epi32(_mm256_setzero_si256(), a);
}

// vector operator -= : subtract
static inline Vec8i & operator -= (Vec8i & a, Vec8i const & b) {
    a = a - b;
    return a;
}

// postfix operator --
static inline Vec8i operator -- (Vec8i & a, int) {
    Vec8i a0 = a;
    a = a - 1;
    return a0;
}

// prefix operator --
static inline Vec8i & operator -- (Vec8i & a) {
    a = a - 1;
    return a;
}

// vector operator * : multiply element by element
static inline Vec8i operator * (Vec8i const & a, Vec8i const & b) {
    return _mm256_mullo_epi32(a, b);
}

// vector operator *= : multiply
static inline Vec8i & operator *= (Vec8i & a, Vec8i const & b) {
    a = a * b;
    return a;
}

// vector operator / : divide all elements by same integer
// See bottom of file


// vector operator << : shift left
static inline Vec8i operator << (Vec8i const & a, int32_t b) {
    return _mm256_sll_epi32(a, _mm_cvtsi32_si128(b));
}

// vector operator <<= : shift left
static inline Vec8i & operator <<= (Vec8i & a, int32_t b) {
    a = a << b;
    return a;
}

// vector operator >> : shift right arithmetic
static inline Vec8i operator >> (Vec8i const & a, int32_t b) {
    return _mm256_sra_epi32(a, _mm_cvtsi32_si128(b));
}

// vector operator >>= : shift right arithmetic
static inline Vec8i & operator >>= (Vec8i & a, int32_t b) {
    a = a >> b;
    return a;
}

// vector operator == : returns true for elements for which a == b
static inline Vec8ib operator == (Vec8i const & a, Vec8i const & b) {
    return _mm256_cmpeq_epi32(a, b);
}

// vector operator != : returns true for elements for which a != b
static inline Vec8ib operator != (Vec8i const & a, Vec8i const & b) {
    return Vec8ib(Vec8i(~(a == b)));
}
  
// vector operator > : returns true for elements for which a > b
static inline Vec8ib operator > (Vec8i const & a, Vec8i const & b) {
    return _mm256_cmpgt_epi32(a, b);
}

// vector operator < : returns true for elements for which a < b
static inline Vec8ib operator < (Vec8i const & a, Vec8i const & b) {
    return b > a;
}

// vector operator >= : returns true for elements for which a >= b (signed)
static inline Vec8ib operator >= (Vec8i const & a, Vec8i const & b) {
    return Vec8ib(Vec8i(~(b > a)));
}

// vector operator <= : returns true for elements for which a <= b (signed)
static inline Vec8ib operator <= (Vec8i const & a, Vec8i const & b) {
    return b >= a;
}

// vector operator & : bitwise and
static inline Vec8i operator & (Vec8i const & a, Vec8i const & b) {
    return Vec8i(Vec256b(a) & Vec256b(b));
}
static inline Vec8i operator && (Vec8i const & a, Vec8i const & b) {
    return a & b;
}
// vector operator &= : bitwise and
static inline Vec8i & operator &= (Vec8i & a, Vec8i const & b) {
    a = a & b;
    return a;
}

// vector operator | : bitwise or
static inline Vec8i operator | (Vec8i const & a, Vec8i const & b) {
    return Vec8i(Vec256b(a) | Vec256b(b));
}
static inline Vec8i operator || (Vec8i const & a, Vec8i const & b) {
    return a | b;
}
// vector operator |= : bitwise or
static inline Vec8i & operator |= (Vec8i & a, Vec8i const & b) {
    a = a | b;
    return a;
}

// vector operator ^ : bitwise xor
static inline Vec8i operator ^ (Vec8i const & a, Vec8i const & b) {
    return Vec8i(Vec256b(a) ^ Vec256b(b));
}
// vector operator ^= : bitwise xor
static inline Vec8i & operator ^= (Vec8i & a, Vec8i const & b) {
    a = a ^ b;
    return a;
}

// vector operator ~ : bitwise not
static inline Vec8i operator ~ (Vec8i const & a) {
    return Vec8i( ~ Vec256b(a));
}

// vector operator ! : returns true for elements == 0
static inline Vec8ib operator ! (Vec8i const & a) {
    return _mm256_cmpeq_epi32(a, _mm256_setzero_si256());
}

// Functions for this class

// Select between two operands. Corresponds to this pseudocode:
// for (int i = 0; i < 8; i++) result[i] = s[i] ? a[i] : b[i];
// Each byte in s must be either 0 (false) or -1 (true). No other values are allowed.
// (s is signed)
static inline Vec8i select (Vec8ib const & s, Vec8i const & a, Vec8i const & b) {
    return selectb(s,a,b);
}

// Conditional add: For all vector elements i: result[i] = f[i] ? (a[i] + b[i]) : a[i]
static inline Vec8i if_add (Vec8ib const & f, Vec8i const & a, Vec8i const & b) {
    return a + (Vec8i(f) & b);
}

// Horizontal add: Calculates the sum of all vector elements.
// Overflow will wrap around
static inline int32_t horizontal_add (Vec8i const & a) {
    __m256i sum1  = _mm256_hadd_epi32(a,a);                           // horizontally add 2x4 elements in 2 steps
    __m256i sum2  = _mm256_hadd_epi32(sum1,sum1);
#if defined (_MSC_VER) && _MSC_VER <= 1700 && ! defined(__INTEL_COMPILER)
    __m128i sum3  = _mm256_extractf128_si256(sum2,1);                 // bug in MS VS 11
#else
    __m128i sum3  = _mm256_extracti128_si256(sum2,1);                 // get high part
#endif
    __m128i sum4  = _mm_add_epi32(_mm256_castsi256_si128(sum2),sum3); // add low and high parts
    return          _mm_cvtsi128_si32(sum4);
}

// Horizontal add extended: Calculates the sum of all vector elements.
// Elements are sign extended before adding to avoid overflow
// static inline int64_t horizontal_add_x (Vec8i const & a); // defined below

// function add_saturated: add element by element, signed with saturation
static inline Vec8i add_saturated(Vec8i const & a, Vec8i const & b) {
    __m256i sum    = _mm256_add_epi32(a, b);                  // a + b
    __m256i axb    = _mm256_xor_si256(a, b);                  // check if a and b have different sign
    __m256i axs    = _mm256_xor_si256(a, sum);                // check if a and sum have different sign
    __m256i overf1 = _mm256_andnot_si256(axb,axs);            // check if sum has wrong sign
    __m256i overf2 = _mm256_srai_epi32(overf1,31);            // -1 if overflow
    __m256i asign  = _mm256_srli_epi32(a,31);                 // 1  if a < 0
    __m256i sat1   = _mm256_srli_epi32(overf2,1);             // 7FFFFFFF if overflow
    __m256i sat2   = _mm256_add_epi32(sat1,asign);            // 7FFFFFFF if positive overflow 80000000 if negative overflow
    return  selectb(overf2,sat2,sum);                         // sum if not overflow, else sat2
}

// function sub_saturated: subtract element by element, signed with saturation
static inline Vec8i sub_saturated(Vec8i const & a, Vec8i const & b) {
    __m256i diff   = _mm256_sub_epi32(a, b);                  // a + b
    __m256i axb    = _mm256_xor_si256(a, b);                  // check if a and b have different sign
    __m256i axs    = _mm256_xor_si256(a, diff);               // check if a and sum have different sign
    __m256i overf1 = _mm256_and_si256(axb,axs);               // check if sum has wrong sign
    __m256i overf2 = _mm256_srai_epi32(overf1,31);            // -1 if overflow
    __m256i asign  = _mm256_srli_epi32(a,31);                 // 1  if a < 0
    __m256i sat1   = _mm256_srli_epi32(overf2,1);             // 7FFFFFFF if overflow
    __m256i sat2   = _mm256_add_epi32(sat1,asign);            // 7FFFFFFF if positive overflow 80000000 if negative overflow
    return  selectb(overf2,sat2,diff);                        // diff if not overflow, else sat2
}

// function max: a > b ? a : b
static inline Vec8i max(Vec8i const & a, Vec8i const & b) {
    return _mm256_max_epi32(a,b);
}

// function min: a < b ? a : b
static inline Vec8i min(Vec8i const & a, Vec8i const & b) {
    return _mm256_min_epi32(a,b);
}

// function abs: a >= 0 ? a : -a
static inline Vec8i abs(Vec8i const & a) {
    return _mm256_sign_epi32(a,a);
}

// function abs_saturated: same as abs, saturate if overflow
static inline Vec8i abs_saturated(Vec8i const & a) {
    __m256i absa   = abs(a);                                  // abs(a)
    __m256i overfl = _mm256_srai_epi32(absa,31);              // sign
    return           _mm256_add_epi32(absa,overfl);           // subtract 1 if 0x80000000
}

// function rotate_left all elements
// Use negative count to rotate right
static inline Vec8i rotate_left(Vec8i const & a, int b) {
#ifdef __AVX512VL__
    return _mm256_rolv_epi32(a, _mm256_set1_epi32(b));
#else
    __m256i left  = _mm256_sll_epi32(a,_mm_cvtsi32_si128(b & 0x1F));      // a << b 
    __m256i right = _mm256_srl_epi32(a,_mm_cvtsi32_si128((32-b) & 0x1F)); // a >> (32 - b)
    __m256i rot   = _mm256_or_si256(left,right);                          // or
    return  rot;
#endif
}


/*****************************************************************************
*
*          Vector of 8 32-bit unsigned integers
*
*****************************************************************************/

class Vec8ui : public Vec8i {
public:
    // Default constructor:
    Vec8ui() {
    }
    // Constructor to broadcast the same value into all elements:
    Vec8ui(uint32_t i) {
        ymm = _mm256_set1_epi32(i);
    }
    // Constructor to build from all elements:
    Vec8ui(uint32_t i0, uint32_t i1, uint32_t i2, uint32_t i3, uint32_t i4, uint32_t i5, uint32_t i6, uint32_t i7) {
        ymm = _mm256_setr_epi32(i0, i1, i2, i3, i4, i5, i6, i7);
    }
    // Constructor to build from two Vec4ui:
    Vec8ui(Vec4ui const & a0, Vec4ui const & a1) {
        ymm = set_m128ir(a0, a1);
    }
    // Constructor to convert from type __m256i used in intrinsics:
    Vec8ui(__m256i const & x) {
        ymm = x;
    }
    // Assignment operator to convert from type __m256i used in intrinsics:
    Vec8ui & operator = (__m256i const & x) {
        ymm = x;
        return *this;
    }
    // Member function to load from array (unaligned)
    Vec8ui & load(void const * p) {
        ymm = _mm256_loadu_si256((__m256i const*)p);
        return *this;
    }
    // Member function to load from array, aligned by 32
    Vec8ui & load_a(void const * p) {
        ymm = _mm256_load_si256((__m256i const*)p);
        return *this;
    }
    // Member function to change a single element in vector
    // Note: This function is inefficient. Use load function if changing more than one element
    Vec8ui const & insert(uint32_t index, uint32_t value) {
        Vec8i::insert(index, value);
        return *this;
    }
    // Member function extract a single element from vector
    uint32_t extract(uint32_t index) const {
        return Vec8i::extract(index);
    }
    // Extract a single element. Use store function if extracting more than one element.
    // Operator [] can only read an element, not write.
    uint32_t operator [] (uint32_t index) const {
        return extract(index);
    }
    // Member functions to split into two Vec4ui:
    Vec4ui get_low() const {
        return _mm256_castsi256_si128(ymm);
    }
    Vec4ui get_high() const {
        return _mm256_extractf128_si256(ymm,1);
    }
};

// Define operators for this class

// vector operator + : add
static inline Vec8ui operator + (Vec8ui const & a, Vec8ui const & b) {
    return Vec8ui (Vec8i(a) + Vec8i(b));
}

// vector operator - : subtract
static inline Vec8ui operator - (Vec8ui const & a, Vec8ui const & b) {
    return Vec8ui (Vec8i(a) - Vec8i(b));
}

// vector operator * : multiply
static inline Vec8ui operator * (Vec8ui const & a, Vec8ui const & b) {
    return Vec8ui (Vec8i(a) * Vec8i(b));
}

// vector operator / : divide
// See bottom of file

// vector operator >> : shift right logical all elements
static inline Vec8ui operator >> (Vec8ui const & a, uint32_t b) {
    return _mm256_srl_epi32(a,_mm_cvtsi32_si128(b)); 
}

// vector operator >> : shift right logical all elements
static inline Vec8ui operator >> (Vec8ui const & a, int32_t b) {
    return a >> (uint32_t)b;
}

// vector operator >>= : shift right logical
static inline Vec8ui & operator >>= (Vec8ui & a, uint32_t b) {
    a = a >> b;
    return a;
} 

// vector operator << : shift left all elements
static inline Vec8ui operator << (Vec8ui const & a, uint32_t b) {
    return Vec8ui ((Vec8i)a << (int32_t)b);
}

// vector operator << : shift left all elements
static inline Vec8ui operator << (Vec8ui const & a, int32_t b) {
    return Vec8ui ((Vec8i)a << (int32_t)b);
}

// vector operator > : returns true for elements for which a > b (unsigned)
static inline Vec8ib operator > (Vec8ui const & a, Vec8ui const & b) {
    __m256i signbit = _mm256_set1_epi32(0x80000000);
    __m256i a1      = _mm256_xor_si256(a,signbit);
    __m256i b1      = _mm256_xor_si256(b,signbit);
    return _mm256_cmpgt_epi32(a1,b1);                         // signed compare
}

// vector operator < : returns true for elements for which a < b (unsigned)
static inline Vec8ib operator < (Vec8ui const & a, Vec8ui const & b) {
    return b > a;
}

// vector operator >= : returns true for elements for which a >= b (unsigned)
static inline Vec8ib operator >= (Vec8ui const & a, Vec8ui const & b) {
    __m256i max_ab = _mm256_max_epu32(a,b);                   // max(a,b), unsigned
    return _mm256_cmpeq_epi32(a,max_ab);                      // a == max(a,b)
}

// vector operator <= : returns true for elements for which a <= b (unsigned)
static inline Vec8ib operator <= (Vec8ui const & a, Vec8ui const & b) {
    return b >= a;
}

// vector operator & : bitwise and
static inline Vec8ui operator & (Vec8ui const & a, Vec8ui const & b) {
    return Vec8ui(Vec256b(a) & Vec256b(b));
}
static inline Vec8ui operator && (Vec8ui const & a, Vec8ui const & b) {
    return a & b;
}

// vector operator | : bitwise or
static inline Vec8ui operator | (Vec8ui const & a, Vec8ui const & b) {
    return Vec8ui(Vec256b(a) | Vec256b(b));
}
static inline Vec8ui operator || (Vec8ui const & a, Vec8ui const & b) {
    return a | b;
}

// vector operator ^ : bitwise xor
static inline Vec8ui operator ^ (Vec8ui const & a, Vec8ui const & b) {
    return Vec8ui(Vec256b(a) ^ Vec256b(b));
}

// vector operator ~ : bitwise not
static inline Vec8ui operator ~ (Vec8ui const & a) {
    return Vec8ui( ~ Vec256b(a));
}

// Functions for this class

// Select between two operands. Corresponds to this pseudocode:
// for (int i = 0; i < 16; i++) result[i] = s[i] ? a[i] : b[i];
// Each word in s must be either 0 (false) or -1 (true). No other values are allowed.
// (s is signed)
static inline Vec8ui select (Vec8ib const & s, Vec8ui const & a, Vec8ui const & b) {
    return selectb(s,a,b);
}

// Conditional add: For all vector elements i: result[i] = f[i] ? (a[i] + b[i]) : a[i]
static inline Vec8ui if_add (Vec8ib const & f, Vec8ui const & a, Vec8ui const & b) {
    return a + (Vec8ui(f) & b);
}

// Horizontal add: Calculates the sum of all vector elements.
// Overflow will wrap around
static inline uint32_t horizontal_add (Vec8ui const & a) {
    return horizontal_add((Vec8i)a);
}

// Horizontal add extended: Calculates the sum of all vector elements.
// Elements are zero extended before adding to avoid overflow
// static inline uint64_t horizontal_add_x (Vec8ui const & a); // defined later

// function add_saturated: add element by element, unsigned with saturation
static inline Vec8ui add_saturated(Vec8ui const & a, Vec8ui const & b) {
    Vec8ui sum      = a + b;
    Vec8ui aorb     = Vec8ui(a | b);
    Vec8ui overflow = Vec8ui(sum < aorb);                  // overflow if a + b < (a | b)
    return Vec8ui (sum | overflow);                        // return 0xFFFFFFFF if overflow
}

// function sub_saturated: subtract element by element, unsigned with saturation
static inline Vec8ui sub_saturated(Vec8ui const & a, Vec8ui const & b) {
    Vec8ui diff      = a - b;
    Vec8ui underflow = Vec8ui(diff > a);                   // underflow if a - b > a
    return _mm256_andnot_si256(underflow,diff);            // return 0 if underflow
}

// function max: a > b ? a : b
static inline Vec8ui max(Vec8ui const & a, Vec8ui const & b) {
    return _mm256_max_epu32(a,b);
}

// function min: a < b ? a : b
static inline Vec8ui min(Vec8ui const & a, Vec8ui const & b) {
    return _mm256_min_epu32(a,b);
}


/*****************************************************************************
*
*          Vector of 4 64-bit signed integers
*
*****************************************************************************/

class Vec4q : public Vec256b {
public:
    // Default constructor:
    Vec4q() {
    }
    // Constructor to broadcast the same value into all elements:
    Vec4q(int64_t i) {
#if defined (_MSC_VER) && _MSC_VER < 1900 && ! defined (__x86_64__) && ! defined(__INTEL_COMPILER)
        // MS compiler cannot use _mm256_set1_epi64x in 32 bit mode, and  
        // cannot put 64-bit values into xmm register without using
        // mmx registers, and it makes no emms
        union {
            int64_t q[4];
            int32_t r[8];
        } u;
        u.q[0] = u.q[1] = u.q[2] = u.q[3] = i;
        ymm = _mm256_setr_epi32(u.r[0], u.r[1], u.r[2], u.r[3], u.r[4], u.r[5], u.r[6], u.r[7]);
#else
        ymm = _mm256_set1_epi64x(i);
#endif
    }
    // Constructor to build from all elements:
    Vec4q(int64_t i0, int64_t i1, int64_t i2, int64_t i3) {
#if defined (_MSC_VER) && _MSC_VER < 1900 && ! defined (__x86_64__) && ! defined(__INTEL_COMPILER)
        // MS compiler cannot put 64-bit values into xmm register without using
        // mmx registers, and it makes no emms
        union {
            int64_t q[4];
            int32_t r[8];
        } u;
        u.q[0] = i0;  u.q[1] = i1;  u.q[2] = i2;  u.q[3] = i3;
        ymm = _mm256_setr_epi32(u.r[0], u.r[1], u.r[2], u.r[3], u.r[4], u.r[5], u.r[6], u.r[7]);
#else
        ymm = _mm256_setr_epi64x(i0, i1, i2, i3);
#endif
    }
    // Constructor to build from two Vec2q:
    Vec4q(Vec2q const & a0, Vec2q const & a1) {
        ymm = set_m128ir(a0, a1);
    }
    // Constructor to convert from type __m256i used in intrinsics:
    Vec4q(__m256i const & x) {
        ymm = x;
    }
    // Assignment operator to convert from type __m256i used in intrinsics:
    Vec4q & operator = (__m256i const & x) {
        ymm = x;
        return *this;
    }
    // Type cast operator to convert to __m256i used in intrinsics
    operator __m256i() const {
        return ymm;
    }
    // Member function to load from array (unaligned)
    Vec4q & load(void const * p) {
        ymm = _mm256_loadu_si256((__m256i const*)p);
        return *this;
    }
    // Member function to load from array, aligned by 32
    Vec4q & load_a(void const * p) {
        ymm = _mm256_load_si256((__m256i const*)p);
        return *this;
    }
    // Partial load. Load n elements and set the rest to 0
    Vec4q & load_partial(int n, void const * p) {
        if (n <= 0) {
            *this = 0;
        }
        else if (n <= 2) {
            *this = Vec4q(Vec2q().load_partial(n, p), 0);
        }
        else if (n < 4) {
            *this = Vec4q(Vec2q().load(p), Vec2q().load_partial(n-2, (int64_t const*)p+2));
        }
        else {
            load(p);
        }
        return *this;
    }
    // Partial store. Store n elements
    void store_partial(int n, void * p) const {
        if (n <= 0) {
            return;
        }
        else if (n <= 2) {
            get_low().store_partial(n, p);
        }
        else if (n < 4) {
            get_low().store(p);
            get_high().store_partial(n-2, (int64_t*)p+2);
        }
        else {
            store(p);
        }
    }
    // cut off vector to n elements. The last 8-n elements are set to zero
    Vec4q & cutoff(int n) {
        *this = Vec32c(*this).cutoff(n * 8);
        return *this;
    }
    // Member function to change a single element in vector
    // Note: This function is inefficient. Use load function if changing more than one element
    Vec4q const & insert(uint32_t index, int64_t value) {
        Vec4q x(value);
        switch (index) {
        case 0:        
            ymm = _mm256_blend_epi32(ymm,x,0x03);  break;
        case 1:
            ymm = _mm256_blend_epi32(ymm,x,0x0C);  break;
        case 2:
            ymm = _mm256_blend_epi32(ymm,x,0x30);  break;
        case 3:
            ymm = _mm256_blend_epi32(ymm,x,0xC0);  break;
        }
        return *this;
    }
    // Member function extract a single element from vector
    int64_t extract(uint32_t index) const {
        int64_t x[4];
        store(x);
        return x[index & 3];
    }
    // Extract a single element. Use store function if extracting more than one element.
    // Operator [] can only read an element, not write.
    int64_t operator [] (uint32_t index) const {
        return extract(index);
    }
    // Member functions to split into two Vec2q:
    Vec2q get_low() const {
        return _mm256_castsi256_si128(ymm);
    }
    Vec2q get_high() const {
        return _mm256_extractf128_si256(ymm,1);
    }
    static int size() {
        return 4;
    }
};

/*****************************************************************************
*
*          Vec4qb: Vector of 4 Booleans for use with Vec4q and Vec4uq
*
*****************************************************************************/

class Vec4qb : public Vec4q {
public:
    // Default constructor:
    Vec4qb() {
    }
    // Constructor to build from all elements:
    Vec4qb(bool x0, bool x1, bool x2, bool x3) :
        Vec4q(-int64_t(x0), -int64_t(x1), -int64_t(x2), -int64_t(x3)) {
    }
    // Constructor to convert from type __m256i used in intrinsics:
    Vec4qb(__m256i const & x) {
        ymm = x;
    }
    // Assignment operator to convert from type __m256i used in intrinsics:
    Vec4qb & operator = (__m256i const & x) {
        ymm = x;
        return *this;
    }
    // Constructor to broadcast scalar value:
    Vec4qb(bool b) : Vec4q(-int64_t(b)) {
    }
    // Assignment operator to broadcast scalar value:
    Vec4qb & operator = (bool b) {
        *this = Vec4qb(b);
        return *this;
    }
private: // Prevent constructing from int, etc.
    Vec4qb(int b);
    Vec4qb & operator = (int x);
public:
    // Member functions to split into two Vec2qb:
    Vec2qb get_low() const {
        return Vec2qb(Vec4q::get_low());
    }
    Vec2qb get_high() const {
        return Vec2qb(Vec4q::get_high());
    }
    Vec4qb & insert (int index, bool a) {
        Vec4q::insert(index, -(int64_t)a);
        return *this;
    }    
    // Member function extract a single element from vector
    bool extract(uint32_t index) const {
        return Vec4q::extract(index) != 0;
    }
    // Extract a single element. Use store function if extracting more than one element.
    // Operator [] can only read an element, not write.
    bool operator [] (uint32_t index) const {
        return extract(index);
    }
};


/*****************************************************************************
*
*          Define operators for Vec4qb
*
*****************************************************************************/

// vector operator & : bitwise and
static inline Vec4qb operator & (Vec4qb const & a, Vec4qb const & b) {
    return Vec4qb(Vec256b(a) & Vec256b(b));
}
static inline Vec4qb operator && (Vec4qb const & a, Vec4qb const & b) {
    return a & b;
}
// vector operator &= : bitwise and
static inline Vec4qb & operator &= (Vec4qb & a, Vec4qb const & b) {
    a = a & b;
    return a;
}

// vector operator | : bitwise or
static inline Vec4qb operator | (Vec4qb const & a, Vec4qb const & b) {
    return Vec4qb(Vec256b(a) | Vec256b(b));
}
static inline Vec4qb operator || (Vec4qb const & a, Vec4qb const & b) {
    return a | b;
}
// vector operator |= : bitwise or
static inline Vec4qb & operator |= (Vec4qb & a, Vec4qb const & b) {
    a = a | b;
    return a;
}

// vector operator ^ : bitwise xor
static inline Vec4qb operator ^ (Vec4qb const & a, Vec4qb const & b) {
    return Vec4qb(Vec256b(a) ^ Vec256b(b));
}
// vector operator ^= : bitwise xor
static inline Vec4qb & operator ^= (Vec4qb & a, Vec4qb const & b) {
    a = a ^ b;
    return a;
}

// vector operator ~ : bitwise not
static inline Vec4qb operator ~ (Vec4qb const & a) {
    return Vec4qb( ~ Vec256b(a));
}

// vector operator ! : element not
static inline Vec4qb operator ! (Vec4qb const & a) {
    return ~ a;
}

// vector function andnot
static inline Vec4qb andnot (Vec4qb const & a, Vec4qb const & b) {
    return Vec4qb(andnot(Vec256b(a), Vec256b(b)));
}




/*****************************************************************************
*
*          Operators for Vec4q
*
*****************************************************************************/

// vector operator + : add element by element
static inline Vec4q operator + (Vec4q const & a, Vec4q const & b) {
    return _mm256_add_epi64(a, b);
}

// vector operator += : add
static inline Vec4q & operator += (Vec4q & a, Vec4q const & b) {
    a = a + b;
    return a;
}

// postfix operator ++
static inline Vec4q operator ++ (Vec4q & a, int) {
    Vec4q a0 = a;
    a = a + 1;
    return a0;
}

// prefix operator ++
static inline Vec4q & operator ++ (Vec4q & a) {
    a = a + 1;
    return a;
}

// vector operator - : subtract element by element
static inline Vec4q operator - (Vec4q const & a, Vec4q const & b) {
    return _mm256_sub_epi64(a, b);
}

// vector operator - : unary minus
static inline Vec4q operator - (Vec4q const & a) {
    return _mm256_sub_epi64(_mm256_setzero_si256(), a);
}

// vector operator -= : subtract
static inline Vec4q & operator -= (Vec4q & a, Vec4q const & b) {
    a = a - b;
    return a;
}

// postfix operator --
static inline Vec4q operator -- (Vec4q & a, int) {
    Vec4q a0 = a;
    a = a - 1;
    return a0;
}

// prefix operator --
static inline Vec4q & operator -- (Vec4q & a) {
    a = a - 1;
    return a;
}

// vector operator * : multiply element by element
static inline Vec4q operator * (Vec4q const & a, Vec4q const & b) {
#if defined (__AVX512DQ__) && defined (__AVX512VL__)
    return _mm256_mullo_epi64(a, b);
#else
    // instruction does not exist. Split into 32-bit multiplies
    __m256i bswap   = _mm256_shuffle_epi32(b,0xB1);           // swap H<->L
    __m256i prodlh  = _mm256_mullo_epi32(a,bswap);            // 32 bit L*H products
    __m256i zero    = _mm256_setzero_si256();                 // 0
    __m256i prodlh2 = _mm256_hadd_epi32(prodlh,zero);         // a0Lb0H+a0Hb0L,a1Lb1H+a1Hb1L,0,0
    __m256i prodlh3 = _mm256_shuffle_epi32(prodlh2,0x73);     // 0, a0Lb0H+a0Hb0L, 0, a1Lb1H+a1Hb1L
    __m256i prodll  = _mm256_mul_epu32(a,b);                  // a0Lb0L,a1Lb1L, 64 bit unsigned products
    __m256i prod    = _mm256_add_epi64(prodll,prodlh3);       // a0Lb0L+(a0Lb0H+a0Hb0L)<<32, a1Lb1L+(a1Lb1H+a1Hb1L)<<32
    return  prod;
#endif
}

// vector operator *= : multiply
static inline Vec4q & operator *= (Vec4q & a, Vec4q const & b) {
    a = a * b;
    return a;
}

// vector operator << : shift left
static inline Vec4q operator << (Vec4q const & a, int32_t b) {
    return _mm256_sll_epi64(a, _mm_cvtsi32_si128(b));
}

// vector operator <<= : shift left
static inline Vec4q & operator <<= (Vec4q & a, int32_t b) {
    a = a << b;
    return a;
}

// vector operator >> : shift right arithmetic
static inline Vec4q operator >> (Vec4q const & a, int32_t b) {
    // instruction does not exist. Split into 32-bit shifts
    if (b <= 32) {
        __m128i bb   = _mm_cvtsi32_si128(b);                   // b
        __m256i sra  = _mm256_sra_epi32(a,bb);                 // a >> b signed dwords
        __m256i srl  = _mm256_srl_epi64(a,bb);                 // a >> b unsigned qwords
        __m256i mask = constant8i<0,-1,0,-1,0,-1,0,-1>();      // mask for signed high part
        return  selectb(mask, sra, srl);
    }
    else {  // b > 32
        __m128i bm32 = _mm_cvtsi32_si128(b-32);                // b - 32
        __m256i sign = _mm256_srai_epi32(a,31);                // sign of a
        __m256i sra2 = _mm256_sra_epi32(a,bm32);               // a >> (b-32) signed dwords
        __m256i sra3 = _mm256_srli_epi64(sra2,32);             // a >> (b-32) >> 32 (second shift unsigned qword)
        __m256i mask = constant8i<0,-1,0,-1,0,-1,0,-1>();      // mask for high part containing only sign
        return  selectb(mask, sign ,sra3);
    }
}

// vector operator >>= : shift right arithmetic
static inline Vec4q & operator >>= (Vec4q & a, int32_t b) {
    a = a >> b;
    return a;
}

// vector operator == : returns true for elements for which a == b
static inline Vec4qb operator == (Vec4q const & a, Vec4q const & b) {
    return _mm256_cmpeq_epi64(a, b);
}

// vector operator != : returns true for elements for which a != b
static inline Vec4qb operator != (Vec4q const & a, Vec4q const & b) {
    return Vec4qb(Vec4q(~(a == b)));
}
  
// vector operator < : returns true for elements for which a < b
static inline Vec4qb operator < (Vec4q const & a, Vec4q const & b) {
    return _mm256_cmpgt_epi64(b, a);
}

// vector operator > : returns true for elements for which a > b
static inline Vec4qb operator > (Vec4q const & a, Vec4q const & b) {
    return b < a;
}

// vector operator >= : returns true for elements for which a >= b (signed)
static inline Vec4qb operator >= (Vec4q const & a, Vec4q const & b) {
    return Vec4qb(Vec4q(~(a < b)));
}

// vector operator <= : returns true for elements for which a <= b (signed)
static inline Vec4qb operator <= (Vec4q const & a, Vec4q const & b) {
    return b >= a;
}

// vector operator & : bitwise and
static inline Vec4q operator & (Vec4q const & a, Vec4q const & b) {
    return Vec4q(Vec256b(a) & Vec256b(b));
}
static inline Vec4q operator && (Vec4q const & a, Vec4q const & b) {
    return a & b;
}
// vector operator &= : bitwise and
static inline Vec4q & operator &= (Vec4q & a, Vec4q const & b) {
    a = a & b;
    return a;
}

// vector operator | : bitwise or
static inline Vec4q operator | (Vec4q const & a, Vec4q const & b) {
    return Vec4q(Vec256b(a) | Vec256b(b));
}
static inline Vec4q operator || (Vec4q const & a, Vec4q const & b) {
    return a | b;
}
// vector operator |= : bitwise or
static inline Vec4q & operator |= (Vec4q & a, Vec4q const & b) {
    a = a | b;
    return a;
}

// vector operator ^ : bitwise xor
static inline Vec4q operator ^ (Vec4q const & a, Vec4q const & b) {
    return Vec4q(Vec256b(a) ^ Vec256b(b));
}
// vector operator ^= : bitwise xor
static inline Vec4q & operator ^= (Vec4q & a, Vec4q const & b) {
    a = a ^ b;
    return a;
}

// vector operator ~ : bitwise not
static inline Vec4q operator ~ (Vec4q const & a) {
    return Vec4q( ~ Vec256b(a));
}

// vector operator ! : logical not, returns true for elements == 0
static inline Vec4qb operator ! (Vec4q const & a) {
    return a == Vec4q(_mm256_setzero_si256());
}

// Functions for this class

// Select between two operands. Corresponds to this pseudocode:
// for (int i = 0; i < 4; i++) result[i] = s[i] ? a[i] : b[i];
// Each byte in s must be either 0 (false) or -1 (true). No other values are allowed.
// (s is signed)
static inline Vec4q select (Vec4qb const & s, Vec4q const & a, Vec4q const & b) {
    return selectb(s,a,b);
}

// Conditional add: For all vector elements i: result[i] = f[i] ? (a[i] + b[i]) : a[i]
static inline Vec4q if_add (Vec4qb const & f, Vec4q const & a, Vec4q const & b) {
    return a + (Vec4q(f) & b);
}

// Horizontal add: Calculates the sum of all vector elements.
// Overflow will wrap around
static inline int64_t horizontal_add (Vec4q const & a) {
    __m256i sum1  = _mm256_shuffle_epi32(a,0x0E);                     // high element
    __m256i sum2  = _mm256_add_epi64(a,sum1);                         // sum
#if defined (_MSC_VER) && _MSC_VER <= 1700 && ! defined(__INTEL_COMPILER)
    __m128i sum3  = _mm256_extractf128_si256(sum2, 1);                // bug in MS compiler VS 11
#else
    __m128i sum3  = _mm256_extracti128_si256(sum2, 1);                // get high part
#endif
    __m128i sum4  = _mm_add_epi64(_mm256_castsi256_si128(sum2),sum3); // add low and high parts
#if defined(__x86_64__)
    return          _mm_cvtsi128_si64(sum4);                          // 64 bit mode
#else
    union {
        __m128i x;  // silly definition of _mm256_storel_epi64 requires __m256i
        uint64_t i;
    } u;
    _mm_storel_epi64(&u.x,sum4);
    return u.i;
#endif
}

// function max: a > b ? a : b
static inline Vec4q max(Vec4q const & a, Vec4q const & b) {
    return select(a > b, a, b);
}

// function min: a < b ? a : b
static inline Vec4q min(Vec4q const & a, Vec4q const & b) {
    return select(a < b, a, b);
}

// function abs: a >= 0 ? a : -a
static inline Vec4q abs(Vec4q const & a) {
    __m256i sign  = _mm256_cmpgt_epi64(_mm256_setzero_si256(), a);// 0 > a
    __m256i inv   = _mm256_xor_si256(a, sign);                    // invert bits if negative
    return          _mm256_sub_epi64(inv, sign);                  // add 1
}

// function abs_saturated: same as abs, saturate if overflow
static inline Vec4q abs_saturated(Vec4q const & a) {
    __m256i absa   = abs(a);                                        // abs(a)
    __m256i overfl = _mm256_cmpgt_epi64(_mm256_setzero_si256(), absa); // 0 > a
    return           _mm256_add_epi64(absa, overfl);                // subtract 1 if 0x8000000000000000
}

// function rotate_left all elements
// Use negative count to rotate right
static inline Vec4q rotate_left(Vec4q const & a, int b) {
#ifdef __AVX512VL__
    return _mm256_rolv_epi64(a, _mm256_set1_epi64x(int64_t(b)));
#else
    __m256i left  = _mm256_sll_epi64(a,_mm_cvtsi32_si128(b & 0x3F));      // a << b 
    __m256i right = _mm256_srl_epi64(a,_mm_cvtsi32_si128((64-b) & 0x3F)); // a >> (64 - b)
    __m256i rot   = _mm256_or_si256(left, right);                         // or
    return  rot;
#endif
}


/*****************************************************************************
*
*          Vector of 4 64-bit unsigned integers
*
*****************************************************************************/

class Vec4uq : public Vec4q {
public:
    // Default constructor:
    Vec4uq() {
    }
    // Constructor to broadcast the same value into all elements:
    Vec4uq(uint64_t i) {
        ymm = Vec4q(i);
    }
    // Constructor to build from all elements:
    Vec4uq(uint64_t i0, uint64_t i1, uint64_t i2, uint64_t i3) {
        ymm = Vec4q(i0, i1, i2, i3);
    }
    // Constructor to build from two Vec2uq:
    Vec4uq(Vec2uq const & a0, Vec2uq const & a1) {
        ymm = set_m128ir(a0, a1);
    }
    // Constructor to convert from type __m256i used in intrinsics:
    Vec4uq(__m256i const & x) {
        ymm = x;
    }
    // Assignment operator to convert from type __m256i used in intrinsics:
    Vec4uq & operator = (__m256i const & x) {
        ymm = x;
        return *this;
    }
    // Member function to load from array (unaligned)
    Vec4uq & load(void const * p) {
        ymm = _mm256_loadu_si256((__m256i const*)p);
        return *this;
    }
    // Member function to load from array, aligned by 32
    Vec4uq & load_a(void const * p) {
        ymm = _mm256_load_si256((__m256i const*)p);
        return *this;
    }
    // Member function to change a single element in vector
    // Note: This function is inefficient. Use load function if changing more than one element
    Vec4uq const & insert(uint32_t index, uint64_t value) {
        Vec4q::insert(index, value);
        return *this;
    }
    // Member function extract a single element from vector
    uint64_t extract(uint32_t index) const {
        return Vec4q::extract(index);
    }
    // Extract a single element. Use store function if extracting more than one element.
    // Operator [] can only read an element, not write.
    uint64_t operator [] (uint32_t index) const {
        return extract(index);
    }
    // Member functions to split into two Vec2uq:
    Vec2uq get_low() const {
        return _mm256_castsi256_si128(ymm);
    }
    Vec2uq get_high() const {
        return _mm256_extractf128_si256(ymm,1);
    }
};

// Define operators for this class

// vector operator + : add
static inline Vec4uq operator + (Vec4uq const & a, Vec4uq const & b) {
    return Vec4uq (Vec4q(a) + Vec4q(b));
}

// vector operator - : subtract
static inline Vec4uq operator - (Vec4uq const & a, Vec4uq const & b) {
    return Vec4uq (Vec4q(a) - Vec4q(b));
}

// vector operator * : multiply element by element
static inline Vec4uq operator * (Vec4uq const & a, Vec4uq const & b) {
    return Vec4uq (Vec4q(a) * Vec4q(b));
}

// vector operator >> : shift right logical all elements
static inline Vec4uq operator >> (Vec4uq const & a, uint32_t b) {
    return _mm256_srl_epi64(a,_mm_cvtsi32_si128(b)); 
}

// vector operator >> : shift right logical all elements
static inline Vec4uq operator >> (Vec4uq const & a, int32_t b) {
    return a >> (uint32_t)b;
}

// vector operator >>= : shift right artihmetic
static inline Vec4uq & operator >>= (Vec4uq & a, uint32_t b) {
    a = a >> b;
    return a;
} 

// vector operator << : shift left all elements
static inline Vec4uq operator << (Vec4uq const & a, uint32_t b) {
    return Vec4uq ((Vec4q)a << (int32_t)b);
}

// vector operator << : shift left all elements
static inline Vec4uq operator << (Vec4uq const & a, int32_t b) {
    return Vec4uq ((Vec4q)a << b);
}

// vector operator > : returns true for elements for which a > b (unsigned)
static inline Vec4qb operator > (Vec4uq const & a, Vec4uq const & b) {
//#if defined ( __XOP__ ) // AMD XOP instruction set
    __m256i sign64 = Vec4uq(0x8000000000000000);
    __m256i aflip  = _mm256_xor_si256(a, sign64);
    __m256i bflip  = _mm256_xor_si256(b, sign64);
    Vec4q   cmp    = _mm256_cmpgt_epi64(aflip,bflip);
    return Vec4qb(cmp);
}

// vector operator < : returns true for elements for which a < b (unsigned)
static inline Vec4qb operator < (Vec4uq const & a, Vec4uq const & b) {
    return b > a;
}

// vector operator >= : returns true for elements for which a >= b (unsigned)
static inline Vec4qb operator >= (Vec4uq const & a, Vec4uq const & b) {
    return  Vec4qb(Vec4q(~(b > a)));
}

// vector operator <= : returns true for elements for which a <= b (unsigned)
static inline Vec4qb operator <= (Vec4uq const & a, Vec4uq const & b) {
    return b >= a;
}

// vector operator & : bitwise and
static inline Vec4uq operator & (Vec4uq const & a, Vec4uq const & b) {
    return Vec4uq(Vec256b(a) & Vec256b(b));
}
static inline Vec4uq operator && (Vec4uq const & a, Vec4uq const & b) {
    return a & b;
}

// vector operator | : bitwise or
static inline Vec4uq operator | (Vec4uq const & a, Vec4uq const & b) {
    return Vec4uq(Vec256b(a) | Vec256b(b));
}
static inline Vec4uq operator || (Vec4uq const & a, Vec4uq const & b) {
    return a | b;
}

// vector operator ^ : bitwise xor
static inline Vec4uq operator ^ (Vec4uq const & a, Vec4uq const & b) {
    return Vec4uq(Vec256b(a) ^ Vec256b(b));
}

// Functions for this class

// Select between two operands. Corresponds to this pseudocode:
// for (int i = 0; i < 4; i++) result[i] = s[i] ? a[i] : b[i];
// Each word in s must be either 0 (false) or -1 (true). No other values are allowed.
// (s is signed)
static inline Vec4uq select (Vec4qb const & s, Vec4uq const & a, Vec4uq const & b) {
    return selectb(s,a,b);
}

// Conditional add: For all vector elements i: result[i] = f[i] ? (a[i] + b[i]) : a[i]
static inline Vec4uq if_add (Vec4qb const & f, Vec4uq const & a, Vec4uq const & b) {
    return a + (Vec4uq(f) & b);
}

// Horizontal add: Calculates the sum of all vector elements.
// Overflow will wrap around
static inline uint64_t horizontal_add (Vec4uq const & a) {
    return horizontal_add((Vec4q)a);
}

// Horizontal add extended: Calculates the sum of all vector elements.
// Elements are sing/zero extended before adding to avoid overflow
static inline int64_t horizontal_add_x (Vec8i const & a) {
    __m256i signs = _mm256_srai_epi32(a,31);                          // sign of all elements
    Vec4q   a01   = _mm256_unpacklo_epi32(a,signs);                   // sign-extended a0, a1, a4, a5
    Vec4q   a23   = _mm256_unpackhi_epi32(a,signs);                   // sign-extended a2, a3, a6, a7
    return  horizontal_add(a01 + a23);
}

static inline uint64_t horizontal_add_x (Vec8ui const & a) {
    __m256i zero  = _mm256_setzero_si256();                           // 0
    __m256i a01   = _mm256_unpacklo_epi32(a,zero);                    // zero-extended a0, a1
    __m256i a23   = _mm256_unpackhi_epi32(a,zero);                    // zero-extended a2, a3
    return horizontal_add(Vec4q(a01) + Vec4q(a23));
}

// function max: a > b ? a : b
static inline Vec4uq max(Vec4uq const & a, Vec4uq const & b) {
    return Vec4uq(select(a > b, a, b));
}

// function min: a < b ? a : b
static inline Vec4uq min(Vec4uq const & a, Vec4uq const & b) {
    return Vec4uq(select(a > b, b, a));
}


/*****************************************************************************
*
*          Vector permute functions
*
******************************************************************************
*
* These permute functions can reorder the elements of a vector and optionally
* set some elements to zero. 
*
* The indexes are inserted as template parameters in <>. These indexes must be
* constants. Each template parameter is an index to the element you want to select.
* An index of -1 will generate zero. An index of -256 means don't care.
*
* Example:
* Vec8i a(10,11,12,13,14,15,16,17);      // a is (10,11,12,13,14,15,16,17)
* Vec8i b;
* b = permute8i<0,2,7,7,-1,-1,1,1>(a);   // b is (10,12,17,17, 0, 0,11,11)
*
* A lot of the code here is metaprogramming aiming to find the instructions
* that best fit the template parameters and instruction set. The metacode
* will be reduced out to leave only a few vector instructions in release
* mode with optimization on.
*****************************************************************************/

// Permute vector of 4 64-bit integers.
// Index -1 gives 0, index -256 means don't care.
template <int i0, int i1, int i2, int i3 >
static inline Vec4q permute4q(Vec4q const & a) {

    // Combine indexes into a single bitfield, with 8 bits for each
    const int m1 = (i0 & 3) | (i1 & 3) << 8 | (i2 & 3) << 16 | (i3 & 3) << 24;

    // Mask to zero out negative indexes
    const int mz = (i0<0 ? 0 : 0xFF) | (i1<0 ? 0 : 0xFF) << 8 | (i2<0 ? 0 : 0xFF) << 16 | (i3<0 ? 0 : 0xFF) << 24;

    // zeroing needed
    const bool dozero = ((i0|i1|i2|i3) & 0x80) != 0;

    if (((m1 ^ 0x03020100) & mz) == 0) {
        // no shuffling
        if (dozero) {
            // zero some elements
            const __m256i maskz = constant8i <
                i0 < 0 ? 0 : -1, i0 < 0 ? 0 : -1, i1 < 0 ? 0 : -1, i1 < 0 ? 0 : -1, 
                i2 < 0 ? 0 : -1, i2 < 0 ? 0 : -1, i3 < 0 ? 0 : -1, i3 < 0 ? 0 : -1 > ();                    
            return _mm256_and_si256(a, maskz);
        }
        return a;                                 // do nothing
    }

    if (((m1 ^ 0x02020000) & 0x02020202 & mz) == 0) {
        // no exchange of data between low and high half

        if (((m1 ^ (m1 >> 16)) & 0x0101 & mz & (mz >> 16)) == 0 && !dozero) {
            // same pattern in low and high half. use VPSHUFD
            const int sd = (((i0>=0)?(i0&1):(i2&1)) * 10 + 4) | (((i1>=0)?(i1&1):(i3&1)) * 10 + 4) << 4;
            return _mm256_shuffle_epi32(a, sd);
        }

        // use VPSHUFB
        const __m256i mm = constant8i <
            i0 < 0 ? -1 : (i0 & 1) * 0x08080808 + 0x03020100,
            i0 < 0 ? -1 : (i0 & 1) * 0x08080808 + 0x07060504,
            i1 < 0 ? -1 : (i1 & 1) * 0x08080808 + 0x03020100,
            i1 < 0 ? -1 : (i1 & 1) * 0x08080808 + 0x07060504,
            i2 < 0 ? -1 : (i2 & 1) * 0x08080808 + 0x03020100,
            i2 < 0 ? -1 : (i2 & 1) * 0x08080808 + 0x07060504,
            i3 < 0 ? -1 : (i3 & 1) * 0x08080808 + 0x03020100,
            i3 < 0 ? -1 : (i3 & 1) * 0x08080808 + 0x07060504 > ();
        return _mm256_shuffle_epi8(a, mm);
    }

    // general case. Use VPERMQ
    const int ms = (i0 & 3) | (i1 & 3) << 2 | (i2 & 3) << 4 | (i3 & 3) << 6;        
    __m256i t1 = _mm256_permute4x64_epi64(a, ms);

    if (dozero) {
        // zero some elements
        const __m256i maskz = constant8i <
            i0 < 0 ? 0 : -1, i0 < 0 ? 0 : -1, i1 < 0 ? 0 : -1, i1 < 0 ? 0 : -1, 
            i2 < 0 ? 0 : -1, i2 < 0 ? 0 : -1, i3 < 0 ? 0 : -1, i3 < 0 ? 0 : -1 > ();                    
        return _mm256_and_si256(t1, maskz);
    }
    return t1;
}

template <int i0, int i1, int i2, int i3>
static inline Vec4uq permute4uq(Vec4uq const & a) {
    return Vec4uq (permute4q<i0,i1,i2,i3> (a));
}

// Permute vector of 8 32-bit integers.
// Index -1 gives 0, index -256 means don't care.
template <int i0, int i1, int i2, int i3, int i4, int i5, int i6, int i7 >
static inline Vec8i permute8i(Vec8i const & a) {

    // Combine indexes into a single bitfield, with 4 bits for each
    const int m1 = (i0&7) | (i1&7)<<4 | (i2&7)<<8 | (i3&7)<<12
        | (i4&7)<<16 | (i5&7)<<20 | (i6&7)<<24 | (i7&7)<<28;

    // Mask to zero out negative indexes
    const int mz = (i0<0?0:0xF) | (i1<0?0:0xF)<<4 | (i2<0?0:0xF)<<8 | (i3<0?0:0xF)<<12
        | (i4<0?0:0xF)<<16 | (i5<0?0:0xF)<<20 | (i6<0?0:0xF)<<24 | (i7<0?0:0xF)<<28;

    // zeroing needed
    const bool dozero = ((i0|i1|i2|i3|i4|i5|i6|i7) & 0x80) != 0;

    __m256i t1, mask;

    if (((m1 ^ 0x76543210) & mz) == 0) {
        // no shuffling
        if (dozero) {
            // zero some elements
            mask = constant8i <
                i0 < 0 ? 0 : -1, i1 < 0 ? 0 : -1, i2 < 0 ? 0 : -1, i3 < 0 ? 0 : -1, 
                i4 < 0 ? 0 : -1, i5 < 0 ? 0 : -1, i6 < 0 ? 0 : -1, i7 < 0 ? 0 : -1 > ();                    
            return _mm256_and_si256(a, mask);
        }
        return a;                                 // do nothing
    }

    // Check if we can use 64-bit permute. Even numbered indexes must be even and odd numbered
    // indexes must be equal to the preceding index + 1, except for negative indexes.
    if (((m1 ^ 0x10101010) & 0x11111111 & mz) == 0 && ((m1 ^ m1 >> 4) & 0x0E0E0E0E & mz & mz >> 4) == 0) {

        const bool partialzero = int((i0^i1)|(i2^i3)|(i4^i5)|(i6^i7)) < 0; // part of a 64-bit block is zeroed
        const int blank1 = partialzero ? -0x100 : -1;  // ignore or zero
        const int n0 = i0 > 0 ? i0 /2 : i1 > 0 ? i1 /2 : blank1;  // indexes for 64 bit blend
        const int n1 = i2 > 0 ? i2 /2 : i3 > 0 ? i3 /2 : blank1;
        const int n2 = i4 > 0 ? i4 /2 : i5 > 0 ? i5 /2 : blank1;
        const int n3 = i6 > 0 ? i6 /2 : i7 > 0 ? i7 /2 : blank1;
        // do 64-bit permute
        t1 = permute4q<n0,n1,n2,n3> (Vec4q(a));
        if (blank1 == -1 || !dozero) {    
            return  t1;
        }
        // need more zeroing
        mask = constant8i <
            i0 < 0 ? 0 : -1, i1 < 0 ? 0 : -1, i2 < 0 ? 0 : -1, i3 < 0 ? 0 : -1, 
            i4 < 0 ? 0 : -1, i5 < 0 ? 0 : -1, i6 < 0 ? 0 : -1, i7 < 0 ? 0 : -1 > ();                    
        return _mm256_and_si256(t1, mask);
    }

    if (((m1 ^ 0x44440000) & 0x44444444 & mz) == 0) {
        // no exchange of data between low and high half

        if (((m1 ^ (m1 >> 16)) & 0x3333 & mz & (mz >> 16)) == 0 && !dozero) {
            // same pattern in low and high half. use VPSHUFD
            const int sd = ((i0>=0)?(i0&3):(i4&3)) | ((i1>=0)?(i1&3):(i5&3)) << 2 |
                ((i2>=0)?(i2&3):(i6&3)) << 4 | ((i3>=0)?(i3&3):(i7&3)) << 6;
            return _mm256_shuffle_epi32(a, sd);
        }

        // use VPSHUFB
        mask = constant8i <
            i0 < 0 ? -1 : (i0 & 3) * 0x04040404 + 0x03020100,
            i1 < 0 ? -1 : (i1 & 3) * 0x04040404 + 0x03020100,
            i2 < 0 ? -1 : (i2 & 3) * 0x04040404 + 0x03020100,
            i3 < 0 ? -1 : (i3 & 3) * 0x04040404 + 0x03020100,
            i4 < 0 ? -1 : (i4 & 3) * 0x04040404 + 0x03020100,
            i5 < 0 ? -1 : (i5 & 3) * 0x04040404 + 0x03020100,
            i6 < 0 ? -1 : (i6 & 3) * 0x04040404 + 0x03020100,
            i7 < 0 ? -1 : (i7 & 3) * 0x04040404 + 0x03020100 > ();
        return _mm256_shuffle_epi8(a, mask);
    }

    // general case. Use VPERMD
    mask = constant8i <
        i0 < 0 ? -1 : (i0 & 7), i1 < 0 ? -1 : (i1 & 7),
        i2 < 0 ? -1 : (i2 & 7), i3 < 0 ? -1 : (i3 & 7),
        i4 < 0 ? -1 : (i4 & 7), i5 < 0 ? -1 : (i5 & 7),
        i6 < 0 ? -1 : (i6 & 7), i7 < 0 ? -1 : (i7 & 7) > ();
#if defined (_MSC_VER) && _MSC_VER < 1700 && ! defined(__INTEL_COMPILER)
    // bug in MS VS 11 beta: operands in wrong order. fixed in v. 11.0
    t1 = _mm256_permutevar8x32_epi32(mask, a);   // ms
#elif defined (GCC_VERSION) && GCC_VERSION <= 40700 && !defined(__INTEL_COMPILER) && !defined(__clang__)
    // Gcc 4.7.0 also has operands in wrong order. fixed in version 4.7.1
    t1 = _mm256_permutevar8x32_epi32(mask, a);   // GCC
#else
    t1 = _mm256_permutevar8x32_epi32(a, mask);   // no-bug version
#endif

    if (dozero) {
        // zero some elements
        mask = constant8i <
            i0 < 0 ? 0 : -1, i1 < 0 ? 0 : -1, i2 < 0 ? 0 : -1, i3 < 0 ? 0 : -1, 
            i4 < 0 ? 0 : -1, i5 < 0 ? 0 : -1, i6 < 0 ? 0 : -1, i7 < 0 ? 0 : -1 > ();                    
        return _mm256_and_si256(t1, mask);
    }
    return t1;
}

template <int i0, int i1, int i2, int i3, int i4, int i5, int i6, int i7 >
static inline Vec8ui permute8ui(Vec8ui const & a) {
    return Vec8ui (permute8i<i0,i1,i2,i3,i4,i5,i6,i7> (a));
}

// Permute vector of 16 16-bit integers.
// Index -1 gives 0, index -256 means don't care.
template <int i0, int i1, int i2, int i3, int i4, int i5, int i6, int i7,
    int i8, int i9, int i10, int i11, int i12, int i13, int i14, int i15 >
static inline Vec16s permute16s(Vec16s const & a) {

    // Combine indexes 0 - 7 into a single bitfield, with 4 bits for each
    const int mlo = (i0&0xF) | (i1&0xF)<<4 | (i2&0xF)<<8 | (i3&0xF)<<12 
        | (i4&0xF)<<16 | (i5&0xF)<<20 | (i6&0xF)<<24 | (i7&0xF)<<28; 

    // Combine indexes 8 - 15 into a single bitfield, with 4 bits for each
    const int mhi = (i8&0xF) | (i9&0xF)<<4 | (i10&0xF)<<8 | (i11&0xF)<<12 
        | (i12&0xF)<<16 | (i13&0xF)<<20 | (i14&0xF)<<24 | (i15&0xF)<<28;

    // Mask to zero out negative indexes 0 - 7
    const int zlo = (i0<0?0:0xF) | (i1<0?0:0xF)<<4 | (i2<0?0:0xF)<<8 | (i3<0?0:0xF)<<12
        | (i4<0?0:0xF)<<16 | (i5<0?0:0xF)<<20 | (i6<0?0:0xF)<<24 | (i7<0?0:0xF)<<28;

    // Mask to zero out negative indexes 8 - 15
    const int zhi = (i8<0?0:0xF) | (i9<0?0:0xF)<<4 | (i10<0?0:0xF)<<8 | (i11<0?0:0xF)<<12
        | (i12<0?0:0xF)<<16 | (i13<0?0:0xF)<<20 | (i14<0?0:0xF)<<24 | (i15<0?0:0xF)<<28;

    // zeroing needed
    const bool dozero = ((i0|i1|i2|i3|i4|i5|i6|i7|i8|i9|i10|i11|i12|i13|i14|i15) & 0x80) != 0;

    __m256i t1, mask;

    // special case: all zero
    if (zlo == 0 && zhi == 0) {
        return _mm256_setzero_si256();
    }

    // special case: rotate 128 bits
    if (i0>=0 && i0 < 16 && i1 ==((i0+1)&7) && i2 ==((i0+2)&7) && i3 ==((i0+3)&7) && i4 ==((i0+4)&7) && i5 ==((i0+5)&7) && i6 ==((i0+6)&7) && i7 ==((i0+7)&7) 
        && i8 ==i0 +8 && i9 ==i1 +8 && i10==i2 +8 && i11==i3 +8 && i12==i4 +8 && i13==i5 +8 && i14==i6 +8 && i15==i7 +8 ) {
        return _mm256_alignr_epi8(a, a, (i0 & 7) * 2);
    }

    // special case: rotate 256 bits
    if (i0>=0 && i0 < 16     && i1 ==((i0+1 )&15) && i2 ==((i0+2 )&15) && i3 ==((i0+3 )&15) && i4 ==((i0+4 )&15) && i5 ==((i0+5 )&15) && i6 ==((i0+6 )&15) && i7 ==((i0+7 )&15) 
        && i8 ==((i0+8 )&15) && i9 ==((i0+9 )&15) && i10==((i0+10)&15) && i11==((i0+11)&15) && i12==((i0+12)&15) && i13==((i0+13)&15) && i14==((i0+14)&15) && i15==((i0+15)&15)) {
        t1 = _mm256_permute4x64_epi64(a, 0x4E);
        return _mm256_alignr_epi8(a, t1, (i0 & 7) * 2);
    }

    // special case: no exchange of data between 64-bit sections, and same pattern in low and high 128 bits:
    // can use VPSHUFLW or VPSHUFHW
    if (((mlo ^ 0x44440000) & 0xCCCCCCCC & zlo) == 0 && ((mhi ^ 0xCCCC8888) & 0xCCCCCCCC & zhi) == 0
        && ((mlo ^ mhi) & 0x33333333 & zlo & zhi) == 0) {

        const int slo = (i0 >= 0 ? (i0&3) : i8 >= 0 ? (i8&3) : 0) | (i1 >= 0 ? (i1&3) : i9 >= 0 ? (i9&3) : 1) << 2 
            | (i2 >= 0 ? (i2&3) : i10 >= 0 ? (i10&3) : 2) << 4 | (i3 >= 0 ? (i3&3) : i11 >= 0 ? (i11&3) : 3) << 6;

        const int shi = (i4 >= 0 ? (i4&3) : i12 >= 0 ? (i12&3) : 0) | (i5 >= 0 ? (i5&3) : i13 >= 0 ? (i13&3) : 1) << 2 
            | (i6 >= 0 ? (i6&3) : i14 >= 0 ? (i14&3) : 2) << 4 | (i7 >= 0 ? (i7&3) : i15 >= 0 ? (i15&3) : 3) << 6;

        if (shi == 0xE4 && slo == 0xE4) {             // no permute
            if (dozero) {
                // zero some elements
                const __m256i maskz = constant8i<
                    int((i0 <0?0:0xFFFF) | (i1 <0?0:0xFFFF0000)),
                    int((i2 <0?0:0xFFFF) | (i3 <0?0:0xFFFF0000)),
                    int((i4 <0?0:0xFFFF) | (i5 <0?0:0xFFFF0000)),
                    int((i6 <0?0:0xFFFF) | (i7 <0?0:0xFFFF0000)),
                    int((i8 <0?0:0xFFFF) | (i9 <0?0:0xFFFF0000)),
                    int((i10<0?0:0xFFFF) | (i11<0?0:0xFFFF0000)),
                    int((i12<0?0:0xFFFF) | (i13<0?0:0xFFFF0000)),
                    int((i14<0?0:0xFFFF) | (i15<0?0:0xFFFF0000)) > ();                    
                return _mm256_and_si256(a, maskz);
            }
            return a;                                 // do nothing
        }
        if (shi == 0xE4 && !dozero) {
            return _mm256_shufflelo_epi16(a, slo);    // low permute only
        }
        if (slo == 0xE4 && !dozero) {
            return _mm256_shufflehi_epi16(a, shi);    // high permute only
        }
    }
    
    // Check if we can use 32-bit permute. Even numbered indexes must be even and odd numbered
    // indexes must be equal to the preceding index + 1, except for negative indexes.
    if (((mlo ^ 0x10101010) & 0x11111111 & zlo) == 0 && ((mlo ^ mlo >> 4) & 0x0E0E0E0E & zlo & zlo >> 4) == 0 &&
        ((mhi ^ 0x10101010) & 0x11111111 & zhi) == 0 && ((mhi ^ mhi >> 4) & 0x0E0E0E0E & zhi & zhi >> 4) == 0 ) {

        const bool partialzero = int((i0^i1)|(i2^i3)|(i4^i5)|(i6^i7)|(i8^i9)|(i10^i11)|(i12^i13)|(i14^i15)) < 0; // part of a 32-bit block is zeroed
        const int blank1 = partialzero ? -0x100 : -1;  // ignore or zero
        const int n0 = i0 > 0 ? i0 /2 : i1 > 0 ? i1 /2 : blank1;  // indexes for 64 bit blend
        const int n1 = i2 > 0 ? i2 /2 : i3 > 0 ? i3 /2 : blank1;
        const int n2 = i4 > 0 ? i4 /2 : i5 > 0 ? i5 /2 : blank1;
        const int n3 = i6 > 0 ? i6 /2 : i7 > 0 ? i7 /2 : blank1;
        const int n4 = i8 > 0 ? i8 /2 : i9 > 0 ? i9 /2 : blank1;
        const int n5 = i10> 0 ? i10/2 : i11> 0 ? i11/2 : blank1;
        const int n6 = i12> 0 ? i12/2 : i13> 0 ? i13/2 : blank1;
        const int n7 = i14> 0 ? i14/2 : i15> 0 ? i15/2 : blank1;
        // do 32-bit permute
        t1 = permute8i<n0,n1,n2,n3,n4,n5,n6,n7> (Vec8i(a));
        if (blank1 == -1 || !dozero) {    
            return  t1;
        }
        // need more zeroing
        mask = constant8i<
            int((i0 <0?0:0xFFFF) | (i1 <0?0:0xFFFF0000)),
            int((i2 <0?0:0xFFFF) | (i3 <0?0:0xFFFF0000)),
            int((i4 <0?0:0xFFFF) | (i5 <0?0:0xFFFF0000)),
            int((i6 <0?0:0xFFFF) | (i7 <0?0:0xFFFF0000)),
            int((i8 <0?0:0xFFFF) | (i9 <0?0:0xFFFF0000)),
            int((i10<0?0:0xFFFF) | (i11<0?0:0xFFFF0000)),
            int((i12<0?0:0xFFFF) | (i13<0?0:0xFFFF0000)),
            int((i14<0?0:0xFFFF) | (i15<0?0:0xFFFF0000)) > ();                    
        return _mm256_and_si256(t1, mask);
    }

    // special case: all elements from same half
    if ((mlo & 0x88888888 & zlo) == 0 && ((mhi ^ 0x88888888) & 0x88888888 & zhi) == 0) {
        mask = constant8i<
            (i0  < 0 ? 0xFFFF : (i0  & 7) * 0x202 + 0x100) | (i1  < 0 ? 0xFFFF : (i1  & 7) * 0x202 + 0x100) << 16,
            (i2  < 0 ? 0xFFFF : (i2  & 7) * 0x202 + 0x100) | (i3  < 0 ? 0xFFFF : (i3  & 7) * 0x202 + 0x100) << 16,
            (i4  < 0 ? 0xFFFF : (i4  & 7) * 0x202 + 0x100) | (i5  < 0 ? 0xFFFF : (i5  & 7) * 0x202 + 0x100) << 16,
            (i6  < 0 ? 0xFFFF : (i6  & 7) * 0x202 + 0x100) | (i7  < 0 ? 0xFFFF : (i7  & 7) * 0x202 + 0x100) << 16,
            (i8  < 0 ? 0xFFFF : (i8  & 7) * 0x202 + 0x100) | (i9  < 0 ? 0xFFFF : (i9  & 7) * 0x202 + 0x100) << 16,
            (i10 < 0 ? 0xFFFF : (i10 & 7) * 0x202 + 0x100) | (i11 < 0 ? 0xFFFF : (i11 & 7) * 0x202 + 0x100) << 16,
            (i12 < 0 ? 0xFFFF : (i12 & 7) * 0x202 + 0x100) | (i13 < 0 ? 0xFFFF : (i13 & 7) * 0x202 + 0x100) << 16,
            (i14 < 0 ? 0xFFFF : (i14 & 7) * 0x202 + 0x100) | (i15 < 0 ? 0xFFFF : (i15 & 7) * 0x202 + 0x100) << 16 > ();
        return _mm256_shuffle_epi8(a, mask);
    }

    // special case: all elements from low half
    if ((mlo & 0x88888888 & zlo) == 0 && (mhi & 0x88888888 & zhi) == 0) {
        mask = constant8i<
            (i0  < 0 ? 0xFFFF : (i0  & 7) * 0x202 + 0x100) | (i1  < 0 ? 0xFFFF : (i1  & 7) * 0x202 + 0x100) << 16,
            (i2  < 0 ? 0xFFFF : (i2  & 7) * 0x202 + 0x100) | (i3  < 0 ? 0xFFFF : (i3  & 7) * 0x202 + 0x100) << 16,
            (i4  < 0 ? 0xFFFF : (i4  & 7) * 0x202 + 0x100) | (i5  < 0 ? 0xFFFF : (i5  & 7) * 0x202 + 0x100) << 16,
            (i6  < 0 ? 0xFFFF : (i6  & 7) * 0x202 + 0x100) | (i7  < 0 ? 0xFFFF : (i7  & 7) * 0x202 + 0x100) << 16,
            (i8  < 0 ? 0xFFFF : (i8  & 7) * 0x202 + 0x100) | (i9  < 0 ? 0xFFFF : (i9  & 7) * 0x202 + 0x100) << 16,
            (i10 < 0 ? 0xFFFF : (i10 & 7) * 0x202 + 0x100) | (i11 < 0 ? 0xFFFF : (i11 & 7) * 0x202 + 0x100) << 16,
            (i12 < 0 ? 0xFFFF : (i12 & 7) * 0x202 + 0x100) | (i13 < 0 ? 0xFFFF : (i13 & 7) * 0x202 + 0x100) << 16,
            (i14 < 0 ? 0xFFFF : (i14 & 7) * 0x202 + 0x100) | (i15 < 0 ? 0xFFFF : (i15 & 7) * 0x202 + 0x100) << 16 > ();
        t1 = _mm256_inserti128_si256(a, _mm256_castsi256_si128(a), 1);  // low, low
        return _mm256_shuffle_epi8(t1, mask);
    }

    // special case: all elements from high half
    if (((mlo ^ 0x88888888) & 0x88888888 & zlo) == 0 && ((mhi ^ 0x88888888) & 0x88888888 & zhi) == 0) {
        mask = constant8i<
            (i0  < 0 ? 0xFFFF : (i0  & 7) * 0x202 + 0x100) | (i1  < 0 ? 0xFFFF : (i1  & 7) * 0x202 + 0x100) << 16,
            (i2  < 0 ? 0xFFFF : (i2  & 7) * 0x202 + 0x100) | (i3  < 0 ? 0xFFFF : (i3  & 7) * 0x202 + 0x100) << 16,
            (i4  < 0 ? 0xFFFF : (i4  & 7) * 0x202 + 0x100) | (i5  < 0 ? 0xFFFF : (i5  & 7) * 0x202 + 0x100) << 16,
            (i6  < 0 ? 0xFFFF : (i6  & 7) * 0x202 + 0x100) | (i7  < 0 ? 0xFFFF : (i7  & 7) * 0x202 + 0x100) << 16,
            (i8  < 0 ? 0xFFFF : (i8  & 7) * 0x202 + 0x100) | (i9  < 0 ? 0xFFFF : (i9  & 7) * 0x202 + 0x100) << 16,
            (i10 < 0 ? 0xFFFF : (i10 & 7) * 0x202 + 0x100) | (i11 < 0 ? 0xFFFF : (i11 & 7) * 0x202 + 0x100) << 16,
            (i12 < 0 ? 0xFFFF : (i12 & 7) * 0x202 + 0x100) | (i13 < 0 ? 0xFFFF : (i13 & 7) * 0x202 + 0x100) << 16,
            (i14 < 0 ? 0xFFFF : (i14 & 7) * 0x202 + 0x100) | (i15 < 0 ? 0xFFFF : (i15 & 7) * 0x202 + 0x100) << 16 > ();
        t1 = _mm256_permute4x64_epi64(a, 0xEE);  // high, high
        return _mm256_shuffle_epi8(t1, mask);
    }

    // special case: all elements from opposite half
    if (((mlo ^ 0x88888888) & 0x88888888 & zlo) == 0 && (mhi & 0x88888888 & zhi) == 0) {
        mask = constant8i<
            (i0  < 0 ? 0xFFFF : (i0  & 7) * 0x202 + 0x100) | (i1  < 0 ? 0xFFFF : (i1  & 7) * 0x202 + 0x100) << 16,
            (i2  < 0 ? 0xFFFF : (i2  & 7) * 0x202 + 0x100) | (i3  < 0 ? 0xFFFF : (i3  & 7) * 0x202 + 0x100) << 16,
            (i4  < 0 ? 0xFFFF : (i4  & 7) * 0x202 + 0x100) | (i5  < 0 ? 0xFFFF : (i5  & 7) * 0x202 + 0x100) << 16,
            (i6  < 0 ? 0xFFFF : (i6  & 7) * 0x202 + 0x100) | (i7  < 0 ? 0xFFFF : (i7  & 7) * 0x202 + 0x100) << 16,
            (i8  < 0 ? 0xFFFF : (i8  & 7) * 0x202 + 0x100) | (i9  < 0 ? 0xFFFF : (i9  & 7) * 0x202 + 0x100) << 16,
            (i10 < 0 ? 0xFFFF : (i10 & 7) * 0x202 + 0x100) | (i11 < 0 ? 0xFFFF : (i11 & 7) * 0x202 + 0x100) << 16,
            (i12 < 0 ? 0xFFFF : (i12 & 7) * 0x202 + 0x100) | (i13 < 0 ? 0xFFFF : (i13 & 7) * 0x202 + 0x100) << 16,
            (i14 < 0 ? 0xFFFF : (i14 & 7) * 0x202 + 0x100) | (i15 < 0 ? 0xFFFF : (i15 & 7) * 0x202 + 0x100) << 16 > ();
        t1 = _mm256_permute4x64_epi64(a, 0x4E);  // high, low
        return _mm256_shuffle_epi8(t1, mask);
    }

    // general case: elements from both halves
    const __m256i mmsame = constant8i<
            ((i0 ^8) < 8 ? 0xFFFF : (i0  & 7) * 0x202 + 0x100) | ((i1 ^8) < 8 ? 0xFFFF : (i1  & 7) * 0x202 + 0x100) << 16,
            ((i2 ^8) < 8 ? 0xFFFF : (i2  & 7) * 0x202 + 0x100) | ((i3 ^8) < 8 ? 0xFFFF : (i3  & 7) * 0x202 + 0x100) << 16,
            ((i4 ^8) < 8 ? 0xFFFF : (i4  & 7) * 0x202 + 0x100) | ((i5 ^8) < 8 ? 0xFFFF : (i5  & 7) * 0x202 + 0x100) << 16,
            ((i6 ^8) < 8 ? 0xFFFF : (i6  & 7) * 0x202 + 0x100) | ((i7 ^8) < 8 ? 0xFFFF : (i7  & 7) * 0x202 + 0x100) << 16,
            (i8  < 8 ? 0xFFFF : (i8  & 7) * 0x202 + 0x100) | (i9  < 8 ? 0xFFFF : (i9  & 7) * 0x202 + 0x100) << 16,
            (i10 < 8 ? 0xFFFF : (i10 & 7) * 0x202 + 0x100) | (i11 < 8 ? 0xFFFF : (i11 & 7) * 0x202 + 0x100) << 16,
            (i12 < 8 ? 0xFFFF : (i12 & 7) * 0x202 + 0x100) | (i13 < 8 ? 0xFFFF : (i13 & 7) * 0x202 + 0x100) << 16,
            (i14 < 8 ? 0xFFFF : (i14 & 7) * 0x202 + 0x100) | (i15 < 8 ? 0xFFFF : (i15 & 7) * 0x202 + 0x100) << 16 > ();

    const __m256i mmopposite = constant8i<
            (i0  < 8 ? 0xFFFF : (i0  & 7) * 0x202 + 0x100) | (i1  < 8 ? 0xFFFF : (i1  & 7) * 0x202 + 0x100) << 16,
            (i2  < 8 ? 0xFFFF : (i2  & 7) * 0x202 + 0x100) | (i3  < 8 ? 0xFFFF : (i3  & 7) * 0x202 + 0x100) << 16,
            (i4  < 8 ? 0xFFFF : (i4  & 7) * 0x202 + 0x100) | (i5  < 8 ? 0xFFFF : (i5  & 7) * 0x202 + 0x100) << 16,
            (i6  < 8 ? 0xFFFF : (i6  & 7) * 0x202 + 0x100) | (i7  < 8 ? 0xFFFF : (i7  & 7) * 0x202 + 0x100) << 16,
            ((i8 ^8) < 8 ? 0xFFFF : (i8  & 7) * 0x202 + 0x100) | ((i9 ^8) < 8 ? 0xFFFF : (i9  & 7) * 0x202 + 0x100) << 16,
            ((i10^8) < 8 ? 0xFFFF : (i10 & 7) * 0x202 + 0x100) | ((i11^8) < 8 ? 0xFFFF : (i11 & 7) * 0x202 + 0x100) << 16,
            ((i12^8) < 8 ? 0xFFFF : (i12 & 7) * 0x202 + 0x100) | ((i13^8) < 8 ? 0xFFFF : (i13 & 7) * 0x202 + 0x100) << 16,
            ((i14^8) < 8 ? 0xFFFF : (i14 & 7) * 0x202 + 0x100) | ((i15^8) < 8 ? 0xFFFF : (i15 & 7) * 0x202 + 0x100) << 16 > ();

    __m256i topp = _mm256_permute4x64_epi64(a, 0x4E);  // high, low
    __m256i r1   = _mm256_shuffle_epi8(topp, mmopposite);
    __m256i r2   = _mm256_shuffle_epi8(a, mmsame);
    return         _mm256_or_si256(r1, r2);
}

template <int i0, int i1, int i2, int i3, int i4, int i5, int i6, int i7,
    int i8, int i9, int i10, int i11, int i12, int i13, int i14, int i15 >
static inline Vec16us permute16us(Vec16us const & a) {
    return Vec16us (permute16s<i0,i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14,i15> (a));
}

template <int i0,  int i1,  int i2,  int i3,  int i4,  int i5,  int i6,  int i7, 
          int i8,  int i9,  int i10, int i11, int i12, int i13, int i14, int i15,
          int i16, int i17, int i18, int i19, int i20, int i21, int i22, int i23,
          int i24, int i25, int i26, int i27, int i28, int i29, int i30, int i31 >
static inline Vec32c permute32c(Vec32c const & a) {

    // collect bit 4 of each index
    const int m1 = 
        (i0 &16)>>4  | (i1 &16)>>3  | (i2 &16)>>2  | (i3 &16)>>1  | (i4 &16)     | (i5 &16)<<1  | (i6 &16)<<2  | (i7 &16)<<3  | 
        (i8 &16)<<4  | (i9 &16)<<5  | (i10&16)<<6  | (i11&16)<<7  | (i12&16)<<8  | (i13&16)<<9  | (i14&16)<<10 | (i15&16)<<11 | 
        (i16&16)<<12 | (i17&16)<<13 | (i18&16)<<14 | (i19&16)<<15 | (i20&16)<<16 | (i21&16)<<17 | (i22&16)<<18 | (i23&16)<<19 | 
        (i24&16)<<20 | (i25&16)<<21 | (i26&16)<<22 | (i27&16)<<23 | (i28&16)<<24 | (i29&16)<<25 | (i30&16)<<26 | (i31&16)<<27 ;

    // check which elements to set to zero
    const int mz = ~ (
        (i0 <0)     | (i1 <0)<<1  | (i2 <0)<<2  | (i3 <0)<<3  | (i4 <0)<<4  | (i5 <0)<<5  | (i6 <0)<<6  | (i7 <0)<<7  | 
        (i8 <0)<<8  | (i9 <0)<<9  | (i10<0)<<10 | (i11<0)<<11 | (i12<0)<<12 | (i13<0)<<13 | (i14<0)<<14 | (i15<0)<<15 | 
        (i16<0)<<16 | (i17<0)<<17 | (i18<0)<<18 | (i19<0)<<19 | (i20<0)<<20 | (i21<0)<<21 | (i22<0)<<22 | (i23<0)<<23 | 
        (i24<0)<<24 | (i25<0)<<25 | (i26<0)<<26 | (i27<0)<<27 | (i28<0)<<28 | (i29<0)<<29 | (i30<0)<<30 | (i31<0)<<31 );

    // Combine indexes 0-7, 8-15, 16-23, 24-31 into a bitfields, with 8 bits for each
    const uint64_t g0 = (i0 &0x1F)|(i1 &0x1F)<<8|(i2 &0x1F)<<16|(i3 &0x1F)<<24|(i4 &0x1FLL)<<32|(i5 &0x1FLL)<<40|(i6 &0x1FLL)<<48|(i7 &0x1FLL)<<56;
    const uint64_t g1 = (i8 &0x1F)|(i9 &0x1F)<<8|(i10&0x1F)<<16|(i11&0x1F)<<24|(i12&0x1FLL)<<32|(i13&0x1FLL)<<40|(i14&0x1FLL)<<48|(i15&0x1FLL)<<56; 
    const uint64_t g2 = (i16&0x1F)|(i17&0x1F)<<8|(i18&0x1F)<<16|(i19&0x1F)<<24|(i20&0x1FLL)<<32|(i21&0x1FLL)<<40|(i22&0x1FLL)<<48|(i23&0x1FLL)<<56; 
    const uint64_t g3 = (i24&0x1F)|(i25&0x1F)<<8|(i26&0x1F)<<16|(i27&0x1F)<<24|(i28&0x1FLL)<<32|(i29&0x1FLL)<<40|(i30&0x1FLL)<<48|(i31&0x1FLL)<<56; 
    
    // Masks to zero out negative indexes
    const uint64_t z0 = (i0 <0?0:0xFF)|(i1 <0?0:0xFF)<<8|(i2 <0?0:0xFF)<<16|(i3 <0?0:0xFF)<<24|(i4 <0?0:0xFFLL)<<32|(i5 <0?0:0xFFLL)<<40|(i6 <0?0:0xFFLL)<<48|(i7 <0?0:0xFFLL)<<56;
    const uint64_t z1 = (i8 <0?0:0xFF)|(i9 <0?0:0xFF)<<8|(i10<0?0:0xFF)<<16|(i11<0?0:0xFF)<<24|(i12<0?0:0xFFLL)<<32|(i13<0?0:0xFFLL)<<40|(i14<0?0:0xFFLL)<<48|(i15<0?0:0xFFLL)<<56;
    const uint64_t z2 = (i16<0?0:0xFF)|(i17<0?0:0xFF)<<8|(i18<0?0:0xFF)<<16|(i19<0?0:0xFF)<<24|(i20<0?0:0xFFLL)<<32|(i21<0?0:0xFFLL)<<40|(i22<0?0:0xFFLL)<<48|(i23<0?0:0xFFLL)<<56;
    const uint64_t z3 = (i24<0?0:0xFF)|(i25<0?0:0xFF)<<8|(i26<0?0:0xFF)<<16|(i27<0?0:0xFF)<<24|(i28<0?0:0xFFLL)<<32|(i29<0?0:0xFFLL)<<40|(i30<0?0:0xFFLL)<<48|(i31<0?0:0xFFLL)<<56;

    // zeroing needed
    const bool dozero = ((i0|i1|i2|i3|i4|i5|i6|i7|i8|i9|i10|i11|i12|i13|i14|i15|i16|i17|i18|i19|i20|i21|i22|i23|i24|i25|i26|i27|i28|i29|i30|i31) & 0x80) != 0;

    __m256i t1, mask;

    // special case: all zero
    if (mz == 0) return  _mm256_setzero_si256();

    // special case: no permute
    if ((i0 <0||i0 == 0) && (i1 <0||i1 == 1) && (i2 <0||i2 == 2) && (i3 <0||i3 == 3) && (i4 <0||i4 == 4) && (i5 <0||i5 == 5) && (i6 <0||i6 == 6) && (i7 <0||i7 == 7) &&
        (i8 <0||i8 == 8) && (i9 <0||i9 == 9) && (i10<0||i10==10) && (i11<0||i11==11) && (i12<0||i12==12) && (i13<0||i13==13) && (i14<0||i14==14) && (i15<0||i15==15) &&
        (i16<0||i16==16) && (i17<0||i17==17) && (i18<0||i18==18) && (i19<0||i19==19) && (i20<0||i20==20) && (i21<0||i21==21) && (i22<0||i22==22) && (i23<0||i23==23) &&
        (i24<0||i24==24) && (i25<0||i25==25) && (i26<0||i26==26) && (i27<0||i27==27) && (i28<0||i28==28) && (i29<0||i29==29) && (i30<0||i30==30) && (i31<0||i31==31)) {
        if (dozero) {
            // zero some elements
            mask = constant8i <
                int((i0 <0?0:0xFF) | (i1 <0?0:0xFF00) | (i2 <0?0:0xFF0000) | (i3 <0?0:0xFF000000)),
                int((i4 <0?0:0xFF) | (i5 <0?0:0xFF00) | (i6 <0?0:0xFF0000) | (i7 <0?0:0xFF000000)),
                int((i8 <0?0:0xFF) | (i9 <0?0:0xFF00) | (i10<0?0:0xFF0000) | (i11<0?0:0xFF000000)),
                int((i12<0?0:0xFF) | (i13<0?0:0xFF00) | (i14<0?0:0xFF0000) | (i15<0?0:0xFF000000)),
                int((i16<0?0:0xFF) | (i17<0?0:0xFF00) | (i18<0?0:0xFF0000) | (i19<0?0:0xFF000000)),
                int((i20<0?0:0xFF) | (i21<0?0:0xFF00) | (i22<0?0:0xFF0000) | (i23<0?0:0xFF000000)),
                int((i24<0?0:0xFF) | (i25<0?0:0xFF00) | (i26<0?0:0xFF0000) | (i27<0?0:0xFF000000)),
                int((i28<0?0:0xFF) | (i29<0?0:0xFF00) | (i30<0?0:0xFF0000) | (i31<0?0:0xFF000000)) > ();
            return _mm256_and_si256(a, mask);
        }
        return a; // do nothing
    }

    // special case: rotate 128 bits
    if (i0>=0 && i0 < 32     && i1 ==((i0+1 )&15) && i2 ==((i0+2 )&15) && i3 ==((i0+3 )&15) && i4 ==((i0+4 )&15) && i5 ==((i0+5 )&15) && i6 ==((i0+6 )&15) && i7 ==((i0+7 )&15) 
        && i8 ==((i0+8 )&15) && i9 ==((i0+9 )&15) && i10==((i0+10)&15) && i11==((i0+11)&15) && i12==((i0+12)&15) && i13==((i0+13)&15) && i14==((i0+14)&15) && i15==((i0+15)&15)
        && i16==i0 +16 && i17==i1 +16 && i18==i2 +16 && i19==i3 +16 && i20==i4 +16 && i21==i5 +16 && i22==i6 +16 && i23==i7 +16 
        && i24==i8 +16 && i25==i9 +16 && i26==i10+16 && i27==i11+16 && i28==i12+16 && i29==i13+16 && i30==i14+16 && i31==i15+16 ) {
        return _mm256_alignr_epi8(a, a, i0 & 15);
    }

    // special case: rotate 256 bits
    if (i0>=0 && i0 < 32     && i1 ==((i0+1 )&31) && i2 ==((i0+2 )&31) && i3 ==((i0+3 )&31) && i4 ==((i0+4 )&31) && i5 ==((i0+5 )&31) && i6 ==((i0+6 )&31) && i7 ==((i0+7 )&31) 
        && i8 ==((i0+8 )&31) && i9 ==((i0+9 )&31) && i10==((i0+10)&31) && i11==((i0+11)&31) && i12==((i0+12)&31) && i13==((i0+13)&31) && i14==((i0+14)&31) && i15==((i0+15)&31)
        && i16==((i0+16)&31) && i17==((i0+17)&31) && i18==((i0+18)&31) && i19==((i0+19)&31) && i20==((i0+20)&31) && i21==((i0+21)&31) && i22==((i0+22)&31) && i23==((i0+23)&31)
        && i24==((i0+24)&31) && i25==((i0+25)&31) && i26==((i0+26)&31) && i27==((i0+27)&31) && i28==((i0+28)&31) && i29==((i0+29)&31) && i30==((i0+30)&31) && i31==((i0+31)&31)) {
        t1 = _mm256_permute4x64_epi64(a, 0x4E);
        return _mm256_alignr_epi8(a, t1, i0 & 15);
    }

    // Check if we can use 16-bit permute. Even numbered indexes must be even and odd numbered
    // indexes must be equal to the preceding index + 1, except for negative indexes.
    if (((g0 ^ 0x0100010001000100) & 0x0101010101010101 & z0) == 0 && ((g0 ^ g0 >> 8) & 0x00FE00FE00FE00FE & z0 & z0 >> 8) == 0 &&
        ((g1 ^ 0x0100010001000100) & 0x0101010101010101 & z1) == 0 && ((g1 ^ g1 >> 8) & 0x00FE00FE00FE00FE & z1 & z1 >> 8) == 0 &&
        ((g2 ^ 0x0100010001000100) & 0x0101010101010101 & z2) == 0 && ((g2 ^ g2 >> 8) & 0x00FE00FE00FE00FE & z2 & z2 >> 8) == 0 &&
        ((g3 ^ 0x0100010001000100) & 0x0101010101010101 & z3) == 0 && ((g3 ^ g3 >> 8) & 0x00FE00FE00FE00FE & z3 & z3 >> 8) == 0 ) {
    
        const bool partialzero = int((i0^i1)|(i2^i3)|(i4^i5)|(i6^i7)|(i8^i9)|(i10^i11)|(i12^i13)|(i14^i15)
            |(i16^i17)|(i18^i19)|(i20^i21)|(i22^i23)|(i24^i25)|(i26^i27)|(i28^i29)|(i30^i31)) < 0; // part of a 16-bit block is zeroed
        const int blank1 = partialzero ? -0x100 : -1;  // ignore or zero
        const int n0 = i0 > 0 ? i0 /2 : i1 > 0 ? i1 /2 : blank1;  // indexes for 64 bit blend
        const int n1 = i2 > 0 ? i2 /2 : i3 > 0 ? i3 /2 : blank1;
        const int n2 = i4 > 0 ? i4 /2 : i5 > 0 ? i5 /2 : blank1;
        const int n3 = i6 > 0 ? i6 /2 : i7 > 0 ? i7 /2 : blank1;
        const int n4 = i8 > 0 ? i8 /2 : i9 > 0 ? i9 /2 : blank1;
        const int n5 = i10> 0 ? i10/2 : i11> 0 ? i11/2 : blank1;
        const int n6 = i12> 0 ? i12/2 : i13> 0 ? i13/2 : blank1;
        const int n7 = i14> 0 ? i14/2 : i15> 0 ? i15/2 : blank1;
        const int n8 = i16> 0 ? i16/2 : i17> 0 ? i17/2 : blank1;
        const int n9 = i18> 0 ? i18/2 : i19> 0 ? i19/2 : blank1;
        const int n10= i20> 0 ? i20/2 : i21> 0 ? i21/2 : blank1;
        const int n11= i22> 0 ? i22/2 : i23> 0 ? i23/2 : blank1;
        const int n12= i24> 0 ? i24/2 : i25> 0 ? i25/2 : blank1;
        const int n13= i26> 0 ? i26/2 : i27> 0 ? i27/2 : blank1;
        const int n14= i28> 0 ? i28/2 : i29> 0 ? i29/2 : blank1;
        const int n15= i30> 0 ? i30/2 : i31> 0 ? i31/2 : blank1;
        // do 16-bit permute
        t1 = permute16s<n0,n1,n2,n3,n4,n5,n6,n7,n8,n9,n10,n11,n12,n13,n14,n15> (Vec16s(a));
        if (blank1 == -1 || !dozero) {    
            return  t1;
        }
        // need more zeroing
        mask = constant8i <
            int((i0 <0?0:0xFF) | (i1 <0?0:0xFF00) | (i2 <0?0:0xFF0000) | (i3 <0?0:0xFF000000)),
            int((i4 <0?0:0xFF) | (i5 <0?0:0xFF00) | (i6 <0?0:0xFF0000) | (i7 <0?0:0xFF000000)),
            int((i8 <0?0:0xFF) | (i9 <0?0:0xFF00) | (i10<0?0:0xFF0000) | (i11<0?0:0xFF000000)),
            int((i12<0?0:0xFF) | (i13<0?0:0xFF00) | (i14<0?0:0xFF0000) | (i15<0?0:0xFF000000)),
            int((i16<0?0:0xFF) | (i17<0?0:0xFF00) | (i18<0?0:0xFF0000) | (i19<0?0:0xFF000000)),
            int((i20<0?0:0xFF) | (i21<0?0:0xFF00) | (i22<0?0:0xFF0000) | (i23<0?0:0xFF000000)),
            int((i24<0?0:0xFF) | (i25<0?0:0xFF00) | (i26<0?0:0xFF0000) | (i27<0?0:0xFF000000)),
            int((i28<0?0:0xFF) | (i29<0?0:0xFF00) | (i30<0?0:0xFF0000) | (i31<0?0:0xFF000000)) > ();
        return _mm256_and_si256(a, mask);
    } 

    // special case: all elements from same half
    if (((m1 ^ 0xFFFF0000) & mz) == 0) {
        mask = constant8i <
            (i0  & 0xFF) | (i1  & 0xFF) << 8 | (i2  & 0xFF) << 16 | (i3  & 0xFF) << 24,
            (i4  & 0xFF) | (i5  & 0xFF) << 8 | (i6  & 0xFF) << 16 | (i7  & 0xFF) << 24,
            (i8  & 0xFF) | (i9  & 0xFF) << 8 | (i10 & 0xFF) << 16 | (i11 & 0xFF) << 24,
            (i12 & 0xFF) | (i13 & 0xFF) << 8 | (i14 & 0xFF) << 16 | (i15 & 0xFF) << 24,
            (i16 & 0xEF) | (i17 & 0xEF) << 8 | (i18 & 0xEF) << 16 | (i19 & 0xEF) << 24,
            (i20 & 0xEF) | (i21 & 0xEF) << 8 | (i22 & 0xEF) << 16 | (i23 & 0xEF) << 24,
            (i24 & 0xEF) | (i25 & 0xEF) << 8 | (i26 & 0xEF) << 16 | (i27 & 0xEF) << 24,
            (i28 & 0xEF) | (i29 & 0xEF) << 8 | (i30 & 0xEF) << 16 | (i31 & 0xEF) << 24 > ();
        return _mm256_shuffle_epi8(a, mask);
    }

    // special case: all elements from low half
    if ((m1 & mz) == 0) {
        mask = constant8i <
            (i0  & 0xFF) | (i1  & 0xFF) << 8 | (i2  & 0xFF) << 16 | (i3  & 0xFF) << 24,
            (i4  & 0xFF) | (i5  & 0xFF) << 8 | (i6  & 0xFF) << 16 | (i7  & 0xFF) << 24,
            (i8  & 0xFF) | (i9  & 0xFF) << 8 | (i10 & 0xFF) << 16 | (i11 & 0xFF) << 24,
            (i12 & 0xFF) | (i13 & 0xFF) << 8 | (i14 & 0xFF) << 16 | (i15 & 0xFF) << 24,
            (i16 & 0xFF) | (i17 & 0xFF) << 8 | (i18 & 0xFF) << 16 | (i19 & 0xFF) << 24,
            (i20 & 0xFF) | (i21 & 0xFF) << 8 | (i22 & 0xFF) << 16 | (i23 & 0xFF) << 24,
            (i24 & 0xFF) | (i25 & 0xFF) << 8 | (i26 & 0xFF) << 16 | (i27 & 0xFF) << 24,
            (i28 & 0xFF) | (i29 & 0xFF) << 8 | (i30 & 0xFF) << 16 | (i31 & 0xFF) << 24 > ();
        t1 = _mm256_inserti128_si256(a, _mm256_castsi256_si128(a), 1);  // low, low
        return _mm256_shuffle_epi8(t1, mask);
    }

    // special case: all elements from high half
    if (((m1 ^ 0xFFFFFFFF) & mz) == 0) {
        mask = constant8i <
            (i0  & 0xEF) | (i1  & 0xEF) << 8 | (i2  & 0xEF) << 16 | (i3  & 0xEF) << 24,
            (i4  & 0xEF) | (i5  & 0xEF) << 8 | (i6  & 0xEF) << 16 | (i7  & 0xEF) << 24,
            (i8  & 0xEF) | (i9  & 0xEF) << 8 | (i10 & 0xEF) << 16 | (i11 & 0xEF) << 24,
            (i12 & 0xEF) | (i13 & 0xEF) << 8 | (i14 & 0xEF) << 16 | (i15 & 0xEF) << 24,
            (i16 & 0xEF) | (i17 & 0xEF) << 8 | (i18 & 0xEF) << 16 | (i19 & 0xEF) << 24,
            (i20 & 0xEF) | (i21 & 0xEF) << 8 | (i22 & 0xEF) << 16 | (i23 & 0xEF) << 24,
            (i24 & 0xEF) | (i25 & 0xEF) << 8 | (i26 & 0xEF) << 16 | (i27 & 0xEF) << 24,
            (i28 & 0xEF) | (i29 & 0xEF) << 8 | (i30 & 0xEF) << 16 | (i31 & 0xEF) << 24 > ();
        t1 = _mm256_permute4x64_epi64(a, 0xEE);  // high, high
        return _mm256_shuffle_epi8(t1, mask);
    }

    // special case: all elements from opposite half
    if (((m1 ^ 0x0000FFFF) & mz) == 0) {
        mask = constant8i<
            (i0  & 0xEF) | (i1  & 0xEF) << 8 | (i2  & 0xEF) << 16 | (i3  & 0xEF) << 24,
            (i4  & 0xEF) | (i5  & 0xEF) << 8 | (i6  & 0xEF) << 16 | (i7  & 0xEF) << 24,
            (i8  & 0xEF) | (i9  & 0xEF) << 8 | (i10 & 0xEF) << 16 | (i11 & 0xEF) << 24,
            (i12 & 0xEF) | (i13 & 0xEF) << 8 | (i14 & 0xEF) << 16 | (i15 & 0xEF) << 24,
            (i16 & 0xFF) | (i17 & 0xFF) << 8 | (i18 & 0xFF) << 16 | (i19 & 0xFF) << 24,
            (i20 & 0xFF) | (i21 & 0xFF) << 8 | (i22 & 0xFF) << 16 | (i23 & 0xFF) << 24,
            (i24 & 0xFF) | (i25 & 0xFF) << 8 | (i26 & 0xFF) << 16 | (i27 & 0xFF) << 24,
            (i28 & 0xFF) | (i29 & 0xFF) << 8 | (i30 & 0xFF) << 16 | (i31 & 0xFF) << 24 > ();

        t1 = _mm256_permute4x64_epi64(a, 0x4E);  // high, low
        return _mm256_shuffle_epi8(t1, mask);
    }

    // general case: elements from both halves
    const __m256i mmsame = constant8i <
        ((i0 &0xF0)?0xFF:(i0 &15)) | ((i1 &0xF0)?0xFF:(i1 &15)) << 8 | ((i2 &0xF0)?0xFF:(i2 &15)) << 16 | ((i3 &0xF0)?0xFF:(i3 &15)) << 24, 
        ((i4 &0xF0)?0xFF:(i4 &15)) | ((i5 &0xF0)?0xFF:(i5 &15)) << 8 | ((i6 &0xF0)?0xFF:(i6 &15)) << 16 | ((i7 &0xF0)?0xFF:(i7 &15)) << 24, 
        ((i8 &0xF0)?0xFF:(i8 &15)) | ((i9 &0xF0)?0xFF:(i9 &15)) << 8 | ((i10&0xF0)?0xFF:(i10&15)) << 16 | ((i11&0xF0)?0xFF:(i11&15)) << 24, 
        ((i12&0xF0)?0xFF:(i12&15)) | ((i13&0xF0)?0xFF:(i13&15)) << 8 | ((i14&0xF0)?0xFF:(i14&15)) << 16 | ((i15&0xF0)?0xFF:(i15&15)) << 24,
        ((i16&0xF0)!=0x10?0xFF:(i16&15)) | ((i17&0xF0)!=0x10?0xFF:(i17&15)) << 8 | ((i18&0xF0)!=0x10?0xFF:(i18&15)) << 16 | ((i19&0xF0)!=0x10?0xFF:(i19&15)) << 24, 
        ((i20&0xF0)!=0x10?0xFF:(i20&15)) | ((i21&0xF0)!=0x10?0xFF:(i21&15)) << 8 | ((i22&0xF0)!=0x10?0xFF:(i22&15)) << 16 | ((i23&0xF0)!=0x10?0xFF:(i23&15)) << 24, 
        ((i24&0xF0)!=0x10?0xFF:(i24&15)) | ((i25&0xF0)!=0x10?0xFF:(i25&15)) << 8 | ((i26&0xF0)!=0x10?0xFF:(i26&15)) << 16 | ((i27&0xF0)!=0x10?0xFF:(i27&15)) << 24, 
        ((i28&0xF0)!=0x10?0xFF:(i28&15)) | ((i29&0xF0)!=0x10?0xFF:(i29&15)) << 8 | ((i30&0xF0)!=0x10?0xFF:(i30&15)) << 16 | ((i31&0xF0)!=0x10?0xFF:(i31&15)) << 24 > ();

    const __m256i mmopposite = constant8i <
        ((i0 &0xF0)!=0x10?0xFF:(i0 &15)) | ((i1 &0xF0)!=0x10?0xFF:(i1 &15)) << 8 | ((i2 &0xF0)!=0x10?0xFF:(i2 &15)) << 16 | ((i3 &0xF0)!=0x10?0xFF:(i3 &15)) << 24, 
        ((i4 &0xF0)!=0x10?0xFF:(i4 &15)) | ((i5 &0xF0)!=0x10?0xFF:(i5 &15)) << 8 | ((i6 &0xF0)!=0x10?0xFF:(i6 &15)) << 16 | ((i7 &0xF0)!=0x10?0xFF:(i7 &15)) << 24, 
        ((i8 &0xF0)!=0x10?0xFF:(i8 &15)) | ((i9 &0xF0)!=0x10?0xFF:(i9 &15)) << 8 | ((i10&0xF0)!=0x10?0xFF:(i10&15)) << 16 | ((i11&0xF0)!=0x10?0xFF:(i11&15)) << 24, 
        ((i12&0xF0)!=0x10?0xFF:(i12&15)) | ((i13&0xF0)!=0x10?0xFF:(i13&15)) << 8 | ((i14&0xF0)!=0x10?0xFF:(i14&15)) << 16 | ((i15&0xF0)!=0x10?0xFF:(i15&15)) << 24,
        ((i16&0xF0)?0xFF:(i16&15)) | ((i17&0xF0)?0xFF:(i17&15)) << 8 | ((i18&0xF0)?0xFF:(i18&15)) << 16 | ((i19&0xF0)?0xFF:(i19&15)) << 24, 
        ((i20&0xF0)?0xFF:(i20&15)) | ((i21&0xF0)?0xFF:(i21&15)) << 8 | ((i22&0xF0)?0xFF:(i22&15)) << 16 | ((i23&0xF0)?0xFF:(i23&15)) << 24, 
        ((i24&0xF0)?0xFF:(i24&15)) | ((i25&0xF0)?0xFF:(i25&15)) << 8 | ((i26&0xF0)?0xFF:(i26&15)) << 16 | ((i27&0xF0)?0xFF:(i27&15)) << 24, 
        ((i28&0xF0)?0xFF:(i28&15)) | ((i29&0xF0)?0xFF:(i29&15)) << 8 | ((i30&0xF0)?0xFF:(i30&15)) << 16 | ((i31&0xF0)?0xFF:(i31&15)) << 24 > ();

    __m256i topp = _mm256_permute4x64_epi64(a, 0x4E);  // high, low
    __m256i r1   = _mm256_shuffle_epi8(topp, mmopposite);
    __m256i r2   = _mm256_shuffle_epi8(a, mmsame);
    return         _mm256_or_si256(r1, r2);
}

template <
    int i0,  int i1,  int i2,  int i3,  int i4,  int i5,  int i6,  int i7, 
    int i8,  int i9,  int i10, int i11, int i12, int i13, int i14, int i15,
    int i16, int i17, int i18, int i19, int i20, int i21, int i22, int i23,
    int i24, int i25, int i26, int i27, int i28, int i29, int i30, int i31 >
    static inline Vec32uc permute32uc(Vec32uc const & a) {
        return Vec32uc (permute32c<i0,i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14,i15,    
            i16,i17,i18,i19,i20,i21,i22,i23,i24,i25,i26,i27,i28,i29,i30,i31> (a));
}


/*****************************************************************************
*
*          Vector blend functions
*
******************************************************************************
*
* These blend functions can mix elements from two different vectors and
* optionally set some elements to zero. 
*
* The indexes are inserted as template parameters in <>. These indexes must be
* constants. Each template parameter is an index to the element you want to 
* select, where higher indexes indicate an element from the second source
* vector. For example, if each vector has 8 elements, then indexes 0 - 7
* will select an element from the first vector and indexes 8 - 15 will select 
* an element from the second vector. A negative index will generate zero.
*
* Example:
* Vec8i a(100,101,102,103,104,105,106,107); // a is (100, 101, 102, 103, 104, 105, 106, 107)
* Vec8i b(200,201,202,203,204,205,206,207); // b is (200, 201, 202, 203, 204, 205, 206, 207)
* Vec8i c;
* c = blend8i<1,0,9,8,7,-1,15,15> (a,b);    // c is (101, 100, 201, 200, 107,   0, 207, 207)
*
* A lot of the code here is metaprogramming aiming to find the instructions
* that best fit the template parameters and instruction set. The metacode
* will be reduced out to leave only a few vector instructions in release
* mode with optimization on.
*****************************************************************************/

template <int i0,  int i1,  int i2,  int i3> 
static inline Vec4q blend4q(Vec4q const & a, Vec4q const & b) {  

    // Combine indexes into a single bitfield, with 8 bits for each
    const int m1 = (i0 & 7) | (i1 & 7) << 8 | (i2 & 7) << 16 | (i3 & 7) << 24;

    // Mask to zero out negative indexes
    const int mz = (i0<0 ? 0 : 0xFF) | (i1<0 ? 0 : 0xFF) << 8 | (i2<0 ? 0 : 0xFF) << 16 | (i3<0 ? 0 : 0xFF) << 24;

    // zeroing needed. An index of -0x100 means don't care
    const bool dozero = ((i0|i1|i2|i3) & 0x80) != 0;

    __m256i t1, mask;

    // special case: 128 bit blend/permute
    if (((m1 ^ 0x01000100) & 0x01010101 & mz) == 0 && (((m1 + 0x00010001) ^ (m1 >> 8)) & 0x00FF00FF & mz & mz >> 8) == 0) {
        {
            const int j0 = i0 >= 0 ? i0 / 2 : i1 >= 0 ? i1 / 2 : 4;  // index for low 128 bits
            const int j1 = i2 >= 0 ? i2 / 2 : i3 >= 0 ? i3 / 2 : 4;  // index for high 128 bits
            const bool partialzero = int((i0 ^ i1) | (i2 ^ i3)) < 0; // part of a 128-bit block is zeroed

            switch (j0 | j1 << 4) {
            case 0x00:
                t1 = _mm256_inserti128_si256(a, _mm256_castsi256_si128(a), 1);  break;
            case 0x02:
                t1 = _mm256_inserti128_si256(b, _mm256_castsi256_si128(a), 1);  break;
            case 0x04:
                if (dozero && !partialzero) return _mm256_inserti128_si256(_mm256_setzero_si256(), _mm256_castsi256_si128(a), 1);
                t1 = _mm256_inserti128_si256(a, _mm256_castsi256_si128(a), 1);  break;
            case 0x12:
                t1 = _mm256_inserti128_si256(a, _mm256_castsi256_si128(b), 0);  break;
            case 0x14:
                if (dozero && !partialzero) return _mm256_inserti128_si256(a,_mm_setzero_si128(), 0);
                t1 = a;  break;
            case 0x01: case 0x10: case 0x11: // all from a
                return permute4q <i0, i1, i2, i3> (a);
            case 0x20:
                t1 = _mm256_inserti128_si256(a, _mm256_castsi256_si128(b), 1);  break;
            case 0x22:
                t1 = _mm256_inserti128_si256(b, _mm256_castsi256_si128(b), 1);  break;
            case 0x24:
                if (dozero && !partialzero) return _mm256_inserti128_si256(_mm256_setzero_si256(), _mm256_castsi256_si128(b), 1);
                t1 = _mm256_inserti128_si256(b, _mm256_castsi256_si128(b), 1);  break;
            case 0x30:
                t1 = _mm256_inserti128_si256(b, _mm256_castsi256_si128(a), 0);  break;
            case 0x34:
                if (dozero && !partialzero) return _mm256_inserti128_si256(b,_mm_setzero_si128(), 0);
                t1 = b;  break;
            case 0x23: case 0x32: case 0x33:  // all from b
                return permute4q <i0^4, i1^4, i2^4, i3^4> (b);
            case 0x40:
                if (dozero && !partialzero) return _mm256_castsi128_si256(_mm_and_si128(_mm256_castsi256_si128(a),_mm256_castsi256_si128(a)));
                t1 = a;  break;
            case 0x42:
                if (dozero && !partialzero) return _mm256_castsi128_si256(_mm_and_si128(_mm256_castsi256_si128(b),_mm256_castsi256_si128(b)));
                t1 = b;  break;
            case 0x44:
                return _mm256_setzero_si256();
            default:
                t1 = _mm256_permute2x128_si256(a, b, (j0&0x0F) | (j1&0x0F) << 4);
            }
        }
        RETURNORZERO:
        if (dozero) {
            // zero some elements
            const __m256i maskz = constant8i <
                i0 < 0 ? 0 : -1, i0 < 0 ? 0 : -1, i1 < 0 ? 0 : -1, i1 < 0 ? 0 : -1, 
                i2 < 0 ? 0 : -1, i2 < 0 ? 0 : -1, i3 < 0 ? 0 : -1, i3 < 0 ? 0 : -1 > ();
            return _mm256_and_si256(t1, maskz);
        }
        return t1;
    }

    // special case: all from a
    if ((m1 & 0x04040404 & mz) == 0) {
        return permute4q <i0, i1, i2, i3> (a);
    }

    // special case: all from b
    if ((~m1 & 0x04040404 & mz) == 0) {
        return permute4q <i0^4, i1^4, i2^4, i3^4> (b);
    }

    // special case: blend without permute
    if (((m1 ^ 0x03020100) & 0xFBFBFBFB & mz) == 0) {
        mask = constant8i <
            (i0 & 4) ? -1 : 0, (i0 & 4) ? -1 : 0, (i1 & 4) ? -1 : 0, (i1 & 4) ? -1 : 0, 
            (i2 & 4) ? -1 : 0, (i2 & 4) ? -1 : 0, (i3 & 4) ? -1 : 0, (i3 & 4) ? -1 : 0 > ();
        t1 = _mm256_blendv_epi8(a, b, mask);  // blend
        goto RETURNORZERO;
    } 

    // special case: shift left
    if (i0 > 0 && i0 < 4 && mz == -1 && (m1 ^ ((i0 & 3) * 0x01010101 + 0x03020100)) == 0) {
        t1 = _mm256_permute2x128_si256(a, b, 0x21);
        if (i0 < 2) return _mm256_alignr_epi8(t1, a, (i0 & 1) * 8);
        else        return _mm256_alignr_epi8(b, t1, (i0 & 1) * 8);
    }
    // special case: shift right
    if (i0 > 4 && i0 < 8 && mz == -1 && (m1 ^ 0x04040404 ^ ((i0 & 3) * 0x01010101 + 0x03020100)) == 0) {
        t1 = _mm256_permute2x128_si256(b, a, 0x21);
        if (i0 < 6) return _mm256_alignr_epi8(t1, b, (i0 & 1) * 8);
        else        return _mm256_alignr_epi8(a, t1, (i0 & 1) * 8);
    }
    // special case: unpack low
    if (((m1 ^ 0x06020400) & mz) == 0) {
        t1 = _mm256_unpacklo_epi64(a, b);
        goto RETURNORZERO;
    }
    // special case: unpack low
    if (((m1 ^ 0x02060004) & mz) == 0) {
        t1 = _mm256_unpacklo_epi64(b, a);
        goto RETURNORZERO;
    }
    // special case: unpack high
    if (((m1 ^ 0x07030501) & mz) == 0) {
        t1 = _mm256_unpackhi_epi64(a, b);
        goto RETURNORZERO;
    }
    // special case: unpack high
    if (((m1 ^ 0x03070105) & mz) == 0) {
        t1 = _mm256_unpackhi_epi64(b, a);
        goto RETURNORZERO;
    }

    // general case: permute and blend and possibly zero
    const int blank = dozero ? -1 : -0x100;  // ignore or zero

    // permute and blend
    __m256i ta = permute4q <
        (i0 & 4) ? blank : i0, (i1 & 4) ? blank : i1, (i2 & 4) ? blank : i2, (i3 & 4) ? blank : i3 > (a);

    __m256i tb = permute4q <
        ((i0^4) & 4) ? blank : i0^4, ((i1^4) & 4) ? blank : i1^4, ((i2^4) & 4) ? blank : i2^4, ((i3^4) & 4) ? blank : i3^4 > (b);

    if (blank == -1) {
        // we have zeroed, need only to OR
        return _mm256_or_si256(ta, tb);
    }
    // no zeroing, need to blend
    mask = constant8i <
        (i0 & 4) ? -1 : 0, (i0 & 4) ? -1 : 0, (i1 & 4) ? -1 : 0, (i1 & 4) ? -1 : 0, 
        (i2 & 4) ? -1 : 0, (i2 & 4) ? -1 : 0, (i3 & 4) ? -1 : 0, (i3 & 4) ? -1 : 0 > ();

    return _mm256_blendv_epi8(ta, tb, mask);  // blend
}

template <int i0, int i1, int i2, int i3> 
static inline Vec4uq blend4uq(Vec4uq const & a, Vec4uq const & b) {
    return Vec4uq( blend4q<i0,i1,i2,i3> (a,b));
}


template <int i0, int i1, int i2, int i3, int i4, int i5, int i6, int i7> 
static inline Vec8i blend8i(Vec8i const & a, Vec8i const & b) {  

    const int ior = i0 | i1 | i2 | i3 | i4 | i5 | i6 | i7;  // OR indexes

    // is zeroing needed
    const bool do_zero  = ior < 0 && (ior & 0x80); // at least one index is negative, and not -0x100

    // Combine all the indexes into a single bitfield, with 4 bits for each
    const int m1 = (i0&0xF) | (i1&0xF)<<4 | (i2&0xF)<<8 | (i3&0xF)<<12 | (i4&0xF)<<16 | (i5&0xF)<<20 | (i6&0xF)<<24 | (i7&0xF)<<28;

    // Mask to zero out negative indexes
    const int mz = (i0<0?0:0xF) | (i1<0?0:0xF)<<4 | (i2<0?0:0xF)<<8 | (i3<0?0:0xF)<<12 | (i4<0?0:0xF)<<16 | (i5<0?0:0xF)<<20 | (i6<0?0:0xF)<<24 | (i7<0?0:0xF)<<28;

    __m256i t1, mask;

    if (mz == 0) return _mm256_setzero_si256();  // all zero

    // special case: 64 bit blend/permute
    if (((m1 ^ 0x10101010) & 0x11111111 & mz) == 0 && ((m1 ^ (m1 >> 4)) & 0x0E0E0E0E & mz & mz >> 4) == 0) {
        // check if part of a 64-bit block is zeroed
        const bool partialzero = int((i0^i1) | (i2^i3) | (i4^i5) | (i6^i7)) < 0; 
        const int blank1 = partialzero ? -0x100 : -1;  // ignore if zeroing later anyway
        // indexes for 64 bit blend
        const int j0 = i0 >= 0 ? i0 / 2 : i1 >= 0 ? i1 / 2 : blank1;
        const int j1 = i2 >= 0 ? i2 / 2 : i3 >= 0 ? i3 / 2 : blank1;
        const int j2 = i4 >= 0 ? i4 / 2 : i5 >= 0 ? i5 / 2 : blank1;
        const int j3 = i6 >= 0 ? i6 / 2 : i7 >= 0 ? i7 / 2 : blank1;
        // 64-bit blend and permute
        t1 = blend4q<j0,j1,j2,j3>(Vec4q(a), Vec4q(b));
        if (partialzero && do_zero) {
            // zero some elements
            mask = constant8i< i0 < 0 ? 0 : -1, i1 < 0 ? 0 : -1, i2 < 0 ? 0 : -1, i3 < 0 ? 0 : -1, 
                i4 < 0 ? 0 : -1, i5 < 0 ? 0 : -1, i6 < 0 ? 0 : -1, i7 < 0 ? 0 : -1 > ();
            return _mm256_and_si256(t1, mask);
        }
        return t1;
    }

    if ((m1 & 0x88888888 & mz) == 0) {
        // all from a
        return permute8i<i0, i1, i2, i3, i4, i5, i6, i7> (a);
    }

    if (((m1 ^ 0x88888888) & 0x88888888 & mz) == 0) {
        // all from b
        return permute8i<i0&~8, i1&~8, i2&~8, i3&~8, i4&~8, i5&~8, i6&~8, i7&~8> (b);
    }

    if ((((m1 & 0x77777777) ^ 0x76543210) & mz) == 0) {
        // blend and zero, no permute
        mask = constant8i<(i0&8)?0:-1, (i1&8)?0:-1, (i2&8)?0:-1, (i3&8)?0:-1, (i4&8)?0:-1, (i5&8)?0:-1, (i6&8)?0:-1, (i7&8)?0:-1> ();
        t1   = select(mask, a, b);
        if (!do_zero) return t1;
        // zero some elements
        mask = constant8i< (i0<0&&(i0&8)) ? 0 : -1, (i1<0&&(i1&8)) ? 0 : -1, (i2<0&&(i2&8)) ? 0 : -1, (i3<0&&(i3&8)) ? 0 : -1, 
            (i4<0&&(i4&8)) ? 0 : -1, (i5<0&&(i5&8)) ? 0 : -1, (i6<0&&(i6&8)) ? 0 : -1, (i7<0&&(i7&8)) ? 0 : -1 > ();
        return _mm256_and_si256(t1, mask);
    }

    // special case: shift left
    if (i0 > 0 && i0 < 8 && mz == -1 && (m1 ^ ((i0 & 7) * 0x11111111u + 0x76543210u)) == 0) {
        t1 = _mm256_permute2x128_si256(a, b, 0x21);
        if (i0 < 4) return _mm256_alignr_epi8(t1, a, (i0 & 3) * 4);
        else        return _mm256_alignr_epi8(b, t1, (i0 & 3) * 4);
    }
    // special case: shift right
    if (i0 > 8 && i0 < 16 && mz == -1 && (m1 ^ 0x88888888 ^ ((i0 & 7) * 0x11111111u + 0x76543210u)) == 0) {
        t1 = _mm256_permute2x128_si256(b, a, 0x21);
        if (i0 < 12) return _mm256_alignr_epi8(t1, b, (i0 & 3) * 4);
        else         return _mm256_alignr_epi8(a, t1, (i0 & 3) * 4);
    }

    // general case: permute and blend and possible zero
    const int blank = do_zero ? -1 : -0x100;  // ignore or zero

    Vec8i ta = permute8i <
        (uint32_t)i0 < 8 ? i0 : blank,
        (uint32_t)i1 < 8 ? i1 : blank,
        (uint32_t)i2 < 8 ? i2 : blank,
        (uint32_t)i3 < 8 ? i3 : blank,
        (uint32_t)i4 < 8 ? i4 : blank,
        (uint32_t)i5 < 8 ? i5 : blank,
        (uint32_t)i6 < 8 ? i6 : blank,
        (uint32_t)i7 < 8 ? i7 : blank > (a);
    Vec8i tb = permute8i <
        (uint32_t)(i0^8) < 8 ? (i0^8) : blank,
        (uint32_t)(i1^8) < 8 ? (i1^8) : blank,
        (uint32_t)(i2^8) < 8 ? (i2^8) : blank,
        (uint32_t)(i3^8) < 8 ? (i3^8) : blank,
        (uint32_t)(i4^8) < 8 ? (i4^8) : blank,
        (uint32_t)(i5^8) < 8 ? (i5^8) : blank,
        (uint32_t)(i6^8) < 8 ? (i6^8) : blank,
        (uint32_t)(i7^8) < 8 ? (i7^8) : blank > (b);
    if (blank == -1) {    
        return  _mm256_or_si256(ta, tb); 
    }
    // no zeroing, need to blend
    const int maskb = ((i0 >> 3) & 1) | ((i1 >> 2) & 2) | ((i2 >> 1) & 4) | (i3 & 8) | 
        ((i4 << 1) & 0x10) | ((i5 << 2) & 0x20) | ((i6 << 3) & 0x40) | ((i7 << 4) & 0x80);
    return _mm256_blend_epi32(ta, tb, maskb);  // blend
}

template <int i0, int i1, int i2, int i3, int i4, int i5, int i6, int i7> 
static inline Vec8ui blend8ui(Vec8ui const & a, Vec8ui const & b) {
    return Vec8ui( blend8i<i0,i1,i2,i3,i4,i5,i6,i7> (a,b));
}


template <int i0,  int i1,  int i2,  int i3,  int i4,  int i5,  int i6,  int i7, 
          int i8,  int i9,  int i10, int i11, int i12, int i13, int i14, int i15 > 
static inline Vec16s blend16s(Vec16s const & a, Vec16s const & b) {  
    // collect bit 4 of each index
    const int m1 = 
        (i0 &16)>>4  | (i1 &16)>>3  | (i2 &16)>>2  | (i3 &16)>>1  | (i4 &16)     | (i5 &16)<<1  | (i6 &16)<<2  | (i7 &16)<<3  | 
        (i8 &16)<<4  | (i9 &16)<<5  | (i10&16)<<6  | (i11&16)<<7  | (i12&16)<<8  | (i13&16)<<9  | (i14&16)<<10 | (i15&16)<<11 ;

    // check which elements to set to zero
    const int mz = 0x0000FFFF ^ (
        (i0 <0)     | (i1 <0)<<1  | (i2 <0)<<2  | (i3 <0)<<3  | (i4 <0)<<4  | (i5 <0)<<5  | (i6 <0)<<6  | (i7 <0)<<7  | 
        (i8 <0)<<8  | (i9 <0)<<9  | (i10<0)<<10 | (i11<0)<<11 | (i12<0)<<12 | (i13<0)<<13 | (i14<0)<<14 | (i15<0)<<15 );

    __m256i t1, mask;

    // special case: all zero
    if (mz == 0) return  _mm256_setzero_si256();

    // special case: all from a
    if ((m1 & mz) == 0) {
        return permute16s<i0,i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14,i15> (a);
    }

    // special case: all from b
    if (((m1 ^ 0xFFFF) & mz) == 0) {
        return permute16s<i0^16,i1^16,i2^16,i3^16,i4^16,i5^16,i6^16,i7^16,i8^16,i9^16,i10^16,i11^16,i12^16,i13^16,i14^16,i15^16 > (b);
    }

    // special case: blend without permute
    if ((i0 <0||(i0 &15)== 0) && (i1 <0||(i1 &15)== 1) && (i2 <0||(i2 &15)== 2) && (i3 <0||(i3 &15)== 3) && 
        (i4 <0||(i4 &15)== 4) && (i5 <0||(i5 &15)== 5) && (i6 <0||(i6 &15)== 6) && (i7 <0||(i7 &15)== 7) && 
        (i8 <0||(i8 &15)== 8) && (i9 <0||(i9 &15)== 9) && (i10<0||(i10&15)==10) && (i11<0||(i11&15)==11) && 
        (i12<0||(i12&15)==12) && (i13<0||(i13&15)==13) && (i14<0||(i14&15)==14) && (i15<0||(i15&15)==15)) {

        mask = constant8i <
            int(((i0 & 16) ? 0xFFFF : 0) | ((i1 & 16) ? 0xFFFF0000 : 0)),
            int(((i2 & 16) ? 0xFFFF : 0) | ((i3 & 16) ? 0xFFFF0000 : 0)),
            int(((i4 & 16) ? 0xFFFF : 0) | ((i5 & 16) ? 0xFFFF0000 : 0)),
            int(((i6 & 16) ? 0xFFFF : 0) | ((i7 & 16) ? 0xFFFF0000 : 0)),
            int(((i8 & 16) ? 0xFFFF : 0) | ((i9 & 16) ? 0xFFFF0000 : 0)),
            int(((i10& 16) ? 0xFFFF : 0) | ((i11& 16) ? 0xFFFF0000 : 0)),
            int(((i12& 16) ? 0xFFFF : 0) | ((i13& 16) ? 0xFFFF0000 : 0)),
            int(((i14& 16) ? 0xFFFF : 0) | ((i15& 16) ? 0xFFFF0000 : 0)) > ();

        t1 = _mm256_blendv_epi8(a, b, mask);  // blend

        if (mz != 0xFFFF) {
            // zero some elements
            mask = constant8i <
                int((i0  < 0 ? 0 : 0xFFFF) | (i1  < 0 ? 0 : 0xFFFF0000)),
                int((i2  < 0 ? 0 : 0xFFFF) | (i3  < 0 ? 0 : 0xFFFF0000)),
                int((i4  < 0 ? 0 : 0xFFFF) | (i5  < 0 ? 0 : 0xFFFF0000)),
                int((i6  < 0 ? 0 : 0xFFFF) | (i7  < 0 ? 0 : 0xFFFF0000)),
                int((i8  < 0 ? 0 : 0xFFFF) | (i9  < 0 ? 0 : 0xFFFF0000)),
                int((i10 < 0 ? 0 : 0xFFFF) | (i11 < 0 ? 0 : 0xFFFF0000)),
                int((i12 < 0 ? 0 : 0xFFFF) | (i13 < 0 ? 0 : 0xFFFF0000)),
                int((i14 < 0 ? 0 : 0xFFFF) | (i15 < 0 ? 0 : 0xFFFF0000)) > ();
            return _mm256_and_si256(t1, mask);
        }
        return t1;
    }

    // special case: shift left
    const int slb = i0 > 0 ? i0 : i15 - 15;
    if (slb > 0 && slb < 16 
        && (i0==slb+ 0||i0<0) && (i1==slb+ 1||i1<0) && (i2 ==slb+ 2||i2 <0) && (i3 ==slb+ 3||i3 <0) && (i4 ==slb+ 4||i4 <0) && (i5 ==slb+ 5||i5 <0) && (i6 ==slb+ 6||i6 <0) && (i7 ==slb+ 7||i7 <0)
        && (i8==slb+ 8||i8<0) && (i9==slb+ 9||i9<0) && (i10==slb+10||i10<0) && (i11==slb+11||i11<0) && (i12==slb+12||i12<0) && (i13==slb+13||i13<0) && (i14==slb+14||i14<0) && (i15==slb+15||i15<0)) {
        t1 = _mm256_permute2x128_si256(a, b, 0x21);
        if (slb < 8) t1 = _mm256_alignr_epi8(t1, a, (slb & 7) * 2);
        else         t1 = _mm256_alignr_epi8(b, t1, (slb & 7) * 2);
        if (mz != 0xFFFF) {
            // zero some elements
            mask = constant8i <
                int((i0  < 0 ? 0 : 0xFFFF) | (i1  < 0 ? 0 : 0xFFFF0000)),
                int((i2  < 0 ? 0 : 0xFFFF) | (i3  < 0 ? 0 : 0xFFFF0000)),
                int((i4  < 0 ? 0 : 0xFFFF) | (i5  < 0 ? 0 : 0xFFFF0000)),
                int((i6  < 0 ? 0 : 0xFFFF) | (i7  < 0 ? 0 : 0xFFFF0000)),
                int((i8  < 0 ? 0 : 0xFFFF) | (i9  < 0 ? 0 : 0xFFFF0000)),
                int((i10 < 0 ? 0 : 0xFFFF) | (i11 < 0 ? 0 : 0xFFFF0000)),
                int((i12 < 0 ? 0 : 0xFFFF) | (i13 < 0 ? 0 : 0xFFFF0000)),
                int((i14 < 0 ? 0 : 0xFFFF) | (i15 < 0 ? 0 : 0xFFFF0000)) > ();
            return _mm256_and_si256(t1, mask);
        }
        return t1;
    }
    // special case: shift right
    const int srb = i0 > 0 ? (i0^16) : (i15^16) - 15;
    if (srb > 0 && srb < 16
        && ((i0 ^16)==srb+ 0||i0 <0) && ((i1 ^16)==srb+ 1||i1 <0) && ((i2 ^16)==srb+ 2||i2 <0) && ((i3 ^16)==srb+ 3||i3 <0) && ((i4 ^16)==srb+ 4||i4 <0) && ((i5 ^16)==srb+ 5||i5 <0) && ((i6 ^16)==srb+ 6||i6 <0) && ((i7 ^16)==srb+ 7||i7 <0)
        && ((i8 ^16)==srb+ 8||i8 <0) && ((i9 ^16)==srb+ 9||i9 <0) && ((i10^16)==srb+10||i10<0) && ((i11^16)==srb+11||i11<0) && ((i12^16)==srb+12||i12<0) && ((i13^16)==srb+13||i13<0) && ((i14^16)==srb+14||i14<0) && ((i15^16)==srb+15||i15<0)) {
        t1 = _mm256_permute2x128_si256(b, a, 0x21);
        if (srb < 8) t1 = _mm256_alignr_epi8(t1, b, (srb & 7) * 2);
        else         t1 = _mm256_alignr_epi8(a, t1, (srb & 7) * 2);
        if (mz != 0xFFFF) {
            // zero some elements
            mask = constant8i <
                int((i0  < 0 ? 0 : 0xFFFF) | (i1  < 0 ? 0 : 0xFFFF0000)),
                int((i2  < 0 ? 0 : 0xFFFF) | (i3  < 0 ? 0 : 0xFFFF0000)),
                int((i4  < 0 ? 0 : 0xFFFF) | (i5  < 0 ? 0 : 0xFFFF0000)),
                int((i6  < 0 ? 0 : 0xFFFF) | (i7  < 0 ? 0 : 0xFFFF0000)),
                int((i8  < 0 ? 0 : 0xFFFF) | (i9  < 0 ? 0 : 0xFFFF0000)),
                int((i10 < 0 ? 0 : 0xFFFF) | (i11 < 0 ? 0 : 0xFFFF0000)),
                int((i12 < 0 ? 0 : 0xFFFF) | (i13 < 0 ? 0 : 0xFFFF0000)),
                int((i14 < 0 ? 0 : 0xFFFF) | (i15 < 0 ? 0 : 0xFFFF0000)) > ();
            return _mm256_and_si256(t1, mask);
        }
        return t1;
    }
    
    // general case: permute and blend and possibly zero
    const int blank = (mz == 0xFFFF) ? -0x100 : -1;  // ignore or zero

    // permute and blend
    __m256i ta = permute16s <
        (i0 &16)?blank:i0 , (i1 &16)?blank:i1 , (i2 &16)?blank:i2 , (i3 &16)?blank:i3 ,
        (i4 &16)?blank:i4 , (i5 &16)?blank:i5 , (i6 &16)?blank:i6 , (i7 &16)?blank:i7 ,
        (i8 &16)?blank:i8 , (i9 &16)?blank:i9 , (i10&16)?blank:i10, (i11&16)?blank:i11,
        (i12&16)?blank:i12, (i13&16)?blank:i13, (i14&16)?blank:i14, (i15&16)?blank:i15 > (a);

    __m256i tb = permute16s <
        ((i0 ^16)&16)?blank:i0 ^16, ((i1 ^16)&16)?blank:i1 ^16, ((i2 ^16)&16)?blank:i2 ^16, ((i3 ^16)&16)?blank:i3 ^16, 
        ((i4 ^16)&16)?blank:i4 ^16, ((i5 ^16)&16)?blank:i5 ^16, ((i6 ^16)&16)?blank:i6 ^16, ((i7 ^16)&16)?blank:i7 ^16, 
        ((i8 ^16)&16)?blank:i8 ^16, ((i9 ^16)&16)?blank:i9 ^16, ((i10^16)&16)?blank:i10^16, ((i11^16)&16)?blank:i11^16,
        ((i12^16)&16)?blank:i12^16, ((i13^16)&16)?blank:i13^16, ((i14^16)&16)?blank:i14^16, ((i15^16)&16)?blank:i15^16 > (b);

    if (blank == -1) {
        // we have zeroed, need only to OR
        return _mm256_or_si256(ta, tb);
    }
    // no zeroing, need to blend
    mask = constant8i <
        int(((i0 & 16) ? 0xFFFF : 0) | ((i1 & 16) ? 0xFFFF0000 : 0)),
        int(((i2 & 16) ? 0xFFFF : 0) | ((i3 & 16) ? 0xFFFF0000 : 0)),
        int(((i4 & 16) ? 0xFFFF : 0) | ((i5 & 16) ? 0xFFFF0000 : 0)),
        int(((i6 & 16) ? 0xFFFF : 0) | ((i7 & 16) ? 0xFFFF0000 : 0)),
        int(((i8 & 16) ? 0xFFFF : 0) | ((i9 & 16) ? 0xFFFF0000 : 0)),
        int(((i10& 16) ? 0xFFFF : 0) | ((i11& 16) ? 0xFFFF0000 : 0)),
        int(((i12& 16) ? 0xFFFF : 0) | ((i13& 16) ? 0xFFFF0000 : 0)),
        int(((i14& 16) ? 0xFFFF : 0) | ((i15& 16) ? 0xFFFF0000 : 0)) > ();

    return _mm256_blendv_epi8(ta, tb, mask);  // blend
}

template <int i0, int i1, int i2,  int i3,  int i4,  int i5,  int i6,  int i7, 
          int i8, int i9, int i10, int i11, int i12, int i13, int i14, int i15 > 
static inline Vec16us blend16us(Vec16us const & a, Vec16us const & b) {
    return Vec16us( blend16s<i0,i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14,i15> (a,b));
}

template <int i0,  int i1,  int i2,  int i3,  int i4,  int i5,  int i6,  int i7, 
          int i8,  int i9,  int i10, int i11, int i12, int i13, int i14, int i15,
          int i16, int i17, int i18, int i19, int i20, int i21, int i22, int i23,
          int i24, int i25, int i26, int i27, int i28, int i29, int i30, int i31 > 
static inline Vec32c blend32c(Vec32c const & a, Vec32c const & b) {  
    // collect bit 5 of each index
    const int m1 = 
        (i0 &32)>>5  | (i1 &32)>>4  | (i2 &32)>>3  | (i3 &32)>>2  | (i4 &32)>>1  | (i5 &32)     | (i6 &32)<<1  | (i7 &32)<<2  | 
        (i8 &32)<<3  | (i9 &32)<<4  | (i10&32)<<5  | (i11&32)<<6  | (i12&32)<<7  | (i13&32)<<8  | (i14&32)<<9  | (i15&32)<<10 | 
        (i16&32)<<11 | (i17&32)<<12 | (i18&32)<<13 | (i19&32)<<14 | (i20&32)<<15 | (i21&32)<<16 | (i22&32)<<17 | (i23&32)<<18 | 
        (i24&32)<<19 | (i25&32)<<20 | (i26&32)<<21 | (i27&32)<<22 | (i28&32)<<23 | (i29&32)<<24 | (i30&32)<<25 | (i31&32)<<26 ;

    // check which elements to set to zero
    const int mz = ~ (
        (i0 <0)     | (i1 <0)<<1  | (i2 <0)<<2  | (i3 <0)<<3  | (i4 <0)<<4  | (i5 <0)<<5  | (i6 <0)<<6  | (i7 <0)<<7  | 
        (i8 <0)<<8  | (i9 <0)<<9  | (i10<0)<<10 | (i11<0)<<11 | (i12<0)<<12 | (i13<0)<<13 | (i14<0)<<14 | (i15<0)<<15 | 
        (i16<0)<<16 | (i17<0)<<17 | (i18<0)<<18 | (i19<0)<<19 | (i20<0)<<20 | (i21<0)<<21 | (i22<0)<<22 | (i23<0)<<23 | 
        (i24<0)<<24 | (i25<0)<<25 | (i26<0)<<26 | (i27<0)<<27 | (i28<0)<<28 | (i29<0)<<29 | (i30<0)<<30 | (i31<0)<<31 );

    __m256i t1, mask;

    // special case: all zero
    if (mz == 0) return  _mm256_setzero_si256();

    // special case: all from a
    if ((m1 & mz) == 0) {
        return permute32c<i0,i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14,i15,
            i16,i17,i18,i19,i20,i21,i22,i23,i24,i25,i26,i27,i28,i29,i30,i31> (a);
    }

    // special case: all from b
    if ((~m1 & mz) == 0) {
        return permute32c<i0^32,i1^32,i2^32,i3^32,i4^32,i5^32,i6^32,i7^32,i8^32,i9^32,i10^32,i11^32,i12^32,i13^32,i14^32,i15^32,
            i16^32,i17^32,i18^32,i19^32,i20^32,i21^32,i22^32,i23^32,i24^32,i25^32,i26^32,i27^32,i28^32,i29^32,i30^32,i31^32> (b);
    }

    // special case: blend without permute
    if ((i0 <0||(i0 &31)== 0) && (i1 <0||(i1 &31)== 1) && (i2 <0||(i2 &31)== 2) && (i3 <0||(i3 &31)== 3) && 
        (i4 <0||(i4 &31)== 4) && (i5 <0||(i5 &31)== 5) && (i6 <0||(i6 &31)== 6) && (i7 <0||(i7 &31)== 7) && 
        (i8 <0||(i8 &31)== 8) && (i9 <0||(i9 &31)== 9) && (i10<0||(i10&31)==10) && (i11<0||(i11&31)==11) && 
        (i12<0||(i12&31)==12) && (i13<0||(i13&31)==13) && (i14<0||(i14&31)==14) && (i15<0||(i15&31)==15) &&
        (i16<0||(i16&31)==16) && (i17<0||(i17&31)==17) && (i18<0||(i18&31)==18) && (i19<0||(i19&31)==19) && 
        (i20<0||(i20&31)==20) && (i21<0||(i21&31)==21) && (i22<0||(i22&31)==22) && (i23<0||(i23&31)==23) && 
        (i24<0||(i24&31)==24) && (i25<0||(i25&31)==25) && (i26<0||(i26&31)==26) && (i27<0||(i27&31)==27) && 
        (i28<0||(i28&31)==28) && (i29<0||(i29&31)==29) && (i30<0||(i30&31)==30) && (i31<0||(i31&31)==31) ) {

        mask = constant8i <
            int(((i0 <<2)&0x80) | ((i1 <<10)&0x8000) | ((i2 <<18)&0x800000) | (uint32_t(i3 <<26)&0x80000000)) ,
            int(((i4 <<2)&0x80) | ((i5 <<10)&0x8000) | ((i6 <<18)&0x800000) | (uint32_t(i7 <<26)&0x80000000)) ,
            int(((i8 <<2)&0x80) | ((i9 <<10)&0x8000) | ((i10<<18)&0x800000) | (uint32_t(i11<<26)&0x80000000)) ,
            int(((i12<<2)&0x80) | ((i13<<10)&0x8000) | ((i14<<18)&0x800000) | (uint32_t(i15<<26)&0x80000000)) ,
            int(((i16<<2)&0x80) | ((i17<<10)&0x8000) | ((i18<<18)&0x800000) | (uint32_t(i19<<26)&0x80000000)) ,
            int(((i20<<2)&0x80) | ((i21<<10)&0x8000) | ((i22<<18)&0x800000) | (uint32_t(i23<<26)&0x80000000)) ,
            int(((i24<<2)&0x80) | ((i25<<10)&0x8000) | ((i26<<18)&0x800000) | (uint32_t(i27<<26)&0x80000000)) ,
            int(((i28<<2)&0x80) | ((i29<<10)&0x8000) | ((i30<<18)&0x800000) | (uint32_t(i31<<26)&0x80000000)) > ();

        t1 = _mm256_blendv_epi8(a, b, mask);  // blend

        if (mz != -1) {
            // zero some elements
            const __m256i maskz = constant8i <
                int((i0 <0?0:0xFF) | (i1 <0?0:0xFF00) | (i2 <0?0:0xFF0000) | (i3 <0?0:0xFF000000)),
                int((i4 <0?0:0xFF) | (i5 <0?0:0xFF00) | (i6 <0?0:0xFF0000) | (i7 <0?0:0xFF000000)),
                int((i8 <0?0:0xFF) | (i9 <0?0:0xFF00) | (i10<0?0:0xFF0000) | (i11<0?0:0xFF000000)),
                int((i12<0?0:0xFF) | (i13<0?0:0xFF00) | (i14<0?0:0xFF0000) | (i15<0?0:0xFF000000)),
                int((i16<0?0:0xFF) | (i17<0?0:0xFF00) | (i18<0?0:0xFF0000) | (i19<0?0:0xFF000000)),
                int((i20<0?0:0xFF) | (i21<0?0:0xFF00) | (i22<0?0:0xFF0000) | (i23<0?0:0xFF000000)),
                int((i24<0?0:0xFF) | (i25<0?0:0xFF00) | (i26<0?0:0xFF0000) | (i27<0?0:0xFF000000)),
                int((i28<0?0:0xFF) | (i29<0?0:0xFF00) | (i30<0?0:0xFF0000) | (i31<0?0:0xFF000000)) > ();
            return _mm256_and_si256(t1, maskz);
        }
        return t1;
    }

    // special case: shift left
    const int slb = i0 > 0 ? i0 : i31 - 31;
    if (slb > 0 && slb < 32 
        && (i0 ==slb+ 0||i0 <0) && (i1 ==slb+ 1||i1 <0) && (i2 ==slb+ 2||i2 <0) && (i3 ==slb+ 3||i3 <0)
        && (i4 ==slb+ 4||i4 <0) && (i5 ==slb+ 5||i5 <0) && (i6 ==slb+ 6||i6 <0) && (i7 ==slb+ 7||i7 <0)
        && (i8 ==slb+ 8||i8 <0) && (i9 ==slb+ 9||i9 <0) && (i10==slb+10||i10<0) && (i11==slb+11||i11<0)
        && (i12==slb+12||i12<0) && (i13==slb+13||i13<0) && (i14==slb+14||i14<0) && (i15==slb+15||i15<0)
        && (i16==slb+16||i16<0) && (i17==slb+17||i17<0) && (i18==slb+18||i18<0) && (i19==slb+19||i19<0)
        && (i20==slb+20||i20<0) && (i21==slb+21||i21<0) && (i22==slb+22||i22<0) && (i23==slb+23||i23<0)
        && (i24==slb+24||i24<0) && (i25==slb+25||i25<0) && (i26==slb+26||i26<0) && (i27==slb+27||i27<0)
        && (i28==slb+28||i28<0) && (i29==slb+29||i29<0) && (i30==slb+30||i30<0) && (i31==slb+31||i31<0)) {
        t1 = _mm256_permute2x128_si256(a, b, 0x21);
        if (slb < 16) t1 = _mm256_alignr_epi8(t1, a, slb & 15);
        else          t1 = _mm256_alignr_epi8(b, t1, slb & 15);
        if (mz != -1) {
            // zero some elements
            const __m256i maskz = constant8i <
                int((i0 <0?0:0xFF) | (i1 <0?0:0xFF00) | (i2 <0?0:0xFF0000) | (i3 <0?0:0xFF000000)),
                int((i4 <0?0:0xFF) | (i5 <0?0:0xFF00) | (i6 <0?0:0xFF0000) | (i7 <0?0:0xFF000000)),
                int((i8 <0?0:0xFF) | (i9 <0?0:0xFF00) | (i10<0?0:0xFF0000) | (i11<0?0:0xFF000000)),
                int((i12<0?0:0xFF) | (i13<0?0:0xFF00) | (i14<0?0:0xFF0000) | (i15<0?0:0xFF000000)),
                int((i16<0?0:0xFF) | (i17<0?0:0xFF00) | (i18<0?0:0xFF0000) | (i19<0?0:0xFF000000)),
                int((i20<0?0:0xFF) | (i21<0?0:0xFF00) | (i22<0?0:0xFF0000) | (i23<0?0:0xFF000000)),
                int((i24<0?0:0xFF) | (i25<0?0:0xFF00) | (i26<0?0:0xFF0000) | (i27<0?0:0xFF000000)),
                int((i28<0?0:0xFF) | (i29<0?0:0xFF00) | (i30<0?0:0xFF0000) | (i31<0?0:0xFF000000)) > ();
            return _mm256_and_si256(t1, maskz);
        }
        return t1;
    }
    // special case: shift right
    const int srb = i0 > 0 ? (i0^32) : (i31^32) - 31;
    if (srb > 0 && srb < 32
        && ((i0 ^32)==srb+ 0||i0 <0) && ((i1 ^32)==srb+ 1||i1 <0) && ((i2 ^32)==srb+ 2||i2 <0) && ((i3 ^32)==srb+ 3||i3 <0)
        && ((i4 ^32)==srb+ 4||i4 <0) && ((i5 ^32)==srb+ 5||i5 <0) && ((i6 ^32)==srb+ 6||i6 <0) && ((i7 ^32)==srb+ 7||i7 <0)
        && ((i8 ^32)==srb+ 8||i8 <0) && ((i9 ^32)==srb+ 9||i9 <0) && ((i10^32)==srb+10||i10<0) && ((i11^32)==srb+11||i11<0)
        && ((i12^32)==srb+12||i12<0) && ((i13^32)==srb+13||i13<0) && ((i14^32)==srb+14||i14<0) && ((i15^32)==srb+15||i15<0)
        && ((i16^32)==srb+16||i16<0) && ((i17^32)==srb+17||i17<0) && ((i18^32)==srb+18||i18<0) && ((i19^32)==srb+19||i19<0)
        && ((i20^32)==srb+20||i20<0) && ((i21^32)==srb+21||i21<0) && ((i22^32)==srb+22||i22<0) && ((i23^32)==srb+23||i23<0)
        && ((i24^32)==srb+24||i24<0) && ((i25^32)==srb+25||i25<0) && ((i26^32)==srb+26||i26<0) && ((i27^32)==srb+27||i27<0)
        && ((i28^32)==srb+28||i28<0) && ((i29^32)==srb+29||i29<0) && ((i30^32)==srb+30||i30<0) && ((i31^32)==srb+31||i31<0)) {
        t1 = _mm256_permute2x128_si256(b, a, 0x21);
        if (srb < 16) t1 = _mm256_alignr_epi8(t1, b, srb & 15);
        else          t1 = _mm256_alignr_epi8(a, t1, srb & 15);
        if (mz != -1) {
            // zero some elements
            const __m256i maskz = constant8i <
                int((i0 <0?0:0xFF) | (i1 <0?0:0xFF00) | (i2 <0?0:0xFF0000) | (i3 <0?0:0xFF000000)),
                int((i4 <0?0:0xFF) | (i5 <0?0:0xFF00) | (i6 <0?0:0xFF0000) | (i7 <0?0:0xFF000000)),
                int((i8 <0?0:0xFF) | (i9 <0?0:0xFF00) | (i10<0?0:0xFF0000) | (i11<0?0:0xFF000000)),
                int((i12<0?0:0xFF) | (i13<0?0:0xFF00) | (i14<0?0:0xFF0000) | (i15<0?0:0xFF000000)),
                int((i16<0?0:0xFF) | (i17<0?0:0xFF00) | (i18<0?0:0xFF0000) | (i19<0?0:0xFF000000)),
                int((i20<0?0:0xFF) | (i21<0?0:0xFF00) | (i22<0?0:0xFF0000) | (i23<0?0:0xFF000000)),
                int((i24<0?0:0xFF) | (i25<0?0:0xFF00) | (i26<0?0:0xFF0000) | (i27<0?0:0xFF000000)),
                int((i28<0?0:0xFF) | (i29<0?0:0xFF00) | (i30<0?0:0xFF0000) | (i31<0?0:0xFF000000)) > ();
            return _mm256_and_si256(t1, maskz);
        }
        return t1;
    }

    // general case: permute and blend and possible zero
    const int blank = (mz == -1) ? -0x100 : -1;  // ignore or zero

    // permute and blend
    __m256i ta = permute32c <
        (i0 &32)?blank:i0 , (i1 &32)?blank:i1 , (i2 &32)?blank:i2 , (i3 &32)?blank:i3 , 
        (i4 &32)?blank:i4 , (i5 &32)?blank:i5 , (i6 &32)?blank:i6 , (i7 &32)?blank:i7 , 
        (i8 &32)?blank:i8 , (i9 &32)?blank:i9 , (i10&32)?blank:i10, (i11&32)?blank:i11,
        (i12&32)?blank:i12, (i13&32)?blank:i13, (i14&32)?blank:i14, (i15&32)?blank:i15, 
        (i16&32)?blank:i16, (i17&32)?blank:i17, (i18&32)?blank:i18, (i19&32)?blank:i19, 
        (i20&32)?blank:i20, (i21&32)?blank:i21, (i22&32)?blank:i22, (i23&32)?blank:i23, 
        (i24&32)?blank:i24, (i25&32)?blank:i25, (i26&32)?blank:i26, (i27&32)?blank:i27, 
        (i28&32)?blank:i28, (i29&32)?blank:i29, (i30&32)?blank:i30, (i31&32)?blank:i31 > (a);

    __m256i tb = permute32c <
        ((i0 ^32)&32)?blank:i0 ^32, ((i1 ^32)&32)?blank:i1 ^32, ((i2 ^32)&32)?blank:i2 ^32, ((i3 ^32)&32)?blank:i3 ^32, 
        ((i4 ^32)&32)?blank:i4 ^32, ((i5 ^32)&32)?blank:i5 ^32, ((i6 ^32)&32)?blank:i6 ^32, ((i7 ^32)&32)?blank:i7 ^32, 
        ((i8 ^32)&32)?blank:i8 ^32, ((i9 ^32)&32)?blank:i9 ^32, ((i10^32)&32)?blank:i10^32, ((i11^32)&32)?blank:i11^32,
        ((i12^32)&32)?blank:i12^32, ((i13^32)&32)?blank:i13^32, ((i14^32)&32)?blank:i14^32, ((i15^32)&32)?blank:i15^32,
        ((i16^32)&32)?blank:i16^32, ((i17^32)&32)?blank:i17^32, ((i18^32)&32)?blank:i18^32, ((i19^32)&32)?blank:i19^32,
        ((i20^32)&32)?blank:i20^32, ((i21^32)&32)?blank:i21^32, ((i22^32)&32)?blank:i22^32, ((i23^32)&32)?blank:i23^32,
        ((i24^32)&32)?blank:i24^32, ((i25^32)&32)?blank:i25^32, ((i26^32)&32)?blank:i26^32, ((i27^32)&32)?blank:i27^32,
        ((i28^32)&32)?blank:i28^32, ((i29^32)&32)?blank:i29^32, ((i30^32)&32)?blank:i30^32, ((i31^32)&32)?blank:i31^32 > (b);

    if (blank == -1) {
        // we have zeroed, need only to OR
        return _mm256_or_si256(ta, tb);
    }
    // no zeroing, need to blend
    mask = constant8i <
        int(((i0 <<2)&0x80) | ((i1 <<10)&0x8000) | ((i2 <<18)&0x800000) | (uint32_t(i3 <<26)&0x80000000)) ,
        int(((i4 <<2)&0x80) | ((i5 <<10)&0x8000) | ((i6 <<18)&0x800000) | (uint32_t(i7 <<26)&0x80000000)) ,
        int(((i8 <<2)&0x80) | ((i9 <<10)&0x8000) | ((i10<<18)&0x800000) | (uint32_t(i11<<26)&0x80000000)) ,
        int(((i12<<2)&0x80) | ((i13<<10)&0x8000) | ((i14<<18)&0x800000) | (uint32_t(i15<<26)&0x80000000)) ,
        int(((i16<<2)&0x80) | ((i17<<10)&0x8000) | ((i18<<18)&0x800000) | (uint32_t(i19<<26)&0x80000000)) ,
        int(((i20<<2)&0x80) | ((i21<<10)&0x8000) | ((i22<<18)&0x800000) | (uint32_t(i23<<26)&0x80000000)) ,
        int(((i24<<2)&0x80) | ((i25<<10)&0x8000) | ((i26<<18)&0x800000) | (uint32_t(i27<<26)&0x80000000)) ,
        int(((i28<<2)&0x80) | ((i29<<10)&0x8000) | ((i30<<18)&0x800000) | (uint32_t(i31<<26)&0x80000000)) > ();

    return _mm256_blendv_epi8(ta, tb, mask);  // blend
}

template <
    int i0,  int i1,  int i2,  int i3,  int i4,  int i5,  int i6,  int i7, 
    int i8,  int i9,  int i10, int i11, int i12, int i13, int i14, int i15,
    int i16, int i17, int i18, int i19, int i20, int i21, int i22, int i23,
    int i24, int i25, int i26, int i27, int i28, int i29, int i30, int i31 >
    static inline Vec32uc blend32uc(Vec32uc const & a, Vec32uc const & b) {
        return Vec32uc (blend32c<i0,i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14,i15,    
            i16,i17,i18,i19,i20,i21,i22,i23,i24,i25,i26,i27,i28,i29,i30,i31> (a, b));
}


/*****************************************************************************
*
*          Vector lookup functions
*
******************************************************************************
*
* These functions use vector elements as indexes into a table.
* The table is given as one or more vectors or as an array.
*
* This can be used for several purposes:
*  - table lookup
*  - permute or blend with variable indexes
*  - blend from more than two sources
*  - gather non-contiguous data
*
* An index out of range may produce any value - the actual value produced is
* implementation dependent and may be different for different instruction
* sets. An index out of range does not produce an error message or exception.
*
* Example:
* Vec8i a(2,0,0,6,4,3,5,0);                 // index a is (  2,   0,   0,   6,   4,   3,   5,   0)
* Vec8i b(100,101,102,103,104,105,106,107); // table b is (100, 101, 102, 103, 104, 105, 106, 107)
* Vec8i c;
* c = lookup8 (a,b);                        // c is       (102, 100, 100, 106, 104, 103, 105, 100)
*
*****************************************************************************/

static inline Vec32c lookup32(Vec32c const & index, Vec32c const & table) {
#ifdef __XOP__  // AMD XOP instruction set. Use VPPERM
    Vec16c t0 = _mm_perm_epi8(table.get_low(), table.get_high(), index.get_low());
    Vec16c t1 = _mm_perm_epi8(table.get_low(), table.get_high(), index.get_high());
    return Vec32c(t0, t1);
#else
    Vec32c f0 = constant8i<0,0,0,0,0x10101010,0x10101010,0x10101010,0x10101010>();
    Vec32c f1 = constant8i<0x10101010,0x10101010,0x10101010,0x10101010,0,0,0,0>();
    Vec32c tablef = _mm256_permute4x64_epi64(table, 0x4E);   // low and high parts swapped
    Vec32c r0 = _mm256_shuffle_epi8(table,  (index ^ f0) + 0x70);
    Vec32c r1 = _mm256_shuffle_epi8(tablef, (index ^ f1) + 0x70);
    return r0 | r1;
#endif
}

template <int n>
static inline Vec32c lookup(Vec32uc const & index, void const * table) {
    if (n <=  0) return 0;
    if (n <= 16) {
        Vec16c tt = Vec16c().load(table);
        Vec16c r0 = lookup16(index.get_low(),  tt);
        Vec16c r1 = lookup16(index.get_high(), tt);
        return Vec32c(r0, r1);
    }
    if (n <= 32) return lookup32(index, Vec32c().load(table));
    // n > 32. Limit index
    Vec32uc index1;
    if ((n & (n-1)) == 0) {
        // n is a power of 2, make index modulo n
        index1 = Vec32uc(index) & uint8_t(n-1);
    }
    else {
        // n is not a power of 2, limit to n-1
        index1 = min(Vec32uc(index), uint8_t(n-1));
    }
    Vec8ui mask0 = Vec8ui(0x000000FF);  // mask 8 bits
    Vec32c t0 = _mm256_i32gather_epi32((const int *)table, __m256i(mask0 & Vec8ui(index1)),      1); // positions 0, 4, 8,  ...
    Vec32c t1 = _mm256_i32gather_epi32((const int *)table, __m256i(mask0 & _mm256_srli_epi32(index1, 8)), 1); // positions 1, 5, 9,  ...
    Vec32c t2 = _mm256_i32gather_epi32((const int *)table, __m256i(mask0 & _mm256_srli_epi32(index1,16)), 1); // positions 2, 6, 10, ...
    Vec32c t3 = _mm256_i32gather_epi32((const int *)table,         _mm256_srli_epi32(index1,24), 1); // positions 3, 7, 11, ...
    t0 = t0 & mask0;
    t1 = _mm256_slli_epi32(t1 & mask0,  8);
    t2 = _mm256_slli_epi32(t2 & mask0, 16);
    t3 = _mm256_slli_epi32(t3,         24);
    return (t0 | t3) | (t1 | t2);
}

template <int n>
static inline Vec32c lookup(Vec32c const & index, void const * table) {
    return lookup<n>(Vec32uc(index), table);
}


static inline Vec16s lookup16(Vec16s const & index, Vec16s const & table) {
    return Vec16s(lookup32(Vec32c(index * 0x202 + 0x100), Vec32c(table)));
}

template <int n>
static inline Vec16s lookup(Vec16s const & index, void const * table) {
    if (n <=  0) return 0;
    if (n <=  8) {
        Vec8s table1 = Vec8s().load(table);        
        return Vec16s(       
            lookup8 (index.get_low(),  table1),
            lookup8 (index.get_high(), table1));
    }
    if (n <= 16) return lookup16(index, Vec16s().load(table));
    // n > 16. Limit index
    Vec16us index1;
    if ((n & (n-1)) == 0) {
        // n is a power of 2, make index modulo n
        index1 = Vec16us(index) & (n-1);
    }
    else {
        // n is not a power of 2, limit to n-1
        index1 = min(Vec16us(index), n-1);
    }
    Vec16s t1 = _mm256_i32gather_epi32((const int *)table, __m256i(Vec8ui(index1) & 0x0000FFFF), 2);  // even positions
    Vec16s t2 = _mm256_i32gather_epi32((const int *)table, _mm256_srli_epi32(index1, 16) , 2);        // odd  positions
    return blend16s<0,16,2,18,4,20,6,22,8,24,10,26,12,28,14,30>(t1, t2);
}

static inline Vec8i lookup8(Vec8i const & index, Vec8i const & table) {
    return _mm256_permutevar8x32_epi32(table, index);
}

template <int n>
static inline Vec8i lookup(Vec8i const & index, void const * table) {
    if (n <= 0) return 0;
    if (n <= 8) {
        Vec8i table1 = Vec8i().load(table);
        return lookup8(index, table1);
    }
    if (n <= 16) {
        Vec8i table1 = Vec8i().load(table);
        Vec8i table2 = Vec8i().load((int32_t const*)table + 8);
        Vec8i y1 = lookup8(index, table1);
        Vec8i y2 = lookup8(index, table2);
        Vec8ib s = index > 7;
        return select(s, y2, y1);
    }
    // n > 16. Limit index
    Vec8ui index1;
    if ((n & (n-1)) == 0) {
        // n is a power of 2, make index modulo n
        index1 = Vec8ui(index) & (n-1);
    }
    else {
        // n is not a power of 2, limit to n-1
        index1 = min(Vec8ui(index), n-1);
    }
    return _mm256_i32gather_epi32((const int *)table, index1, 4);
}

static inline Vec4q lookup4(Vec4q const & index, Vec4q const & table) {
    return Vec4q(lookup8(Vec8i(index * 0x200000002ll + 0x100000000ll), Vec8i(table)));
}

template <int n>
static inline Vec4q lookup(Vec4q const & index, int64_t const * table) {
    if (n <= 0) return 0;
    // n > 0. Limit index
    Vec4uq index1;
    if ((n & (n-1)) == 0) {
        // n is a power of 2, make index modulo n
        index1 = Vec4uq(index) & (n-1);
    }
    else {
        // n is not a power of 2, limit to n-1.
        // There is no 64-bit min instruction, but we can use the 32-bit unsigned min,
        // since n is a 32-bit integer
        index1 = Vec4uq(min(Vec8ui(index), constant8i<n-1, 0, n-1, 0, n-1, 0, n-1, 0>()));
    }
// old compilers can't agree how to define a 64 bit integer. Intel and MS use __int64, gcc use long long
#if defined (__clang__) && CLANG_VERSION < 30400
// clang 3.3 uses const int * in accordance with official Intel doc., which is wrong. will be fixed
    return _mm256_i64gather_epi64((const int *)table, index1, 8);
#elif defined (_MSC_VER) && _MSC_VER < 1700 && ! defined(__INTEL_COMPILER)
// Old MS and Intel use non-standard type __int64
    return _mm256_i64gather_epi64((const int64_t *)table, index1, 8);
#else
// Gnu, Clang 3.4, MS 11.0
    return _mm256_i64gather_epi64((const long long *)table, index1, 8);
#endif
}


/*****************************************************************************
*
*          Other permutations with variable indexes
*
*****************************************************************************/

// Function shift_bytes_up: shift whole vector left by b bytes.
// You may use a permute function instead if b is a compile-time constant
static inline Vec32c shift_bytes_up(Vec32c const & a, int b) {
    if (b < 16) {    
        return Vec32c(shift_bytes_up(a.get_low(),b), shift_bytes_up(a.get_high(),b) | shift_bytes_down(a.get_low(),16-b));
    }
    else {
        return Vec32c(Vec16c(0), shift_bytes_up(a.get_high(),b-16));
    }
}

// Function shift_bytes_down: shift whole vector right by b bytes
// You may use a permute function instead if b is a compile-time constant
static inline Vec32c shift_bytes_down(Vec32c const & a, int b) {
    if (b < 16) {    
        return Vec32c(shift_bytes_down(a.get_low(),b) | shift_bytes_up(a.get_high(),16-b), shift_bytes_down(a.get_high(),b));
    }
    else {
        return Vec32c(shift_bytes_down(a.get_high(),b-16), Vec16c(0));
    }
}

/*****************************************************************************
*
*          Gather functions with fixed indexes
*
*****************************************************************************/
// Load elements from array a with indices i0, i1, i2, i3, i4, i5, i6, i7
template <int i0, int i1, int i2, int i3, int i4, int i5, int i6, int i7>
static inline Vec8i gather8i(void const * a) {
    Static_error_check<(i0|i1|i2|i3|i4|i5|i6|i7)>=0> Negative_array_index;  // Error message if index is negative
    const int i01min = i0 < i1 ? i0 : i1;
    const int i23min = i2 < i3 ? i2 : i3;
    const int i45min = i4 < i5 ? i4 : i5;
    const int i67min = i6 < i7 ? i6 : i7;
    const int i0123min = i01min < i23min ? i01min : i23min;
    const int i4567min = i45min < i67min ? i45min : i67min;
    const int imin = i0123min < i4567min ? i0123min : i4567min;
    const int i01max = i0 > i1 ? i0 : i1;
    const int i23max = i2 > i3 ? i2 : i3;
    const int i45max = i4 > i5 ? i4 : i5;
    const int i67max = i6 > i7 ? i6 : i7;
    const int i0123max = i01max > i23max ? i01max : i23max;
    const int i4567max = i45max > i67max ? i45max : i67max;
    const int imax = i0123max > i4567max ? i0123max : i4567max;

    if (imax - imin <= 7) {
        // load one contiguous block and permute
        if (imax > 7) {
            // make sure we don't read past the end of the array
            Vec8i b = Vec8i().load((int32_t const *)a + imax-7);
            return permute8i<i0-imax+7, i1-imax+7, i2-imax+7, i3-imax+7, i4-imax+7, i5-imax+7, i6-imax+7, i7-imax+7>(b);
        }
        else {
            Vec8i b = Vec8i().load((int32_t const *)a + imin);
            return permute8i<i0-imin, i1-imin, i2-imin, i3-imin, i4-imin, i5-imin, i6-imin, i7-imin>(b);
        }
    }
    if ((i0<imin+8 || i0>imax-8) && (i1<imin+8 || i1>imax-8) && (i2<imin+8 || i2>imax-8) && (i3<imin+8 || i3>imax-8)
    &&  (i4<imin+8 || i4>imax-8) && (i5<imin+8 || i5>imax-8) && (i6<imin+8 || i6>imax-8) && (i7<imin+8 || i7>imax-8)) {
        // load two contiguous blocks and blend
        Vec8i b = Vec8i().load((int32_t const *)a + imin);
        Vec8i c = Vec8i().load((int32_t const *)a + imax-7);
        const int j0 = i0<imin+8 ? i0-imin : 15-imax+i0;
        const int j1 = i1<imin+8 ? i1-imin : 15-imax+i1;
        const int j2 = i2<imin+8 ? i2-imin : 15-imax+i2;
        const int j3 = i3<imin+8 ? i3-imin : 15-imax+i3;
        const int j4 = i4<imin+8 ? i4-imin : 15-imax+i4;
        const int j5 = i5<imin+8 ? i5-imin : 15-imax+i5;
        const int j6 = i6<imin+8 ? i6-imin : 15-imax+i6;
        const int j7 = i7<imin+8 ? i7-imin : 15-imax+i7;
        return blend8i<j0, j1, j2, j3, j4, j5, j6, j7>(b, c);
    }
    // use AVX2 gather
    return _mm256_i32gather_epi32((const int *)a, Vec8i(i0,i1,i2,i3,i4,i5,i6,i7), 4);
}

template <int i0, int i1, int i2, int i3>
static inline Vec4q gather4q(void const * a) {
    Static_error_check<(i0|i1|i2|i3)>=0> Negative_array_index;  // Error message if index is negative
    const int i01min = i0 < i1 ? i0 : i1;
    const int i23min = i2 < i3 ? i2 : i3;
    const int imin   = i01min < i23min ? i01min : i23min;
    const int i01max = i0 > i1 ? i0 : i1;
    const int i23max = i2 > i3 ? i2 : i3;
    const int imax   = i01max > i23max ? i01max : i23max;
    if (imax - imin <= 3) {
        // load one contiguous block and permute
        if (imax > 3) {
            // make sure we don't read past the end of the array
            Vec4q b = Vec4q().load((int64_t const *)a + imax-3);
            return permute4q<i0-imax+3, i1-imax+3, i2-imax+3, i3-imax+3>(b);
        }
        else {
            Vec4q b = Vec4q().load((int64_t const *)a + imin);
            return permute4q<i0-imin, i1-imin, i2-imin, i3-imin>(b);
        }
    }
    if ((i0<imin+4 || i0>imax-4) && (i1<imin+4 || i1>imax-4) && (i2<imin+4 || i2>imax-4) && (i3<imin+4 || i3>imax-4)) {
        // load two contiguous blocks and blend
        Vec4q b = Vec4q().load((int64_t const *)a + imin);
        Vec4q c = Vec4q().load((int64_t const *)a + imax-3);
        const int j0 = i0<imin+4 ? i0-imin : 7-imax+i0;
        const int j1 = i1<imin+4 ? i1-imin : 7-imax+i1;
        const int j2 = i2<imin+4 ? i2-imin : 7-imax+i2;
        const int j3 = i3<imin+4 ? i3-imin : 7-imax+i3;
        return blend4q<j0, j1, j2, j3>(b, c);
    }
    // use AVX2 gather
    // old compilers can't agree how to define a 64 bit integer. Intel and MS use __int64, gcc use long long
#if defined (__clang__) && CLANG_VERSION < 30400
    // clang 3.3 uses const int * in accordance with official Intel doc., which is wrong. will be fixed
    return _mm256_i32gather_epi64((const int *)a, Vec4i(i0,i1,i2,i3), 8);
#elif defined (_MSC_VER) && _MSC_VER < 1700 && ! defined(__INTEL_COMPILER)
    // Old MS and Intel use non-standard type __int64
    return _mm256_i32gather_epi64((const int64_t *)a, Vec4i(i0,i1,i2,i3), 8);
#else
    // Gnu, Clang 3.4, MS 11.0
    return _mm256_i32gather_epi64((const long long *)a, Vec4i(i0,i1,i2,i3), 8);
#endif
}


/*****************************************************************************
*
*          Vector scatter functions
*
******************************************************************************
*
* These functions write the elements of a vector to arbitrary positions in an
* array in memory. Each vector element is written to an array position 
* determined by an index. An element is not written if the corresponding
* index is out of range.
* The indexes can be specified as constant template parameters or as an
* integer vector.
* 
* The scatter functions are useful if the data are distributed in a sparce
* manner into the array. If the array is dense then it is more efficient
* to permute the data into the right positions and then write the whole
* permuted vector into the array.
*
* Example:
* Vec8q a(10,11,12,13,14,15,16,17);
* int64_t b[16] = {0};
* scatter<0,2,14,10,1,-1,5,9>(a,b); 
* // Now, b = {10,14,11,0,0,16,0,0,0,17,13,0,0,0,12,0}
*
*****************************************************************************/

template <int i0, int i1, int i2, int i3, int i4, int i5, int i6, int i7>
static inline void scatter(Vec8i const & data, void * array) {
#if defined (__AVX512VL__)
    __m256i indx = constant8i<i0,i1,i2,i3,i4,i5,i6,i7>();
    __mmask16 mask = uint16_t(i0>=0 | (i1>=0)<<1 | (i2>=0)<<2 | (i3>=0)<<3| (i4>=0)<<4| (i5>=0)<<5| (i6>=0)<<6| (i7>=0)<<7);
    _mm256_mask_i32scatter_epi32((int*)array, mask, indx, data, 4);
#elif defined (__AVX512F__)
    __m512i indx = _mm512_castsi256_si512(constant8i<i0,i1,i2,i3,i4,i5,i6,i7>());
    __mmask16 mask = uint16_t(i0>=0 | (i1>=0)<<1 | (i2>=0)<<2 | (i3>=0)<<3| (i4>=0)<<4| (i5>=0)<<5| (i6>=0)<<6| (i7>=0)<<7);
    _mm512_mask_i32scatter_epi32((int*)array, mask, indx, _mm512_castsi256_si512(data), 4);
#else
    int32_t* arr = (int32_t*)array;
    const int index[8] = {i0,i1,i2,i3,i4,i5,i6,i7};
    for (int i = 0; i < 8; i++) {
        if (index[i] >= 0) arr[index[i]] = data[i];
    }
#endif
}

template <int i0, int i1, int i2, int i3>
static inline void scatter(Vec4q const & data, void * array) {
#if defined (__AVX512VL__)
    __m128i indx = constant4i<i0,i1,i2,i3>();
    __mmask16 mask = uint16_t(i0>=0 | (i1>=0)<<1 | (i2>=0)<<2 | (i3>=0)<<3);
    _mm256_mask_i32scatter_epi64((long long *)array, mask, indx, data, 8);
#elif defined (__AVX512F__)
    __m256i indx = _mm256_castsi128_si256(constant4i<i0,i1,i2,i3>());
    __mmask16 mask = uint16_t(i0>=0 | (i1>=0)<<1 | (i2>=0)<<2 | (i3>=0)<<3);
    _mm512_mask_i32scatter_epi64((long long*)array, mask, indx, _mm512_castsi256_si512(data), 8);
#else
    int64_t* arr = (int64_t*)array;
    const int index[4] = {i0,i1,i2,i3};
    for (int i = 0; i < 4; i++) {
        if (index[i] >= 0) arr[index[i]] = data[i];
    }
#endif
}

static inline void scatter(Vec8i const & index, uint32_t limit, Vec8i const & data, void * array) {
#if defined (__AVX512VL__)
    __mmask16 mask = _mm256_cmplt_epu32_mask(index, Vec8ui(limit));
    _mm256_mask_i32scatter_epi32((int*)array, mask, index, data, 4);
#elif defined (__AVX512F__)
    // 16 bit mask. upper 8 bits are (0<0) = false
    __mmask16 mask = _mm512_cmplt_epu32_mask(_mm512_castsi256_si512(index), _mm512_castsi256_si512(Vec8ui(limit)));
    _mm512_mask_i32scatter_epi32((int*)array, mask, _mm512_castsi256_si512(index), _mm512_castsi256_si512(data), 4);
#else
    int32_t* arr = (int32_t*)array;
    for (int i = 0; i < 8; i++) {
        if (uint32_t(index[i]) < limit) arr[index[i]] = data[i];
    }
#endif
} 

static inline void scatter(Vec4q const & index, uint32_t limit, Vec4q const & data, void * array) {
#if defined (__AVX512VL__)
    __mmask16 mask = _mm256_cmplt_epu64_mask(index, Vec4uq(uint64_t(limit)));
    _mm256_mask_i64scatter_epi64((long long*)array, mask, index, data, 8);
#elif defined (__AVX512F__)
    // 16 bit mask. upper 8 bits are (0<0) = false
    __mmask16 mask = _mm512_cmplt_epu64_mask(_mm512_castsi256_si512(index), _mm512_castsi256_si512(Vec4uq(uint64_t(limit))));
    _mm512_mask_i64scatter_epi64((long long*)array, mask, _mm512_castsi256_si512(index), _mm512_castsi256_si512(data), 8);
#else
    int64_t* arr = (int64_t*)array;
    for (int i = 0; i < 4; i++) {
        if (uint64_t(index[i]) < uint64_t(limit)) arr[index[i]] = data[i];
    }
#endif
} 

static inline void scatter(Vec4i const & index, uint32_t limit, Vec4q const & data, void * array) {
#if defined (__AVX512VL__)
    __mmask16 mask = _mm_cmplt_epu32_mask(index, Vec4ui(limit));
    _mm256_mask_i32scatter_epi64((long long*)array, mask, index, data, 8);
#elif defined (__AVX512F__)
    // 16 bit mask. upper 8 bits are (0<0) = false
    __mmask16 mask = _mm512_cmplt_epu32_mask(_mm512_castsi128_si512(index), _mm512_castsi128_si512(Vec4ui(limit)));
    _mm512_mask_i32scatter_epi64((long long*)array, mask, _mm256_castsi128_si256(index), _mm512_castsi256_si512(data), 8);
#else
    int64_t* arr = (int64_t*)array;
    for (int i = 0; i < 4; i++) {
        if (uint32_t(index[i]) < limit) arr[index[i]] = data[i];
    }
#endif
} 

/*****************************************************************************
*
*          Functions for conversion between integer sizes
*
*****************************************************************************/

// Extend 8-bit integers to 16-bit integers, signed and unsigned

// Function extend_low : extends the low 16 elements to 16 bits with sign extension
static inline Vec16s extend_low (Vec32c const & a) {
    __m256i a2   = permute4q<0,-256,1,-256>(Vec4q(a));           // get bits 64-127 to position 128-191
    __m256i sign = _mm256_cmpgt_epi8(_mm256_setzero_si256(),a2); // 0 > a2
    return         _mm256_unpacklo_epi8(a2, sign);               // interleave with sign extensions
}

// Function extend_high : extends the high 16 elements to 16 bits with sign extension
static inline Vec16s extend_high (Vec32c const & a) {
    __m256i a2   = permute4q<-256,2,-256,3>(Vec4q(a));           // get bits 128-191 to position 64-127
    __m256i sign = _mm256_cmpgt_epi8(_mm256_setzero_si256(),a2); // 0 > a2
    return         _mm256_unpackhi_epi8(a2, sign);               // interleave with sign extensions
}

// Function extend_low : extends the low 16 elements to 16 bits with zero extension
static inline Vec16us extend_low (Vec32uc const & a) {
    __m256i a2 = permute4q<0,-256,1,-256>(Vec4q(a));             // get bits 64-127 to position 128-191
    return    _mm256_unpacklo_epi8(a2, _mm256_setzero_si256());  // interleave with zero extensions
}

// Function extend_high : extends the high 19 elements to 16 bits with zero extension
static inline Vec16us extend_high (Vec32uc const & a) {
    __m256i a2 = permute4q<-256,2,-256,3>(Vec4q(a));             // get bits 128-191 to position 64-127
    return  _mm256_unpackhi_epi8(a2, _mm256_setzero_si256());    // interleave with zero extensions
}

// Extend 16-bit integers to 32-bit integers, signed and unsigned

// Function extend_low : extends the low 8 elements to 32 bits with sign extension
static inline Vec8i extend_low (Vec16s const & a) {
    __m256i a2   = permute4q<0,-256,1,-256>(Vec4q(a));           // get bits 64-127 to position 128-191
    __m256i sign = _mm256_srai_epi16(a2, 15);                    // sign bit
    return         _mm256_unpacklo_epi16(a2 ,sign);              // interleave with sign extensions
}

// Function extend_high : extends the high 8 elements to 32 bits with sign extension
static inline Vec8i extend_high (Vec16s const & a) {
    __m256i a2 = permute4q<-256,2,-256,3>(Vec4q(a));             // get bits 128-191 to position 64-127
    __m256i sign = _mm256_srai_epi16(a2, 15);                    // sign bit
    return         _mm256_unpackhi_epi16(a2, sign);              // interleave with sign extensions
}

// Function extend_low : extends the low 8 elements to 32 bits with zero extension
static inline Vec8ui extend_low (Vec16us const & a) {
    __m256i a2 = permute4q<0,-256,1,-256>(Vec4q(a));             // get bits 64-127 to position 128-191
    return    _mm256_unpacklo_epi16(a2, _mm256_setzero_si256()); // interleave with zero extensions
}

// Function extend_high : extends the high 8 elements to 32 bits with zero extension
static inline Vec8ui extend_high (Vec16us const & a) {
    __m256i a2 = permute4q<-256,2,-256,3>(Vec4q(a));             // get bits 128-191 to position 64-127
    return  _mm256_unpackhi_epi16(a2, _mm256_setzero_si256());   // interleave with zero extensions
}

// Extend 32-bit integers to 64-bit integers, signed and unsigned

// Function extend_low : extends the low 4 elements to 64 bits with sign extension
static inline Vec4q extend_low (Vec8i const & a) {
    __m256i a2 = permute4q<0,-256,1,-256>(Vec4q(a));             // get bits 64-127 to position 128-191
    __m256i sign = _mm256_srai_epi32(a2, 31);                    // sign bit
    return         _mm256_unpacklo_epi32(a2, sign);              // interleave with sign extensions
}

// Function extend_high : extends the high 4 elements to 64 bits with sign extension
static inline Vec4q extend_high (Vec8i const & a) {
    __m256i a2 = permute4q<-256,2,-256,3>(Vec4q(a));             // get bits 128-191 to position 64-127
    __m256i sign = _mm256_srai_epi32(a2, 31);                    // sign bit
    return         _mm256_unpackhi_epi32(a2, sign);              // interleave with sign extensions
}

// Function extend_low : extends the low 4 elements to 64 bits with zero extension
static inline Vec4uq extend_low (Vec8ui const & a) {
    __m256i a2 = permute4q<0,-256,1,-256>(Vec4q(a));             // get bits 64-127 to position 128-191
    return  _mm256_unpacklo_epi32(a2, _mm256_setzero_si256());   // interleave with zero extensions
}

// Function extend_high : extends the high 4 elements to 64 bits with zero extension
static inline Vec4uq extend_high (Vec8ui const & a) {
    __m256i a2 = permute4q<-256,2,-256,3>(Vec4q(a));             // get bits 128-191 to position 64-127
    return  _mm256_unpackhi_epi32(a2, _mm256_setzero_si256());   // interleave with zero extensions
}

// Compress 16-bit integers to 8-bit integers, signed and unsigned, with and without saturation

// Function compress : packs two vectors of 16-bit integers into one vector of 8-bit integers
// Overflow wraps around
static inline Vec32c compress (Vec16s const & low, Vec16s const & high) {
    __m256i mask  = _mm256_set1_epi32(0x00FF00FF);            // mask for low bytes
    __m256i lowm  = _mm256_and_si256(low, mask);              // bytes of low
    __m256i highm = _mm256_and_si256(high, mask);             // bytes of high
    __m256i pk    = _mm256_packus_epi16(lowm, highm);         // unsigned pack
    return          _mm256_permute4x64_epi64(pk, 0xD8);       // put in right place
}

// Function compress : packs two vectors of 16-bit integers into one vector of 8-bit integers
// Signed, with saturation
static inline Vec32c compress_saturated (Vec16s const & low, Vec16s const & high) {
    __m256i pk    = _mm256_packs_epi16(low,high);             // packed with signed saturation
    return          _mm256_permute4x64_epi64(pk, 0xD8);       // put in right place
}

// Function compress : packs two vectors of 16-bit integers to one vector of 8-bit integers
// Unsigned, overflow wraps around
static inline Vec32uc compress (Vec16us const & low, Vec16us const & high) {
    return  Vec32uc (compress((Vec16s)low, (Vec16s)high));
}

// Function compress : packs two vectors of 16-bit integers into one vector of 8-bit integers
// Unsigned, with saturation
static inline Vec32uc compress_saturated (Vec16us const & low, Vec16us const & high) {
    __m256i maxval  = _mm256_set1_epi32(0x00FF00FF);          // maximum value
    __m256i minval  = _mm256_setzero_si256();                 // minimum value = 0
    __m256i low1    = _mm256_min_epu16(low,maxval);           // upper limit
    __m256i high1   = _mm256_min_epu16(high,maxval);          // upper limit
    __m256i low2    = _mm256_max_epu16(low1,minval);          // lower limit
    __m256i high2   = _mm256_max_epu16(high1,minval);         // lower limit
    __m256i pk      = _mm256_packus_epi16(low2,high2);        // this instruction saturates from signed 32 bit to unsigned 16 bit
    return            _mm256_permute4x64_epi64(pk, 0xD8);     // put in right place
}

// Compress 32-bit integers to 16-bit integers, signed and unsigned, with and without saturation

// Function compress : packs two vectors of 32-bit integers into one vector of 16-bit integers
// Overflow wraps around
static inline Vec16s compress (Vec8i const & low, Vec8i const & high) {
    __m256i mask  = _mm256_set1_epi32(0x0000FFFF);            // mask for low words
    __m256i lowm  = _mm256_and_si256(low,mask);               // bytes of low
    __m256i highm = _mm256_and_si256(high,mask);              // bytes of high
    __m256i pk    = _mm256_packus_epi32(lowm,highm);          // unsigned pack
    return          _mm256_permute4x64_epi64(pk, 0xD8);       // put in right place
}

// Function compress : packs two vectors of 32-bit integers into one vector of 16-bit integers
// Signed with saturation
static inline Vec16s compress_saturated (Vec8i const & low, Vec8i const & high) {
    __m256i pk    =  _mm256_packs_epi32(low,high);            // pack with signed saturation
    return           _mm256_permute4x64_epi64(pk, 0xD8);      // put in right place
}

// Function compress : packs two vectors of 32-bit integers into one vector of 16-bit integers
// Overflow wraps around
static inline Vec16us compress (Vec8ui const & low, Vec8ui const & high) {
    return Vec16us (compress((Vec8i)low, (Vec8i)high));
}

// Function compress : packs two vectors of 32-bit integers into one vector of 16-bit integers
// Unsigned, with saturation
static inline Vec16us compress_saturated (Vec8ui const & low, Vec8ui const & high) {
    __m256i maxval  = _mm256_set1_epi32(0x0000FFFF);          // maximum value
    __m256i minval  = _mm256_setzero_si256();                 // minimum value = 0
    __m256i low1    = _mm256_min_epu32(low,maxval);           // upper limit
    __m256i high1   = _mm256_min_epu32(high,maxval);          // upper limit
    __m256i low2    = _mm256_max_epu32(low1,minval);          // lower limit
    __m256i high2   = _mm256_max_epu32(high1,minval);         // lower limit
    __m256i pk      = _mm256_packus_epi32(low2,high2);        // this instruction saturates from signed 32 bit to unsigned 16 bit
    return            _mm256_permute4x64_epi64(pk, 0xD8);     // put in right place
}

// Compress 64-bit integers to 32-bit integers, signed and unsigned, with and without saturation

// Function compress : packs two vectors of 64-bit integers into one vector of 32-bit integers
// Overflow wraps around
static inline Vec8i compress (Vec4q const & low, Vec4q const & high) {
    __m256i low2  = _mm256_shuffle_epi32(low,0xD8);           // low dwords of low  to pos. 0 and 32
    __m256i high2 = _mm256_shuffle_epi32(high,0xD8);          // low dwords of high to pos. 0 and 32
    __m256i pk    = _mm256_unpacklo_epi64(low2,high2);        // interleave
    return          _mm256_permute4x64_epi64(pk, 0xD8);       // put in right place
}

// Function compress : packs two vectors of 64-bit integers into one vector of 32-bit integers
// Signed, with saturation
static inline Vec8i compress_saturated (Vec4q const & a, Vec4q const & b) {
    Vec4q maxval = constant8ui<0x7FFFFFFF,0,0x7FFFFFFF,0,0x7FFFFFFF,0,0x7FFFFFFF,0>();
    Vec4q minval = constant8ui<0x80000000,0xFFFFFFFF,0x80000000,0xFFFFFFFF,0x80000000,0xFFFFFFFF,0x80000000,0xFFFFFFFF>();
    Vec4q a1  = min(a,maxval);
    Vec4q b1  = min(b,maxval);
    Vec4q a2  = max(a1,minval);
    Vec4q b2  = max(b1,minval);
    return compress(a2,b2);
}

// Function compress : packs two vectors of 32-bit integers into one vector of 16-bit integers
// Overflow wraps around
static inline Vec8ui compress (Vec4uq const & low, Vec4uq const & high) {
    return Vec8ui (compress((Vec4q)low, (Vec4q)high));
}

// Function compress : packs two vectors of 64-bit integers into one vector of 32-bit integers
// Unsigned, with saturation
static inline Vec8ui compress_saturated (Vec4uq const & low, Vec4uq const & high) {
    __m256i zero     = _mm256_setzero_si256();                // 0
    __m256i lowzero  = _mm256_cmpeq_epi32(low,zero);          // for each dword is zero
    __m256i highzero = _mm256_cmpeq_epi32(high,zero);         // for each dword is zero
    __m256i mone     = _mm256_set1_epi32(-1);                 // FFFFFFFF
    __m256i lownz    = _mm256_xor_si256(lowzero,mone);        // for each dword is nonzero
    __m256i highnz   = _mm256_xor_si256(highzero,mone);       // for each dword is nonzero
    __m256i lownz2   = _mm256_srli_epi64(lownz,32);           // shift down to low dword
    __m256i highnz2  = _mm256_srli_epi64(highnz,32);          // shift down to low dword
    __m256i lowsatur = _mm256_or_si256(low,lownz2);           // low, saturated
    __m256i hisatur  = _mm256_or_si256(high,highnz2);         // high, saturated
    return  Vec8ui (compress(Vec4q(lowsatur), Vec4q(hisatur)));
}


/*****************************************************************************
*
*          Integer division operators
*
*          Please see the file vectori128.h for explanation.
*
*****************************************************************************/

// vector operator / : divide each element by divisor

// vector of 8 32-bit signed integers
static inline Vec8i operator / (Vec8i const & a, Divisor_i const & d) {
    __m256i m   = _mm256_broadcastq_epi64(d.getm());       // broadcast multiplier
    __m256i sgn = _mm256_broadcastq_epi64(d.getsign());    // broadcast sign of d
    __m256i t1  = _mm256_mul_epi32(a,m);                   // 32x32->64 bit signed multiplication of even elements of a
    __m256i t2  = _mm256_srli_epi64(t1,32);                // high dword of even numbered results
    __m256i t3  = _mm256_srli_epi64(a,32);                 // get odd elements of a into position for multiplication
    __m256i t4  = _mm256_mul_epi32(t3,m);                  // 32x32->64 bit signed multiplication of odd elements
    __m256i t5  = constant8i<0,-1,0,-1,0,-1,0,-1> ();      // mask for odd elements
    __m256i t7  = _mm256_blendv_epi8(t2,t4,t5);            // blend two results
    __m256i t8  = _mm256_add_epi32(t7,a);                  // add
    __m256i t9  = _mm256_sra_epi32(t8,d.gets1());          // shift right artihmetic
    __m256i t10 = _mm256_srai_epi32(a,31);                 // sign of a
    __m256i t11 = _mm256_sub_epi32(t10,sgn);               // sign of a - sign of d
    __m256i t12 = _mm256_sub_epi32(t9,t11);                // + 1 if a < 0, -1 if d < 0
    return        _mm256_xor_si256(t12,sgn);               // change sign if divisor negative
}

// vector of 8 32-bit unsigned integers
static inline Vec8ui operator / (Vec8ui const & a, Divisor_ui const & d) {
    __m256i m   = _mm256_broadcastq_epi64(d.getm());       // broadcast multiplier
    __m256i t1  = _mm256_mul_epu32(a,m);                   // 32x32->64 bit unsigned multiplication of even elements of a
    __m256i t2  = _mm256_srli_epi64(t1,32);                // high dword of even numbered results
    __m256i t3  = _mm256_srli_epi64(a,32);                 // get odd elements of a into position for multiplication
    __m256i t4  = _mm256_mul_epu32(t3,m);                  // 32x32->64 bit unsigned multiplication of odd elements
    __m256i t5  = constant8i<0,-1,0,-1,0,-1,0,-1> ();      // mask for odd elements
    __m256i t7  = _mm256_blendv_epi8(t2,t4,t5);            // blend two results
    __m256i t8  = _mm256_sub_epi32(a,t7);                  // subtract
    __m256i t9  = _mm256_srl_epi32(t8,d.gets1());          // shift right logical
    __m256i t10 = _mm256_add_epi32(t7,t9);                 // add
    return        _mm256_srl_epi32(t10,d.gets2());         // shift right logical 
}

// vector of 16 16-bit signed integers
static inline Vec16s operator / (Vec16s const & a, Divisor_s const & d) {
    __m256i m   = _mm256_broadcastq_epi64(d.getm());       // broadcast multiplier
    __m256i sgn = _mm256_broadcastq_epi64(d.getsign());    // broadcast sign of d
    __m256i t1  = _mm256_mulhi_epi16(a, m);                // multiply high signed words
    __m256i t2  = _mm256_add_epi16(t1,a);                  // + a
    __m256i t3  = _mm256_sra_epi16(t2,d.gets1());          // shift right artihmetic
    __m256i t4  = _mm256_srai_epi16(a,15);                 // sign of a
    __m256i t5  = _mm256_sub_epi16(t4,sgn);                // sign of a - sign of d
    __m256i t6  = _mm256_sub_epi16(t3,t5);                 // + 1 if a < 0, -1 if d < 0
    return        _mm256_xor_si256(t6,sgn);                // change sign if divisor negative
}

// vector of 16 16-bit unsigned integers
static inline Vec16us operator / (Vec16us const & a, Divisor_us const & d) {
    __m256i m   = _mm256_broadcastq_epi64(d.getm());       // broadcast multiplier
    __m256i t1  = _mm256_mulhi_epu16(a, m);                // multiply high signed words
    __m256i t2  = _mm256_sub_epi16(a,t1);                  // subtract
    __m256i t3  = _mm256_srl_epi16(t2,d.gets1());          // shift right logical
    __m256i t4  = _mm256_add_epi16(t1,t3);                 // add
    return        _mm256_srl_epi16(t4,d.gets2());          // shift right logical 
}

// vector of 32 8-bit signed integers
static inline Vec32c operator / (Vec32c const & a, Divisor_s const & d) {
    // expand into two Vec16s
    Vec16s low  = extend_low(a) / d;
    Vec16s high = extend_high(a) / d;
    return compress(low,high);
}

// vector of 32 8-bit unsigned integers
static inline Vec32uc operator / (Vec32uc const & a, Divisor_us const & d) {
    // expand into two Vec16s
    Vec16us low  = extend_low(a) / d;
    Vec16us high = extend_high(a) / d;
    return compress(low,high);
}

// vector operator /= : divide
static inline Vec8i & operator /= (Vec8i & a, Divisor_i const & d) {
    a = a / d;
    return a;
}

// vector operator /= : divide
static inline Vec8ui & operator /= (Vec8ui & a, Divisor_ui const & d) {
    a = a / d;
    return a;
}

// vector operator /= : divide
static inline Vec16s & operator /= (Vec16s & a, Divisor_s const & d) {
    a = a / d;
    return a;
}


// vector operator /= : divide
static inline Vec16us & operator /= (Vec16us & a, Divisor_us const & d) {
    a = a / d;
    return a;

}

// vector operator /= : divide
static inline Vec32c & operator /= (Vec32c & a, Divisor_s const & d) {
    a = a / d;
    return a;
}

// vector operator /= : divide
static inline Vec32uc & operator /= (Vec32uc & a, Divisor_us const & d) {
    a = a / d;
    return a;
}


/*****************************************************************************
*
*          Integer division 2: divisor is a compile-time constant
*
*****************************************************************************/

// Divide Vec8i by compile-time constant
template <int32_t d>
static inline Vec8i divide_by_i(Vec8i const & x) {
    Static_error_check<(d!=0)> Dividing_by_zero;                     // Error message if dividing by zero
    if (d ==  1) return  x;
    if (d == -1) return -x;
    if (uint32_t(d) == 0x80000000u) return Vec8i(x == Vec8i(0x80000000)) & 1; // prevent overflow when changing sign
    const uint32_t d1 = d > 0 ? uint32_t(d) : -uint32_t(d);          // compile-time abs(d). (force GCC compiler to treat d as 32 bits, not 64 bits)
    if ((d1 & (d1-1)) == 0) {
        // d1 is a power of 2. use shift
        const int k = bit_scan_reverse_const(d1);
        __m256i sign;
        if (k > 1) sign = _mm256_srai_epi32(x, k-1); else sign = x;  // k copies of sign bit
        __m256i bias    = _mm256_srli_epi32(sign, 32-k);             // bias = x >= 0 ? 0 : k-1
        __m256i xpbias  = _mm256_add_epi32 (x, bias);                // x + bias
        __m256i q       = _mm256_srai_epi32(xpbias, k);              // (x + bias) >> k
        if (d > 0)      return q;                                    // d > 0: return  q
        return _mm256_sub_epi32(_mm256_setzero_si256(), q);          // d < 0: return -q
    }
    // general case
    const int32_t sh = bit_scan_reverse_const(uint32_t(d1)-1);       // ceil(log2(d1)) - 1. (d1 < 2 handled by power of 2 case)
    const int32_t mult = int(1 + (uint64_t(1) << (32+sh)) / uint32_t(d1) - (int64_t(1) << 32));   // multiplier
    const Divisor_i div(mult, sh, d < 0 ? -1 : 0);
    return x / div;
}

// define Vec8i a / const_int(d)
template <int32_t d>
static inline Vec8i operator / (Vec8i const & a, Const_int_t<d>) {
    return divide_by_i<d>(a);
}

// define Vec8i a / const_uint(d)
template <uint32_t d>
static inline Vec8i operator / (Vec8i const & a, Const_uint_t<d>) {
    Static_error_check< (d<0x80000000u) > Error_overflow_dividing_signed_by_unsigned; // Error: dividing signed by overflowing unsigned
    return divide_by_i<int32_t(d)>(a);                               // signed divide
}

// vector operator /= : divide
template <int32_t d>
static inline Vec8i & operator /= (Vec8i & a, Const_int_t<d> b) {
    a = a / b;
    return a;
}

// vector operator /= : divide
template <uint32_t d>
static inline Vec8i & operator /= (Vec8i & a, Const_uint_t<d> b) {
    a = a / b;
    return a;
}


// Divide Vec8ui by compile-time constant
template <uint32_t d>
static inline Vec8ui divide_by_ui(Vec8ui const & x) {
    Static_error_check<(d!=0)> Dividing_by_zero;                     // Error message if dividing by zero
    if (d == 1) return x;                                            // divide by 1
    const int b = bit_scan_reverse_const(d);                         // floor(log2(d))
    if ((uint32_t(d) & (uint32_t(d)-1)) == 0) {
        // d is a power of 2. use shift
        return  _mm256_srli_epi32(x, b);                             // x >> b
    }
    // general case (d > 2)
    uint32_t mult = uint32_t((uint64_t(1) << (b+32)) / d);           // multiplier = 2^(32+b) / d
    const uint64_t rem = (uint64_t(1) << (b+32)) - uint64_t(d)*mult; // remainder 2^(32+b) % d
    const bool round_down = (2*rem < d);                             // check if fraction is less than 0.5
    if (!round_down) {
        mult = mult + 1;                                             // round up mult
    }
    // do 32*32->64 bit unsigned multiplication and get high part of result
    const __m256i multv = _mm256_set_epi32(0,mult,0,mult,0,mult,0,mult);// zero-extend mult and broadcast
    __m256i t1 = _mm256_mul_epu32(x,multv);                          // 32x32->64 bit unsigned multiplication of x[0] and x[2]
    if (round_down) {
        t1      = _mm256_add_epi64(t1,multv);                        // compensate for rounding error. (x+1)*m replaced by x*m+m to avoid overflow
    }
    __m256i t2 = _mm256_srli_epi64(t1,32);                           // high dword of result 0 and 2
    __m256i t3 = _mm256_srli_epi64(x,32);                            // get x[1] and x[3] into position for multiplication
    __m256i t4 = _mm256_mul_epu32(t3,multv);                         // 32x32->64 bit unsigned multiplication of x[1] and x[3]
    if (round_down) {
        t4      = _mm256_add_epi64(t4,multv);                        // compensate for rounding error. (x+1)*m replaced by x*m+m to avoid overflow
    }
    __m256i t5 = _mm256_set_epi32(-1,0,-1,0,-1,0,-1,0);              // mask of dword 1 and 3
    __m256i t7 = _mm256_blendv_epi8(t2,t4,t5);                       // blend two results
    Vec8ui  q  = _mm256_srli_epi32(t7, b);                           // shift right by b
    return q;                                                        // no overflow possible
}

// define Vec8ui a / const_uint(d)
template <uint32_t d>
static inline Vec8ui operator / (Vec8ui const & a, Const_uint_t<d>) {
    return divide_by_ui<d>(a);
}

// define Vec8ui a / const_int(d)
template <int32_t d>
static inline Vec8ui operator / (Vec8ui const & a, Const_int_t<d>) {
    Static_error_check< (d>=0) > Error_dividing_unsigned_by_negative;// Error: dividing unsigned by negative is ambiguous
    return divide_by_ui<d>(a);                                       // unsigned divide
}

// vector operator /= : divide
template <uint32_t d>
static inline Vec8ui & operator /= (Vec8ui & a, Const_uint_t<d> b) {
    a = a / b;
    return a;
}

// vector operator /= : divide
template <int32_t d>
static inline Vec8ui & operator /= (Vec8ui & a, Const_int_t<d> b) {
    a = a / b;
    return a;
}


// Divide Vec16s by compile-time constant 
template <int d>
static inline Vec16s divide_by_i(Vec16s const & x) {
    const int16_t d0 = int16_t(d);                                   // truncate d to 16 bits
    Static_error_check<(d0 != 0)> Dividing_by_zero;                  // Error message if dividing by zero
    if (d0 ==  1) return  x;                                         // divide by  1
    if (d0 == -1) return -x;                                         // divide by -1
    if (uint16_t(d0) == 0x8000u) return Vec16s(x == Vec16s(0x8000)) & 1;// prevent overflow when changing sign
    const uint16_t d1 = d0 > 0 ? d0 : -d0;                           // compile-time abs(d0)
    if ((d1 & (d1-1)) == 0) {
        // d is a power of 2. use shift
        const int k = bit_scan_reverse_const(uint32_t(d1));
        __m256i sign;
        if (k > 1) sign = _mm256_srai_epi16(x, k-1); else sign = x;  // k copies of sign bit
        __m256i bias    = _mm256_srli_epi16(sign, 16-k);             // bias = x >= 0 ? 0 : k-1
        __m256i xpbias  = _mm256_add_epi16 (x, bias);                // x + bias
        __m256i q       = _mm256_srai_epi16(xpbias, k);              // (x + bias) >> k
        if (d0 > 0)  return q;                                       // d0 > 0: return  q
        return _mm256_sub_epi16(_mm256_setzero_si256(), q);          // d0 < 0: return -q
    }
    // general case
    const int L = bit_scan_reverse_const(uint16_t(d1-1)) + 1;        // ceil(log2(d)). (d < 2 handled above)
    const int16_t mult = int16_t(1 + (1u << (15+L)) / uint32_t(d1) - 0x10000);// multiplier
    const int shift1 = L - 1;
    const Divisor_s div(mult, shift1, d0 > 0 ? 0 : -1);
    return x / div;
}

// define Vec16s a / const_int(d)
template <int d>
static inline Vec16s operator / (Vec16s const & a, Const_int_t<d>) {
    return divide_by_i<d>(a);
}

// define Vec16s a / const_uint(d)
template <uint32_t d>
static inline Vec16s operator / (Vec16s const & a, Const_uint_t<d>) {
    Static_error_check< (d<0x8000u) > Error_overflow_dividing_signed_by_unsigned; // Error: dividing signed by overflowing unsigned
    return divide_by_i<int(d)>(a);                                   // signed divide
}

// vector operator /= : divide
template <int32_t d>
static inline Vec16s & operator /= (Vec16s & a, Const_int_t<d> b) {
    a = a / b;
    return a;
}

// vector operator /= : divide
template <uint32_t d>
static inline Vec16s & operator /= (Vec16s & a, Const_uint_t<d> b) {
    a = a / b;
    return a;
}


// Divide Vec16us by compile-time constant
template <uint32_t d>
static inline Vec16us divide_by_ui(Vec16us const & x) {
    const uint16_t d0 = uint16_t(d);                                 // truncate d to 16 bits
    Static_error_check<(d0 != 0)> Dividing_by_zero;                  // Error message if dividing by zero
    if (d0 == 1) return x;                                           // divide by 1
    const int b = bit_scan_reverse_const(d0);                        // floor(log2(d))
    if ((d0 & (d0-1)) == 0) {
        // d is a power of 2. use shift
        return  _mm256_srli_epi16(x, b);                             // x >> b
    }
    // general case (d > 2)
    uint16_t mult = uint16_t((uint32_t(1) << (b+16)) / d0);          // multiplier = 2^(32+b) / d
    const uint32_t rem = (uint32_t(1) << (b+16)) - uint32_t(d0)*mult;// remainder 2^(32+b) % d
    const bool round_down = (2*rem < d0);                            // check if fraction is less than 0.5
    Vec16us x1 = x;
    if (round_down) {
        x1 = x1 + 1;                                                 // round down mult and compensate by adding 1 to x
    }
    else {
        mult = mult + 1;                                             // round up mult. no compensation needed
    }
    const __m256i multv = _mm256_set1_epi16(mult);                   // broadcast mult
    __m256i xm = _mm256_mulhi_epu16(x1, multv);                      // high part of 16x16->32 bit unsigned multiplication
    Vec16us q    = _mm256_srli_epi16(xm, b);                         // shift right by b
    if (round_down) {
        Vec16sb overfl = (x1 == Vec16us(_mm256_setzero_si256()));     // check for overflow of x+1
        return select(overfl, Vec16us(mult >> b), q);                // deal with overflow (rarely needed)
    }
    else {
        return q;                                                    // no overflow possible
    }
}

// define Vec16us a / const_uint(d)
template <uint32_t d>
static inline Vec16us operator / (Vec16us const & a, Const_uint_t<d>) {
    return divide_by_ui<d>(a);
}

// define Vec16us a / const_int(d)
template <int d>
static inline Vec16us operator / (Vec16us const & a, Const_int_t<d>) {
    Static_error_check< (d>=0) > Error_dividing_unsigned_by_negative;// Error: dividing unsigned by negative is ambiguous
    return divide_by_ui<d>(a);                                       // unsigned divide
}

// vector operator /= : divide
template <uint32_t d>
static inline Vec16us & operator /= (Vec16us & a, Const_uint_t<d> b) {
    a = a / b;
    return a;
}

// vector operator /= : divide
template <int32_t d>
static inline Vec16us & operator /= (Vec16us & a, Const_int_t<d> b) {
    a = a / b;
    return a;
}


// define Vec32c a / const_int(d)
template <int d>
static inline Vec32c operator / (Vec32c const & a, Const_int_t<d>) {
    // expand into two Vec16s
    Vec16s low  = extend_low(a)  / Const_int_t<d>();
    Vec16s high = extend_high(a) / Const_int_t<d>();
    return compress(low,high);
}

// define Vec32c a / const_uint(d)
template <uint32_t d>
static inline Vec32c operator / (Vec32c const & a, Const_uint_t<d>) {
    Static_error_check< (uint8_t(d)<0x80u) > Error_overflow_dividing_signed_by_unsigned; // Error: dividing signed by overflowing unsigned
    return a / Const_int_t<d>();                                     // signed divide
}

// vector operator /= : divide
template <int32_t d>
static inline Vec32c & operator /= (Vec32c & a, Const_int_t<d> b) {
    a = a / b;
    return a;
}
// vector operator /= : divide
template <uint32_t d>
static inline Vec32c & operator /= (Vec32c & a, Const_uint_t<d> b) {
    a = a / b;
    return a;
}

// define Vec32uc a / const_uint(d)
template <uint32_t d>
static inline Vec32uc operator / (Vec32uc const & a, Const_uint_t<d>) {
    // expand into two Vec16us
    Vec16us low  = extend_low(a)  / Const_uint_t<d>();
    Vec16us high = extend_high(a) / Const_uint_t<d>();
    return compress(low,high);
}

// define Vec32uc a / const_int(d)
template <int d>
static inline Vec32uc operator / (Vec32uc const & a, Const_int_t<d>) {
    Static_error_check< (int8_t(d)>=0) > Error_dividing_unsigned_by_negative;// Error: dividing unsigned by negative is ambiguous
    return a / Const_uint_t<d>();                                    // unsigned divide
}

// vector operator /= : divide
template <uint32_t d>
static inline Vec32uc & operator /= (Vec32uc & a, Const_uint_t<d> b) {
    a = a / b;
    return a;
}

// vector operator /= : divide
template <int32_t d>
static inline Vec32uc & operator /= (Vec32uc & a, Const_int_t<d> b) {
    a = a / b;
    return a;
}

/*****************************************************************************
*
*          Horizontal scan functions
*
*****************************************************************************/

// Get index to the first element that is true. Return -1 if all are false
static inline int horizontal_find_first(Vec32cb const & x) {
    uint32_t a = _mm256_movemask_epi8(x);
    if (a == 0) return -1;
    int32_t b = bit_scan_forward(a);
    return b;
}

static inline int horizontal_find_first(Vec16sb const & x) {
    return horizontal_find_first(Vec32cb(x)) >> 1;
}

static inline int horizontal_find_first(Vec8ib const & x) {
    return horizontal_find_first(Vec32cb(x)) >> 2;
}

static inline int horizontal_find_first(Vec4qb const & x) {
    return horizontal_find_first(Vec32cb(x)) >> 3;
}

// Count the number of elements that are true
static inline uint32_t horizontal_count(Vec32cb const & x) {
    uint32_t a = _mm256_movemask_epi8(x);
    return vml_popcnt(a);
}

static inline uint32_t horizontal_count(Vec16sb const & x) {
    return horizontal_count(Vec32cb(x)) >> 1;
}

static inline uint32_t horizontal_count(Vec8ib const & x) {
    return horizontal_count(Vec32cb(x)) >> 2;
}

static inline uint32_t horizontal_count(Vec4qb const & x) {
    return horizontal_count(Vec32cb(x)) >> 3;
}

/*****************************************************************************
*
*          Boolean <-> bitfield conversion functions
*
*****************************************************************************/

// to_bits: convert boolean vector to integer bitfield
static inline uint32_t to_bits(Vec32cb const & x) {
    return (uint32_t)_mm256_movemask_epi8(x);
}

// to_Vec16c: convert integer bitfield to boolean vector
static inline Vec32cb to_Vec32cb(uint32_t x) {
    return Vec32cb(Vec32c(to_Vec16cb(uint16_t(x)), to_Vec16cb(uint16_t(x>>16))));
}

// to_bits: convert boolean vector to integer bitfield
static inline uint16_t to_bits(Vec16sb const & x) {
    __m128i a = _mm_packs_epi16(x.get_low(), x.get_high());  // 16-bit words to bytes
    return (uint16_t)_mm_movemask_epi8(a);
}

// to_Vec16sb: convert integer bitfield to boolean vector
static inline Vec16sb to_Vec16sb(uint16_t x) {
    return Vec16sb(Vec16s(to_Vec8sb(uint8_t(x)), to_Vec8sb(uint8_t(x>>8))));
}

#if INSTRSET < 9 || MAX_VECTOR_SIZE < 512
// These functions are defined in Vectori512.h if AVX512 instruction set is used

// to_bits: convert boolean vector to integer bitfield
static inline uint8_t to_bits(Vec8ib const & x) {
    __m128i a = _mm_packs_epi32(x.get_low(), x.get_high());  // 32-bit dwords to 16-bit words
    __m128i b = _mm_packs_epi16(a, a);  // 16-bit words to bytes
    return (uint8_t)_mm_movemask_epi8(b);
}

// to_Vec8ib: convert integer bitfield to boolean vector
static inline Vec8ib to_Vec8ib(uint8_t x) {
    return Vec8ib(Vec8i(to_Vec4ib(x), to_Vec4ib(x>>4)));
}

// to_bits: convert boolean vector to integer bitfield
static inline uint8_t to_bits(Vec4qb const & x) {
    uint32_t a = _mm256_movemask_epi8(x);
    return ((a & 1) | ((a >> 7) & 2)) | (((a >> 14) & 4) | ((a >> 21) & 8));
}

// to_Vec4qb: convert integer bitfield to boolean vector
static inline Vec4qb to_Vec4qb(uint8_t x) {
    return  Vec4qb(Vec4q(-(x&1), -((x>>1)&1), -((x>>2)&1), -((x>>3)&1)));
}

#else  // function prototypes here only

// to_bits: convert boolean vector to integer bitfield
static inline uint8_t to_bits(Vec8ib x);

// to_Vec8ib: convert integer bitfield to boolean vector
static inline Vec8ib to_Vec8ib(uint8_t x);

// to_bits: convert boolean vector to integer bitfield
static inline uint8_t to_bits(Vec4qb x);

// to_Vec4qb: convert integer bitfield to boolean vector
static inline Vec4qb to_Vec4qb(uint8_t x);

#endif  // INSTRSET < 9 || MAX_VECTOR_SIZE < 512

#ifdef VCL_NAMESPACE
}
#endif

#endif // VECTORI256_H