1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
|
/**************************** vectori512.h *******************************
* Author: Agner Fog
* Date created: 2014-07-23
* Last modified: 2017-02-19
* Version: 1.27
* Project: vector classes
* Description:
* Header file defining integer vector classes as interface to intrinsic
* functions in x86 microprocessors with AVX512 and later instruction sets.
*
* Instructions:
* Use Gnu, Intel or Microsoft C++ compiler. Compile for the desired
* instruction set, which must be at least AVX512.
*
* The following vector classes are defined here:
* Vec16i Vector of 16 32-bit signed integers
* Vec16ui Vector of 16 32-bit unsigned integers
* Vec16ib Vector of 16 Booleans for use with Vec16i and Vec16ui
* Vec8q Vector of 8 64-bit signed integers
* Vec8uq Vector of 8 64-bit unsigned integers
* Vec8qb Vector of 8 Booleans for use with Vec8q and Vec8uq
*
* Each vector object is represented internally in the CPU as a 512-bit register.
* This header file defines operators and functions for these vectors.
*
* For detailed instructions, see VectorClass.pdf
*
* (c) Copyright 2014-2017 GNU General Public License http://www.gnu.org/licenses
*****************************************************************************/
// check combination of header files
#if defined (VECTORI512_H)
#if VECTORI512_H != 2
#error Two different versions of vectori512.h included
#endif
#else
#define VECTORI512_H 2
#ifdef VECTORF512_H
#error Please put header file vectori512.h before vectorf512.h
#endif
#if INSTRSET < 9 // AVX512 required
#error Wrong instruction set for vectori512.h, AVX512 required or use vectori512e.h
#endif
#include "vectori256.h"
#ifdef VCL_NAMESPACE
namespace VCL_NAMESPACE {
#endif
// Bug fix for missing intrinsics:
// _mm512_cmpgt_epu32_mask, _mm512_cmpgt_epu64_mask
// all typecast intrinsics
// Fix expected in GCC version 4.9.3 or 5.0. https://gcc.gnu.org/bugzilla/show_bug.cgi?id=61878
// questionable
// _mm512_mask_mov_epi32 check select(). Doc at https://software.intel.com/en-us/node/513888 is wrong. Bug report filed
#if defined (GCC_VERSION) && GCC_VERSION < 50000 && !defined(__INTEL_COMPILER) && !defined(__clang__)
static inline __m512i _mm512_castsi256_si512(__m256i x) {
union {
__m512i a;
__m256i b;
} u;
u.b = x;
return u.a;
}
static inline __m256i _mm512_castsi512_si256(__m512i x) {
union {
__m512i a;
__m256i b;
} u;
u.a = x;
return u.b;
}
static inline __m512i _mm512_castsi128_si512(__m128i x) {
union {
__m128i a;
__m512i b;
} u;
u.a = x;
return u.b;
}
static inline __m128i _mm512_castsi512_si128(__m512i x) {
union {
__m512i a;
__m128i b;
} u;
u.a = x;
return u.b;
}
#endif
/*****************************************************************************
*
* Generate compile-time constant vector
*
*****************************************************************************/
// Generate a constant vector of 8 integers stored in memory.
// Can be converted to any integer vector type
template <int i0, int i1, int i2, int i3, int i4, int i5, int i6, int i7,
int i8, int i9, int i10, int i11, int i12, int i13, int i14, int i15>
static inline __m512i constant16i() {
static const union {
int32_t i[16];
__m512i zmm;
} u = {{i0,i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14,i15}};
return u.zmm;
}
/*****************************************************************************
*
* Boolean vector base classes for AVX512
*
*****************************************************************************/
class Vec16b {
protected:
__mmask16 m16; // Boolean vector
public:
// Default constructor:
Vec16b () {
}
// Constructor to convert from type __mmask16 used in intrinsics:
Vec16b (__mmask16 x) {
m16 = x;
}
// Constructor to build from all elements:
Vec16b(bool b0, bool b1, bool b2, bool b3, bool b4, bool b5, bool b6, bool b7,
bool b8, bool b9, bool b10, bool b11, bool b12, bool b13, bool b14, bool b15) {
m16 = uint16_t(b0 | b1<<1 | b2<<2 | b3<<3 | b4<<4 | b5<<5 | b6<<6 | b7<<7 |
b8<<8 | b9<<9 | b10<<10 | b11<<11 | b12<<12 | b13<<13 | b14<<14 | b15<<15);
}
// Constructor to broadcast single value:
Vec16b(bool b) {
m16 = __mmask16(-int16_t(b));
}
private: // Prevent constructing from int, etc.
Vec16b(int b);
public:
// Constructor to make from two halves
Vec16b (Vec8ib const & x0, Vec8ib const & x1) {
// = Vec16i(x0,x1) != 0; (not defined yet)
__m512i z = _mm512_inserti64x4(_mm512_castsi256_si512(x0), x1, 1);
m16 = _mm512_cmpneq_epi32_mask(z, _mm512_setzero_epi32());
}
// Assignment operator to convert from type __mmask16 used in intrinsics:
Vec16b & operator = (__mmask16 x) {
m16 = x;
return *this;
}
// Assignment operator to broadcast scalar value:
Vec16b & operator = (bool b) {
m16 = Vec16b(b);
return *this;
}
private: // Prevent assigning int because of ambiguity
Vec16b & operator = (int x);
public:
// Type cast operator to convert to __mmask16 used in intrinsics
operator __mmask16() const {
return m16;
}
// split into two halves
Vec8ib get_low() const {
return to_Vec8ib((uint8_t)m16);
}
Vec8ib get_high() const {
return to_Vec8ib((uint16_t)m16 >> 8);
}
// Member function to change a single element in vector
// Note: This function is inefficient. Use load function if changing more than one element
Vec16b const & insert(uint32_t index, bool value) {
m16 = __mmask16(((uint16_t)m16 & ~(1 << index)) | (int)value << index);
return *this;
}
// Member function extract a single element from vector
bool extract(uint32_t index) const {
return ((uint32_t)m16 >> index) & 1;
}
// Extract a single element. Operator [] can only read an element, not write.
bool operator [] (uint32_t index) const {
return extract(index);
}
static int size () {
return 16;
}
};
// Define operators for this class
// vector operator & : bitwise and
static inline Vec16b operator & (Vec16b a, Vec16b b) {
return _mm512_kand(a, b);
}
static inline Vec16b operator && (Vec16b a, Vec16b b) {
return a & b;
}
// vector operator | : bitwise or
static inline Vec16b operator | (Vec16b a, Vec16b b) {
return _mm512_kor(a, b);
}
static inline Vec16b operator || (Vec16b a, Vec16b b) {
return a | b;
}
// vector operator ^ : bitwise xor
static inline Vec16b operator ^ (Vec16b a, Vec16b b) {
return _mm512_kxor(a, b);
}
// vector operator ~ : bitwise not
static inline Vec16b operator ~ (Vec16b a) {
return _mm512_knot(a);
}
// vector operator ! : element not
static inline Vec16b operator ! (Vec16b a) {
return ~a;
}
// vector operator &= : bitwise and
static inline Vec16b & operator &= (Vec16b & a, Vec16b b) {
a = a & b;
return a;
}
// vector operator |= : bitwise or
static inline Vec16b & operator |= (Vec16b & a, Vec16b b) {
a = a | b;
return a;
}
// vector operator ^= : bitwise xor
static inline Vec16b & operator ^= (Vec16b & a, Vec16b b) {
a = a ^ b;
return a;
}
/*****************************************************************************
*
* Functions for boolean vectors
*
*****************************************************************************/
// function andnot: a & ~ b
static inline Vec16b andnot (Vec16b a, Vec16b b) {
return _mm512_kandn(b, a);
}
// horizontal_and. Returns true if all bits are 1
static inline bool horizontal_and (Vec16b const & a) {
return (uint16_t)(__mmask16)a == 0xFFFF;
}
// horizontal_or. Returns true if at least one bit is 1
static inline bool horizontal_or (Vec16b const & a) {
return (uint16_t)(__mmask16)a != 0;
}
/*****************************************************************************
*
* Vec16ib: Vector of 16 Booleans for use with Vec16i and Vec16ui
*
*****************************************************************************/
class Vec16ib : public Vec16b {
public:
// Default constructor:
Vec16ib () {
}
Vec16ib (Vec16b x) {
m16 = x;
}
// Constructor to build from all elements:
Vec16ib(bool x0, bool x1, bool x2, bool x3, bool x4, bool x5, bool x6, bool x7,
bool x8, bool x9, bool x10, bool x11, bool x12, bool x13, bool x14, bool x15) :
Vec16b(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15) {
}
// Constructor to convert from type __mmask16 used in intrinsics:
Vec16ib (__mmask16 x) {
m16 = x;
}
// Constructor to broadcast single value:
Vec16ib(bool b) : Vec16b(b) {}
private: // Prevent constructing from int, etc.
Vec16ib(int b);
public:
// Constructor to make from two halves
Vec16ib (Vec8ib const & x0, Vec8ib const & x1) {
m16 = Vec16b(x0, x1);
}
// Assignment operator to convert from type __mmask16 used in intrinsics:
Vec16ib & operator = (__mmask16 x) {
m16 = x;
return *this;
}
// Assignment operator to broadcast scalar value:
Vec16ib & operator = (bool b) {
m16 = Vec16b(b);
return *this;
}
private: // Prevent assigning int because of ambiguity
Vec16ib & operator = (int x);
public:
};
// Define operators for Vec16ib
// vector operator & : bitwise and
static inline Vec16ib operator & (Vec16ib a, Vec16ib b) {
return Vec16b(a) & Vec16b(b);
}
static inline Vec16ib operator && (Vec16ib a, Vec16ib b) {
return a & b;
}
// vector operator | : bitwise or
static inline Vec16ib operator | (Vec16ib a, Vec16ib b) {
return Vec16b(a) | Vec16b(b);
}
static inline Vec16ib operator || (Vec16ib a, Vec16ib b) {
return a | b;
}
// vector operator ^ : bitwise xor
static inline Vec16ib operator ^ (Vec16ib a, Vec16ib b) {
return Vec16b(a) ^ Vec16b(b);
}
// vector operator ~ : bitwise not
static inline Vec16ib operator ~ (Vec16ib a) {
return ~Vec16b(a);
}
// vector operator ! : element not
static inline Vec16ib operator ! (Vec16ib a) {
return ~a;
}
// vector operator &= : bitwise and
static inline Vec16ib & operator &= (Vec16ib & a, Vec16ib b) {
a = a & b;
return a;
}
// vector operator |= : bitwise or
static inline Vec16ib & operator |= (Vec16ib & a, Vec16ib b) {
a = a | b;
return a;
}
// vector operator ^= : bitwise xor
static inline Vec16ib & operator ^= (Vec16ib & a, Vec16ib b) {
a = a ^ b;
return a;
}
// vector function andnot
static inline Vec16ib andnot (Vec16ib a, Vec16ib b) {
return Vec16ib(andnot(Vec16b(a), Vec16b(b)));
}
/*****************************************************************************
*
* Vec8b: Base class vector of 8 Booleans
*
*****************************************************************************/
class Vec8b : public Vec16b {
public:
// Default constructor:
Vec8b () {
}
// Constructor to convert from type __mmask16 used in intrinsics:
Vec8b (__mmask16 x) {
m16 = x;
}
// Constructor to build from all elements:
Vec8b(bool b0, bool b1, bool b2, bool b3, bool b4, bool b5, bool b6, bool b7) {
m16 = uint16_t(b0 | b1<<1 | b2<<2 | b3<<3 | b4<<4 | b5<<5 | b6<<6 | b7<<7);
}
Vec8b (Vec16b const & x) {
m16 = __mmask16(x);
}
// Constructor to broadcast single value:
Vec8b(bool b) {
m16 = __mmask16(-int8_t(b));
}
// Assignment operator to convert from type __mmask16 used in intrinsics:
Vec8b & operator = (__mmask16 x) {
m16 = x;
return *this;
}
private: // Prevent constructing from int etc. because of ambiguity
Vec8b(int b);
Vec8b & operator = (int x);
public:
// split into two halves
Vec4qb get_low() const {
return Vec4qb(Vec4q(_mm512_castsi512_si256(_mm512_maskz_set1_epi64(__mmask16(m16), -1LL))));
}
Vec4qb get_high() const {
return Vec8b(__mmask16(m16 >> 4)).get_low();
}
static int size () {
return 8;
}
};
/*****************************************************************************
*
* Functions for boolean vectors
*
*****************************************************************************/
// function andnot: a & ~ b
static inline Vec8b andnot (Vec8b a, Vec8b b) {
return _mm512_kandn(b, a);
}
// horizontal_and. Returns true if all bits are 1
static inline bool horizontal_and (Vec8b const & a) {
return (uint8_t)(__mmask16)a == 0xFF;
}
// horizontal_or. Returns true if at least one bit is 1
static inline bool horizontal_or (Vec8b const & a) {
return (uint8_t)(__mmask16)a != 0;
}
/*****************************************************************************
*
* Vec8qb: Vector of 8 Booleans for use with Vec8q and Vec8qu
*
*****************************************************************************/
class Vec8qb : public Vec8b {
public:
// Default constructor:
Vec8qb () {
}
Vec8qb (Vec16b x) {
m16 = x;
}
// Constructor to build from all elements:
Vec8qb(bool x0, bool x1, bool x2, bool x3, bool x4, bool x5, bool x6, bool x7) :
Vec8b(x0, x1, x2, x3, x4, x5, x6, x7) {
}
// Constructor to convert from type __mmask8 used in intrinsics:
Vec8qb (__mmask8 x) {
m16 = (__mmask16)x;
}
// Constructor to convert from type __mmask16 used in intrinsics:
Vec8qb (__mmask16 x) {
m16 = x;
}
// Assignment operator to convert from type __mmask16 used in intrinsics:
Vec8qb & operator = (__mmask16 x) {
m16 = x;
return *this;
}
// Constructor to broadcast single value:
Vec8qb(bool b) : Vec8b(b) {}
// Assignment operator to broadcast scalar:
Vec8qb & operator = (bool b) {
m16 = Vec8b(b);
return *this;
}
private: // Prevent constructing from int, etc.
Vec8qb(int b);
Vec8qb & operator = (int x);
public:
// Constructor to make from two halves
Vec8qb (Vec4qb const & x0, Vec4qb const & x1) {
// = Vec8q(x0,x1) != 0; (not defined yet)
__m512i z = _mm512_inserti64x4(_mm512_castsi256_si512(x0), x1, 1);
m16 = _mm512_cmpneq_epi64_mask(z, _mm512_setzero_si512());
}
};
// Define operators for Vec8qb
// vector operator & : bitwise and
static inline Vec8qb operator & (Vec8qb a, Vec8qb b) {
return Vec16b(a) & Vec16b(b);
}
static inline Vec8qb operator && (Vec8qb a, Vec8qb b) {
return a & b;
}
// vector operator | : bitwise or
static inline Vec8qb operator | (Vec8qb a, Vec8qb b) {
return Vec16b(a) | Vec16b(b);
}
static inline Vec8qb operator || (Vec8qb a, Vec8qb b) {
return a | b;
}
// vector operator ^ : bitwise xor
static inline Vec8qb operator ^ (Vec8qb a, Vec8qb b) {
return Vec16b(a) ^ Vec16b(b);
}
// vector operator ~ : bitwise not
static inline Vec8qb operator ~ (Vec8qb a) {
return ~Vec16b(a);
}
// vector operator ! : element not
static inline Vec8qb operator ! (Vec8qb a) {
return ~a;
}
// vector operator &= : bitwise and
static inline Vec8qb & operator &= (Vec8qb & a, Vec8qb b) {
a = a & b;
return a;
}
// vector operator |= : bitwise or
static inline Vec8qb & operator |= (Vec8qb & a, Vec8qb b) {
a = a | b;
return a;
}
// vector operator ^= : bitwise xor
static inline Vec8qb & operator ^= (Vec8qb & a, Vec8qb b) {
a = a ^ b;
return a;
}
// to_bits: convert to integer bitfield
static inline uint32_t to_bits(Vec8qb a) {
return (uint8_t)(__mmask16)a;
}
// vector function andnot
static inline Vec8qb andnot (Vec8qb a, Vec8qb b) {
return Vec8qb(andnot(Vec16b(a), Vec16b(b)));
}
/*****************************************************************************
*
* Vector of 512 1-bit unsigned integers (base class for Vec16i)
*
*****************************************************************************/
class Vec512b {
protected:
__m512i zmm; // Integer vector
public:
// Default constructor:
Vec512b() {
}
// Constructor to build from two Vec256b:
Vec512b(Vec256b const & a0, Vec256b const & a1) {
zmm = _mm512_inserti64x4(_mm512_castsi256_si512(a0), a1, 1);
}
// Constructor to convert from type __m512i used in intrinsics:
Vec512b(__m512i const & x) {
zmm = x;
}
// Assignment operator to convert from type __m512i used in intrinsics:
Vec512b & operator = (__m512i const & x) {
zmm = x;
return *this;
}
// Type cast operator to convert to __m512i used in intrinsics
operator __m512i() const {
return zmm;
}
// Member function to load from array (unaligned)
Vec512b & load(void const * p) {
zmm = _mm512_loadu_si512(p);
return *this;
}
// Member function to load from array, aligned by 64
// You may use load_a instead of load if you are certain that p points to an address
// divisible by 64, but there is hardly any speed advantage of load_a on modern processors
Vec512b & load_a(void const * p) {
zmm = _mm512_load_si512(p);
return *this;
}
// Member function to store into array (unaligned)
void store(void * p) const {
_mm512_storeu_si512(p, zmm);
}
// Member function to store into array, aligned by 64
// You may use store_a instead of store if you are certain that p points to an address
// divisible by 64, but there is hardly any speed advantage of store_a on modern processors
void store_a(void * p) const {
_mm512_store_si512(p, zmm);
}
// Member function to change a single bit, mainly for test purposes
// Note: This function is inefficient. Use load function if changing more than one bit
Vec512b const & set_bit(uint32_t index, int value) {
static uint64_t m[16] = {0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0};
int wi = (index >> 6) & 7; // qword index
int bi = index & 0x3F; // bit index within qword w
__m512i mask = Vec512b().load(m+8-wi); // 1 in qword number wi
mask = _mm512_sll_epi64(mask,_mm_cvtsi32_si128(bi)); // mask with bit number b set
if (value & 1) {
zmm = _mm512_or_si512(mask,zmm);
}
else {
zmm = _mm512_andnot_si512(mask,zmm);
}
return *this;
}
// Member function to get a single bit, mainly for test purposes
// Note: This function is inefficient. Use store function if reading more than one bit
int get_bit(uint32_t index) const {
union {
__m512i z;
uint8_t i[64];
} u;
u.z = zmm;
int wi = (index >> 3) & 0x3F; // byte index
int bi = index & 7; // bit index within byte w
return (u.i[wi] >> bi) & 1;
}
// Member functions to split into two Vec256b:
Vec256b get_low() const {
return _mm512_castsi512_si256(zmm);
}
Vec256b get_high() const {
return _mm512_extracti64x4_epi64(zmm,1);
}
static int size () {
return 512;
}
};
// Define operators for this class
// vector operator & : bitwise and
static inline Vec512b operator & (Vec512b const & a, Vec512b const & b) {
return _mm512_and_epi32(a, b);
}
static inline Vec512b operator && (Vec512b const & a, Vec512b const & b) {
return a & b;
}
// vector operator | : bitwise or
static inline Vec512b operator | (Vec512b const & a, Vec512b const & b) {
return _mm512_or_epi32(a, b);
}
static inline Vec512b operator || (Vec512b const & a, Vec512b const & b) {
return a | b;
}
// vector operator ^ : bitwise xor
static inline Vec512b operator ^ (Vec512b const & a, Vec512b const & b) {
return _mm512_xor_epi32(a, b);
}
// vector operator ~ : bitwise not
static inline Vec512b operator ~ (Vec512b const & a) {
return _mm512_xor_epi32(a, _mm512_set1_epi32(-1));
}
// vector operator &= : bitwise and
static inline Vec512b & operator &= (Vec512b & a, Vec512b const & b) {
a = a & b;
return a;
}
// vector operator |= : bitwise or
static inline Vec512b & operator |= (Vec512b & a, Vec512b const & b) {
a = a | b;
return a;
}
// vector operator ^= : bitwise xor
static inline Vec512b & operator ^= (Vec512b & a, Vec512b const & b) {
a = a ^ b;
return a;
}
// Define functions for this class
// function andnot: a & ~ b
static inline Vec512b andnot (Vec512b const & a, Vec512b const & b) {
return _mm512_andnot_epi32(b, a);
}
/*****************************************************************************
*
* Vector of 16 32-bit signed integers
*
*****************************************************************************/
class Vec16i: public Vec512b {
public:
// Default constructor:
Vec16i() {
};
// Constructor to broadcast the same value into all elements:
Vec16i(int i) {
zmm = _mm512_set1_epi32(i);
};
// Constructor to build from all elements:
Vec16i(int32_t i0, int32_t i1, int32_t i2, int32_t i3, int32_t i4, int32_t i5, int32_t i6, int32_t i7,
int32_t i8, int32_t i9, int32_t i10, int32_t i11, int32_t i12, int32_t i13, int32_t i14, int32_t i15) {
zmm = _mm512_setr_epi32(i0, i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11, i12, i13, i14, i15);
};
// Constructor to build from two Vec8i:
Vec16i(Vec8i const & a0, Vec8i const & a1) {
zmm = _mm512_inserti64x4(_mm512_castsi256_si512(a0), a1, 1);
}
// Constructor to convert from type __m512i used in intrinsics:
Vec16i(__m512i const & x) {
zmm = x;
};
// Assignment operator to convert from type __m512i used in intrinsics:
Vec16i & operator = (__m512i const & x) {
zmm = x;
return *this;
};
// Type cast operator to convert to __m512i used in intrinsics
operator __m512i() const {
return zmm;
};
// Member function to load from array (unaligned)
Vec16i & load(void const * p) {
zmm = _mm512_loadu_si512(p);
return *this;
}
// Member function to load from array, aligned by 64
Vec16i & load_a(void const * p) {
zmm = _mm512_load_si512(p);
return *this;
}
// Partial load. Load n elements and set the rest to 0
Vec16i & load_partial(int n, void const * p) {
zmm = _mm512_maskz_loadu_epi32(__mmask16((1 << n) - 1), p);
return *this;
}
// Partial store. Store n elements
void store_partial(int n, void * p) const {
_mm512_mask_storeu_epi32(p, __mmask16((1 << n) - 1), zmm);
}
// cut off vector to n elements. The last 16-n elements are set to zero
Vec16i & cutoff(int n) {
zmm = _mm512_maskz_mov_epi32(__mmask16((1 << n) - 1), zmm);
return *this;
}
// Member function to change a single element in vector
Vec16i const & insert(uint32_t index, int32_t value) {
zmm = _mm512_mask_set1_epi32(zmm, __mmask16(1 << index), value);
return *this;
};
// Member function extract a single element from vector
int32_t extract(uint32_t index) const {
int32_t a[16];
store(a);
return a[index & 15];
}
// Extract a single element. Use store function if extracting more than one element.
// Operator [] can only read an element, not write.
int32_t operator [] (uint32_t index) const {
return extract(index);
}
// Member functions to split into two Vec8i:
Vec8i get_low() const {
return _mm512_castsi512_si256(zmm);
}
Vec8i get_high() const {
return _mm512_extracti64x4_epi64(zmm,1);
}
static int size () {
return 16;
}
};
// Define operators for Vec16i
// vector operator + : add element by element
static inline Vec16i operator + (Vec16i const & a, Vec16i const & b) {
return _mm512_add_epi32(a, b);
}
// vector operator += : add
static inline Vec16i & operator += (Vec16i & a, Vec16i const & b) {
a = a + b;
return a;
}
// postfix operator ++
static inline Vec16i operator ++ (Vec16i & a, int) {
Vec16i a0 = a;
a = a + 1;
return a0;
}
// prefix operator ++
static inline Vec16i & operator ++ (Vec16i & a) {
a = a + 1;
return a;
}
// vector operator - : subtract element by element
static inline Vec16i operator - (Vec16i const & a, Vec16i const & b) {
return _mm512_sub_epi32(a, b);
}
// vector operator - : unary minus
static inline Vec16i operator - (Vec16i const & a) {
return _mm512_sub_epi32(_mm512_setzero_epi32(), a);
}
// vector operator -= : subtract
static inline Vec16i & operator -= (Vec16i & a, Vec16i const & b) {
a = a - b;
return a;
}
// postfix operator --
static inline Vec16i operator -- (Vec16i & a, int) {
Vec16i a0 = a;
a = a - 1;
return a0;
}
// prefix operator --
static inline Vec16i & operator -- (Vec16i & a) {
a = a - 1;
return a;
}
// vector operator * : multiply element by element
static inline Vec16i operator * (Vec16i const & a, Vec16i const & b) {
return _mm512_mullo_epi32(a, b);
}
// vector operator *= : multiply
static inline Vec16i & operator *= (Vec16i & a, Vec16i const & b) {
a = a * b;
return a;
}
// vector operator / : divide all elements by same integer
// See bottom of file
// vector operator << : shift left
static inline Vec16i operator << (Vec16i const & a, int32_t b) {
return _mm512_sll_epi32(a, _mm_cvtsi32_si128(b));
}
// vector operator <<= : shift left
static inline Vec16i & operator <<= (Vec16i & a, int32_t b) {
a = a << b;
return a;
}
// vector operator >> : shift right arithmetic
static inline Vec16i operator >> (Vec16i const & a, int32_t b) {
return _mm512_sra_epi32(a, _mm_cvtsi32_si128(b));
}
// vector operator >>= : shift right arithmetic
static inline Vec16i & operator >>= (Vec16i & a, int32_t b) {
a = a >> b;
return a;
}
// vector operator == : returns true for elements for which a == b
static inline Vec16ib operator == (Vec16i const & a, Vec16i const & b) {
return _mm512_cmpeq_epi32_mask(a, b);
}
// vector operator != : returns true for elements for which a != b
static inline Vec16ib operator != (Vec16i const & a, Vec16i const & b) {
return _mm512_cmpneq_epi32_mask(a, b);
}
// vector operator > : returns true for elements for which a > b
static inline Vec16ib operator > (Vec16i const & a, Vec16i const & b) {
return _mm512_cmpgt_epi32_mask(a, b);
}
// vector operator < : returns true for elements for which a < b
static inline Vec16ib operator < (Vec16i const & a, Vec16i const & b) {
return b > a;
}
// vector operator >= : returns true for elements for which a >= b (signed)
static inline Vec16ib operator >= (Vec16i const & a, Vec16i const & b) {
return _mm512_cmpge_epi32_mask(a, b);
}
// vector operator <= : returns true for elements for which a <= b (signed)
static inline Vec16ib operator <= (Vec16i const & a, Vec16i const & b) {
return b >= a;
}
// vector operator & : bitwise and
static inline Vec16i operator & (Vec16i const & a, Vec16i const & b) {
return _mm512_and_epi32(a, b);
}
// vector operator &= : bitwise and
static inline Vec16i & operator &= (Vec16i & a, Vec16i const & b) {
a = a & b;
return a;
}
// vector operator | : bitwise or
static inline Vec16i operator | (Vec16i const & a, Vec16i const & b) {
return _mm512_or_epi32(a, b);
}
// vector operator |= : bitwise or
static inline Vec16i & operator |= (Vec16i & a, Vec16i const & b) {
a = a | b;
return a;
}
// vector operator ^ : bitwise xor
static inline Vec16i operator ^ (Vec16i const & a, Vec16i const & b) {
return _mm512_xor_epi32(a, b);
}
// vector operator ^= : bitwise xor
static inline Vec16i & operator ^= (Vec16i & a, Vec16i const & b) {
a = a ^ b;
return a;
}
// vector operator ~ : bitwise not
static inline Vec16i operator ~ (Vec16i const & a) {
return a ^ Vec16i(-1);
}
// Functions for this class
// Select between two operands. Corresponds to this pseudocode:
// for (int i = 0; i < 16; i++) result[i] = s[i] ? a[i] : b[i];
static inline Vec16i select (Vec16ib const & s, Vec16i const & a, Vec16i const & b) {
return _mm512_mask_mov_epi32(b, s, a); // conditional move may be optimized better by the compiler than blend
// return _mm512_mask_blend_epi32(s, b, a);
}
// Conditional add: For all vector elements i: result[i] = f[i] ? (a[i] + b[i]) : a[i]
static inline Vec16i if_add (Vec16ib const & f, Vec16i const & a, Vec16i const & b) {
return _mm512_mask_add_epi32(a, f, a, b);
}
// Horizontal add: Calculates the sum of all vector elements.
// Overflow will wrap around
static inline int32_t horizontal_add (Vec16i const & a) {
#if defined(__INTEL_COMPILER)
return _mm512_reduce_add_epi32(a);
#else
return horizontal_add(a.get_low() + a.get_high());
#endif
}
// function add_saturated: add element by element, signed with saturation
// (is it faster to up-convert to 64 bit integers, and then downconvert the sum with saturation?)
static inline Vec16i add_saturated(Vec16i const & a, Vec16i const & b) {
__m512i sum = _mm512_add_epi32(a, b); // a + b
__m512i axb = _mm512_xor_epi32(a, b); // check if a and b have different sign
__m512i axs = _mm512_xor_epi32(a, sum); // check if a and sum have different sign
__m512i ovf1 = _mm512_andnot_epi32(axb,axs); // check if sum has wrong sign
__m512i ovf2 = _mm512_srai_epi32(ovf1,31); // -1 if overflow
__mmask16 ovf3 = _mm512_cmpneq_epi32_mask(ovf2, _mm512_setzero_epi32()); // same, as mask
__m512i asign = _mm512_srli_epi32(a,31); // 1 if a < 0
__m512i sat1 = _mm512_srli_epi32(ovf2,1); // 7FFFFFFF if overflow
__m512i sat2 = _mm512_add_epi32(sat1,asign); // 7FFFFFFF if positive overflow 80000000 if negative overflow
return _mm512_mask_blend_epi32(ovf3, sum, sat2); // sum if not overflow, else sat2
}
// function sub_saturated: subtract element by element, signed with saturation
static inline Vec16i sub_saturated(Vec16i const & a, Vec16i const & b) {
__m512i diff = _mm512_sub_epi32(a, b); // a + b
__m512i axb = _mm512_xor_si512(a, b); // check if a and b have different sign
__m512i axs = _mm512_xor_si512(a, diff); // check if a and sum have different sign
__m512i ovf1 = _mm512_and_si512(axb,axs); // check if sum has wrong sign
__m512i ovf2 = _mm512_srai_epi32(ovf1,31); // -1 if overflow
__mmask16 ovf3 = _mm512_cmpneq_epi32_mask(ovf2, _mm512_setzero_epi32()); // same, as mask
__m512i asign = _mm512_srli_epi32(a,31); // 1 if a < 0
__m512i sat1 = _mm512_srli_epi32(ovf2,1); // 7FFFFFFF if overflow
__m512i sat2 = _mm512_add_epi32(sat1,asign); // 7FFFFFFF if positive overflow 80000000 if negative overflow
return _mm512_mask_blend_epi32(ovf3, diff, sat2); // sum if not overflow, else sat2
}
// function max: a > b ? a : b
static inline Vec16i max(Vec16i const & a, Vec16i const & b) {
return _mm512_max_epi32(a,b);
}
// function min: a < b ? a : b
static inline Vec16i min(Vec16i const & a, Vec16i const & b) {
return _mm512_min_epi32(a,b);
}
// function abs: a >= 0 ? a : -a
static inline Vec16i abs(Vec16i const & a) {
return _mm512_abs_epi32(a);
}
// function abs_saturated: same as abs, saturate if overflow
static inline Vec16i abs_saturated(Vec16i const & a) {
return _mm512_min_epu32(abs(a), Vec16i(0x7FFFFFFF));
}
// function rotate_left all elements
// Use negative count to rotate right
static inline Vec16i rotate_left(Vec16i const & a, int b) {
return _mm512_rolv_epi32(a, Vec16i(b));
}
/*****************************************************************************
*
* Vector of 16 32-bit unsigned integers
*
*****************************************************************************/
class Vec16ui : public Vec16i {
public:
// Default constructor:
Vec16ui() {
};
// Constructor to broadcast the same value into all elements:
Vec16ui(uint32_t i) {
zmm = _mm512_set1_epi32(i);
};
// Constructor to build from all elements:
Vec16ui(uint32_t i0, uint32_t i1, uint32_t i2, uint32_t i3, uint32_t i4, uint32_t i5, uint32_t i6, uint32_t i7,
uint32_t i8, uint32_t i9, uint32_t i10, uint32_t i11, uint32_t i12, uint32_t i13, uint32_t i14, uint32_t i15) {
zmm = _mm512_setr_epi32(i0, i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11, i12, i13, i14, i15);
};
// Constructor to build from two Vec8ui:
Vec16ui(Vec8ui const & a0, Vec8ui const & a1) {
zmm = Vec16i(Vec8i(a0), Vec8i(a1));
}
// Constructor to convert from type __m512i used in intrinsics:
Vec16ui(__m512i const & x) {
zmm = x;
};
// Assignment operator to convert from type __m512i used in intrinsics:
Vec16ui & operator = (__m512i const & x) {
zmm = x;
return *this;
};
// Member function to load from array (unaligned)
Vec16ui & load(void const * p) {
Vec16i::load(p);
return *this;
}
// Member function to load from array, aligned by 64
Vec16ui & load_a(void const * p) {
Vec16i::load_a(p);
return *this;
}
// Member function to change a single element in vector
// Note: This function is inefficient. Use load function if changing more than one element
Vec16ui const & insert(uint32_t index, uint32_t value) {
Vec16i::insert(index, value);
return *this;
}
// Member function extract a single element from vector
uint32_t extract(uint32_t index) const {
return Vec16i::extract(index);
}
// Extract a single element. Use store function if extracting more than one element.
// Operator [] can only read an element, not write.
uint32_t operator [] (uint32_t index) const {
return extract(index);
}
// Member functions to split into two Vec4ui:
Vec8ui get_low() const {
return Vec8ui(Vec16i::get_low());
}
Vec8ui get_high() const {
return Vec8ui(Vec16i::get_high());
}
};
// Define operators for this class
// vector operator + : add
static inline Vec16ui operator + (Vec16ui const & a, Vec16ui const & b) {
return Vec16ui (Vec16i(a) + Vec16i(b));
}
// vector operator - : subtract
static inline Vec16ui operator - (Vec16ui const & a, Vec16ui const & b) {
return Vec16ui (Vec16i(a) - Vec16i(b));
}
// vector operator * : multiply
static inline Vec16ui operator * (Vec16ui const & a, Vec16ui const & b) {
return Vec16ui (Vec16i(a) * Vec16i(b));
}
// vector operator / : divide
// See bottom of file
// vector operator >> : shift right logical all elements
static inline Vec16ui operator >> (Vec16ui const & a, uint32_t b) {
return _mm512_srl_epi32(a, _mm_cvtsi32_si128(b));
}
// vector operator >> : shift right logical all elements
static inline Vec16ui operator >> (Vec16ui const & a, int32_t b) {
return a >> (uint32_t)b;
}
// vector operator >>= : shift right logical
static inline Vec16ui & operator >>= (Vec16ui & a, uint32_t b) {
a = a >> b;
return a;
}
// vector operator >>= : shift right logical
static inline Vec16ui & operator >>= (Vec16ui & a, int32_t b) {
a = a >> uint32_t(b);
return a;
}
// vector operator << : shift left all elements
static inline Vec16ui operator << (Vec16ui const & a, uint32_t b) {
return Vec16ui ((Vec16i)a << (int32_t)b);
}
// vector operator << : shift left all elements
static inline Vec16ui operator << (Vec16ui const & a, int32_t b) {
return Vec16ui ((Vec16i)a << (int32_t)b);
}
// vector operator < : returns true for elements for which a < b (unsigned)
static inline Vec16ib operator < (Vec16ui const & a, Vec16ui const & b) {
return _mm512_cmplt_epu32_mask(a, b);
}
// vector operator > : returns true for elements for which a > b (unsigned)
static inline Vec16ib operator > (Vec16ui const & a, Vec16ui const & b) {
return b < a;
}
// vector operator >= : returns true for elements for which a >= b (unsigned)
static inline Vec16ib operator >= (Vec16ui const & a, Vec16ui const & b) {
return _mm512_cmpge_epu32_mask(a, b);
}
// vector operator <= : returns true for elements for which a <= b (unsigned)
static inline Vec16ib operator <= (Vec16ui const & a, Vec16ui const & b) {
return b >= a;
}
// vector operator & : bitwise and
static inline Vec16ui operator & (Vec16ui const & a, Vec16ui const & b) {
return Vec16ui(Vec16i(a) & Vec16i(b));
}
// vector operator | : bitwise or
static inline Vec16ui operator | (Vec16ui const & a, Vec16ui const & b) {
return Vec16ui(Vec16i(a) | Vec16i(b));
}
// vector operator ^ : bitwise xor
static inline Vec16ui operator ^ (Vec16ui const & a, Vec16ui const & b) {
return Vec16ui(Vec16i(a) ^ Vec16i(b));
}
// vector operator ~ : bitwise not
static inline Vec16ui operator ~ (Vec16ui const & a) {
return Vec16ui( ~ Vec16i(a));
}
// Functions for this class
// Select between two operands. Corresponds to this pseudocode:
// for (int i = 0; i < 16; i++) result[i] = s[i] ? a[i] : b[i];
static inline Vec16ui select (Vec16ib const & s, Vec16ui const & a, Vec16ui const & b) {
return Vec16ui(select(s, Vec16i(a), Vec16i(b)));
}
// Conditional add: For all vector elements i: result[i] = f[i] ? (a[i] + b[i]) : a[i]
static inline Vec16ui if_add (Vec16ib const & f, Vec16ui const & a, Vec16ui const & b) {
return Vec16ui(if_add(f, Vec16i(a), Vec16i(b)));
}
// Horizontal add: Calculates the sum of all vector elements.
// Overflow will wrap around
static inline uint32_t horizontal_add (Vec16ui const & a) {
return horizontal_add((Vec16i)a);
}
// horizontal_add_x: Horizontal add extended: Calculates the sum of all vector elements. Defined later in this file
// function add_saturated: add element by element, unsigned with saturation
static inline Vec16ui add_saturated(Vec16ui const & a, Vec16ui const & b) {
Vec16ui sum = a + b;
Vec16ib overflow = sum < (a | b); // overflow if (a + b) < (a | b)
return _mm512_mask_set1_epi32(sum, overflow, -1); // 0xFFFFFFFF if overflow
}
// function sub_saturated: subtract element by element, unsigned with saturation
static inline Vec16ui sub_saturated(Vec16ui const & a, Vec16ui const & b) {
Vec16ui diff = a - b;
return _mm512_maskz_mov_epi32(diff <= a, diff); // underflow if diff > a gives zero
}
// function max: a > b ? a : b
static inline Vec16ui max(Vec16ui const & a, Vec16ui const & b) {
return _mm512_max_epu32(a,b);
}
// function min: a < b ? a : b
static inline Vec16ui min(Vec16ui const & a, Vec16ui const & b) {
return _mm512_min_epu32(a,b);
}
/*****************************************************************************
*
* Vector of 8 64-bit signed integers
*
*****************************************************************************/
class Vec8q : public Vec512b {
public:
// Default constructor:
Vec8q() {
}
// Constructor to broadcast the same value into all elements:
Vec8q(int64_t i) {
zmm = _mm512_set1_epi64(i);
}
// Constructor to build from all elements:
Vec8q(int64_t i0, int64_t i1, int64_t i2, int64_t i3, int64_t i4, int64_t i5, int64_t i6, int64_t i7) {
zmm = _mm512_setr_epi64(i0, i1, i2, i3, i4, i5, i6, i7);
}
// Constructor to build from two Vec4q:
Vec8q(Vec4q const & a0, Vec4q const & a1) {
zmm = _mm512_inserti64x4(_mm512_castsi256_si512(a0), a1, 1);
}
// Constructor to convert from type __m512i used in intrinsics:
Vec8q(__m512i const & x) {
zmm = x;
}
// Assignment operator to convert from type __m512i used in intrinsics:
Vec8q & operator = (__m512i const & x) {
zmm = x;
return *this;
}
// Type cast operator to convert to __m512i used in intrinsics
operator __m512i() const {
return zmm;
}
// Member function to load from array (unaligned)
Vec8q & load(void const * p) {
zmm = _mm512_loadu_si512(p);
return *this;
}
// Member function to load from array, aligned by 64
Vec8q & load_a(void const * p) {
zmm = _mm512_load_si512(p);
return *this;
}
// Partial load. Load n elements and set the rest to 0
Vec8q & load_partial(int n, void const * p) {
zmm = _mm512_maskz_loadu_epi64(__mmask16((1 << n) - 1), p);
return *this;
}
// Partial store. Store n elements
void store_partial(int n, void * p) const {
_mm512_mask_storeu_epi64(p, __mmask16((1 << n) - 1), zmm);
}
// cut off vector to n elements. The last 8-n elements are set to zero
Vec8q & cutoff(int n) {
zmm = _mm512_maskz_mov_epi64(__mmask16((1 << n) - 1), zmm);
return *this;
}
// Member function to change a single element in vector
// Note: This function is inefficient. Use load function if changing more than one element
Vec8q const & insert(uint32_t index, int64_t value) {
zmm = _mm512_mask_set1_epi64(zmm, __mmask16(1 << index), value);
// zmm = _mm512_mask_blend_epi64(__mmask16(1 << index), zmm, _mm512_set1_epi64(value));
return *this;
}
// Member function extract a single element from vector
int64_t extract(uint32_t index) const {
int64_t a[8];
store (a);
return a[index & 7];
}
// Extract a single element. Use store function if extracting more than one element.
// Operator [] can only read an element, not write.
int64_t operator [] (uint32_t index) const {
return extract(index);
}
// Member functions to split into two Vec2q:
Vec4q get_low() const {
return _mm512_castsi512_si256(zmm);
}
Vec4q get_high() const {
return _mm512_extracti64x4_epi64(zmm,1);
}
static int size () {
return 8;
}
};
// Define operators for Vec8q
// vector operator + : add element by element
static inline Vec8q operator + (Vec8q const & a, Vec8q const & b) {
return _mm512_add_epi64(a, b);
}
// vector operator += : add
static inline Vec8q & operator += (Vec8q & a, Vec8q const & b) {
a = a + b;
return a;
}
// postfix operator ++
static inline Vec8q operator ++ (Vec8q & a, int) {
Vec8q a0 = a;
a = a + 1;
return a0;
}
// prefix operator ++
static inline Vec8q & operator ++ (Vec8q & a) {
a = a + 1;
return a;
}
// vector operator - : subtract element by element
static inline Vec8q operator - (Vec8q const & a, Vec8q const & b) {
return _mm512_sub_epi64(a, b);
}
// vector operator - : unary minus
static inline Vec8q operator - (Vec8q const & a) {
return _mm512_sub_epi64(_mm512_setzero_epi32(), a);
}
// vector operator -= : subtract
static inline Vec8q & operator -= (Vec8q & a, Vec8q const & b) {
a = a - b;
return a;
}
// postfix operator --
static inline Vec8q operator -- (Vec8q & a, int) {
Vec8q a0 = a;
a = a - 1;
return a0;
}
// prefix operator --
static inline Vec8q & operator -- (Vec8q & a) {
a = a - 1;
return a;
}
// vector operator * : multiply element by element
static inline Vec8q operator * (Vec8q const & a, Vec8q const & b) {
#ifdef __AVX512DQ__
return _mm512_mullo_epi64(a, b);
#elif defined (__INTEL_COMPILER)
return _mm512_mullox_epi64(a, b); // _mm512_mullox_epi64 missing in gcc
#else
// instruction does not exist. Split into 32-bit multiplies
//__m512i ahigh = _mm512_shuffle_epi32(a, 0xB1); // swap H<->L
__m512i ahigh = _mm512_srli_epi64(a, 32); // high 32 bits of each a
__m512i bhigh = _mm512_srli_epi64(b, 32); // high 32 bits of each b
__m512i prodahb = _mm512_mul_epu32(ahigh, b); // ahigh*b
__m512i prodbha = _mm512_mul_epu32(bhigh, a); // bhigh*a
__m512i prodhl = _mm512_add_epi64(prodahb, prodbha); // sum of high*low products
__m512i prodhi = _mm512_slli_epi64(prodhl, 32); // same, shifted high
__m512i prodll = _mm512_mul_epu32(a, b); // alow*blow = 64 bit unsigned products
__m512i prod = _mm512_add_epi64(prodll, prodhi); // low*low+(high*low)<<32
return prod;
#endif
}
// vector operator *= : multiply
static inline Vec8q & operator *= (Vec8q & a, Vec8q const & b) {
a = a * b;
return a;
}
// vector operator << : shift left
static inline Vec8q operator << (Vec8q const & a, int32_t b) {
return _mm512_sll_epi64(a, _mm_cvtsi32_si128(b));
}
// vector operator <<= : shift left
static inline Vec8q & operator <<= (Vec8q & a, int32_t b) {
a = a << b;
return a;
}
// vector operator >> : shift right arithmetic
static inline Vec8q operator >> (Vec8q const & a, int32_t b) {
return _mm512_sra_epi64(a, _mm_cvtsi32_si128(b));
}
// vector operator >>= : shift right arithmetic
static inline Vec8q & operator >>= (Vec8q & a, int32_t b) {
a = a >> b;
return a;
}
// vector operator == : returns true for elements for which a == b
static inline Vec8qb operator == (Vec8q const & a, Vec8q const & b) {
return Vec8qb(_mm512_cmpeq_epi64_mask(a, b));
}
// vector operator != : returns true for elements for which a != b
static inline Vec8qb operator != (Vec8q const & a, Vec8q const & b) {
return Vec8qb(_mm512_cmpneq_epi64_mask(a, b));
}
// vector operator < : returns true for elements for which a < b
static inline Vec8qb operator < (Vec8q const & a, Vec8q const & b) {
return Vec8qb(_mm512_cmplt_epi64_mask(a, b));
}
// vector operator > : returns true for elements for which a > b
static inline Vec8qb operator > (Vec8q const & a, Vec8q const & b) {
return b < a;
}
// vector operator >= : returns true for elements for which a >= b (signed)
static inline Vec8qb operator >= (Vec8q const & a, Vec8q const & b) {
return Vec8qb(_mm512_cmpge_epi64_mask(a, b));
}
// vector operator <= : returns true for elements for which a <= b (signed)
static inline Vec8qb operator <= (Vec8q const & a, Vec8q const & b) {
return b >= a;
}
// vector operator & : bitwise and
static inline Vec8q operator & (Vec8q const & a, Vec8q const & b) {
return _mm512_and_epi32(a, b);
}
// vector operator &= : bitwise and
static inline Vec8q & operator &= (Vec8q & a, Vec8q const & b) {
a = a & b;
return a;
}
// vector operator | : bitwise or
static inline Vec8q operator | (Vec8q const & a, Vec8q const & b) {
return _mm512_or_epi32(a, b);
}
// vector operator |= : bitwise or
static inline Vec8q & operator |= (Vec8q & a, Vec8q const & b) {
a = a | b;
return a;
}
// vector operator ^ : bitwise xor
static inline Vec8q operator ^ (Vec8q const & a, Vec8q const & b) {
return _mm512_xor_epi32(a, b);
}
// vector operator ^= : bitwise xor
static inline Vec8q & operator ^= (Vec8q & a, Vec8q const & b) {
a = a ^ b;
return a;
}
// vector operator ~ : bitwise not
static inline Vec8q operator ~ (Vec8q const & a) {
return Vec8q(~ Vec16i(a));
}
// Functions for this class
// Select between two operands. Corresponds to this pseudocode:
// for (int i = 0; i < 4; i++) result[i] = s[i] ? a[i] : b[i];
static inline Vec8q select (Vec8qb const & s, Vec8q const & a, Vec8q const & b) {
return _mm512_mask_mov_epi64(b, s, a);
//return _mm512_mask_blend_epi64(s, b, a);
}
// Conditional add: For all vector elements i: result[i] = f[i] ? (a[i] + b[i]) : a[i]
static inline Vec8q if_add (Vec8qb const & f, Vec8q const & a, Vec8q const & b) {
return _mm512_mask_add_epi64(a, f, a, b);
}
// Horizontal add: Calculates the sum of all vector elements.
// Overflow will wrap around
static inline int64_t horizontal_add (Vec8q const & a) {
#if defined(__INTEL_COMPILER)
return _mm512_reduce_add_epi64(a);
#else
return horizontal_add(a.get_low()+a.get_high());
#endif
}
// Horizontal add extended: Calculates the sum of all vector elements
// Elements are sign extended before adding to avoid overflow
static inline int64_t horizontal_add_x (Vec16i const & x) {
Vec8q a = _mm512_cvtepi32_epi64(x.get_low());
Vec8q b = _mm512_cvtepi32_epi64(x.get_high());
return horizontal_add(a+b);
}
// Horizontal add extended: Calculates the sum of all vector elements
// Elements are zero extended before adding to avoid overflow
static inline uint64_t horizontal_add_x (Vec16ui const & x) {
Vec8q a = _mm512_cvtepu32_epi64(x.get_low());
Vec8q b = _mm512_cvtepu32_epi64(x.get_high());
return horizontal_add(a+b);
}
// function max: a > b ? a : b
static inline Vec8q max(Vec8q const & a, Vec8q const & b) {
return _mm512_max_epi64(a, b);
}
// function min: a < b ? a : b
static inline Vec8q min(Vec8q const & a, Vec8q const & b) {
return _mm512_min_epi64(a, b);
}
// function abs: a >= 0 ? a : -a
static inline Vec8q abs(Vec8q const & a) {
return _mm512_abs_epi64(a);
}
// function abs_saturated: same as abs, saturate if overflow
static inline Vec8q abs_saturated(Vec8q const & a) {
return _mm512_min_epu64(abs(a), Vec8q(0x7FFFFFFFFFFFFFFF));
}
// function rotate_left all elements
// Use negative count to rotate right
static inline Vec8q rotate_left(Vec8q const & a, int b) {
return _mm512_rolv_epi64(a, Vec8q(b));
}
/*****************************************************************************
*
* Vector of 8 64-bit unsigned integers
*
*****************************************************************************/
class Vec8uq : public Vec8q {
public:
// Default constructor:
Vec8uq() {
}
// Constructor to broadcast the same value into all elements:
Vec8uq(uint64_t i) {
zmm = Vec8q(i);
}
// Constructor to convert from Vec8q:
Vec8uq(Vec8q const & x) {
zmm = x;
}
// Constructor to convert from type __m512i used in intrinsics:
Vec8uq(__m512i const & x) {
zmm = x;
}
// Constructor to build from all elements:
Vec8uq(uint64_t i0, uint64_t i1, uint64_t i2, uint64_t i3, uint64_t i4, uint64_t i5, uint64_t i6, uint64_t i7) {
zmm = Vec8q(i0, i1, i2, i3, i4, i5, i6, i7);
}
// Constructor to build from two Vec4uq:
Vec8uq(Vec4uq const & a0, Vec4uq const & a1) {
zmm = Vec8q(Vec4q(a0), Vec4q(a1));
}
// Assignment operator to convert from Vec8q:
Vec8uq & operator = (Vec8q const & x) {
zmm = x;
return *this;
}
// Assignment operator to convert from type __m512i used in intrinsics:
Vec8uq & operator = (__m512i const & x) {
zmm = x;
return *this;
}
// Member function to load from array (unaligned)
Vec8uq & load(void const * p) {
Vec8q::load(p);
return *this;
}
// Member function to load from array, aligned by 32
Vec8uq & load_a(void const * p) {
Vec8q::load_a(p);
return *this;
}
// Member function to change a single element in vector
// Note: This function is inefficient. Use load function if changing more than one element
Vec8uq const & insert(uint32_t index, uint64_t value) {
Vec8q::insert(index, value);
return *this;
}
// Member function extract a single element from vector
uint64_t extract(uint32_t index) const {
return Vec8q::extract(index);
}
// Extract a single element. Use store function if extracting more than one element.
// Operator [] can only read an element, not write.
uint64_t operator [] (uint32_t index) const {
return extract(index);
}
// Member functions to split into two Vec2uq:
Vec4uq get_low() const {
return Vec4uq(Vec8q::get_low());
}
Vec4uq get_high() const {
return Vec4uq(Vec8q::get_high());
}
};
// Define operators for this class
// vector operator + : add
static inline Vec8uq operator + (Vec8uq const & a, Vec8uq const & b) {
return Vec8uq (Vec8q(a) + Vec8q(b));
}
// vector operator - : subtract
static inline Vec8uq operator - (Vec8uq const & a, Vec8uq const & b) {
return Vec8uq (Vec8q(a) - Vec8q(b));
}
// vector operator * : multiply element by element
static inline Vec8uq operator * (Vec8uq const & a, Vec8uq const & b) {
return Vec8uq (Vec8q(a) * Vec8q(b));
}
// vector operator >> : shift right logical all elements
static inline Vec8uq operator >> (Vec8uq const & a, uint32_t b) {
return _mm512_srl_epi64(a,_mm_cvtsi32_si128(b));
}
// vector operator >> : shift right logical all elements
static inline Vec8uq operator >> (Vec8uq const & a, int32_t b) {
return a >> (uint32_t)b;
}
// vector operator >>= : shift right artihmetic
static inline Vec8uq & operator >>= (Vec8uq & a, uint32_t b) {
a = a >> b;
return a;
}
// vector operator >>= : shift right logical
static inline Vec8uq & operator >>= (Vec8uq & a, int32_t b) {
a = a >> uint32_t(b);
return a;
}
// vector operator << : shift left all elements
static inline Vec8uq operator << (Vec8uq const & a, uint32_t b) {
return Vec8uq ((Vec8q)a << (int32_t)b);
}
// vector operator << : shift left all elements
static inline Vec8uq operator << (Vec8uq const & a, int32_t b) {
return Vec8uq ((Vec8q)a << b);
}
// vector operator < : returns true for elements for which a < b (unsigned)
static inline Vec8qb operator < (Vec8uq const & a, Vec8uq const & b) {
return _mm512_cmplt_epu64_mask(a, b);
}
// vector operator > : returns true for elements for which a > b (unsigned)
static inline Vec8qb operator > (Vec8uq const & a, Vec8uq const & b) {
return b < a;
}
// vector operator >= : returns true for elements for which a >= b (unsigned)
static inline Vec8qb operator >= (Vec8uq const & a, Vec8uq const & b) {
return _mm512_cmpge_epu64_mask(a, b);
}
// vector operator <= : returns true for elements for which a <= b (unsigned)
static inline Vec8qb operator <= (Vec8uq const & a, Vec8uq const & b) {
return b >= a;
}
// vector operator & : bitwise and
static inline Vec8uq operator & (Vec8uq const & a, Vec8uq const & b) {
return Vec8uq(Vec8q(a) & Vec8q(b));
}
// vector operator | : bitwise or
static inline Vec8uq operator | (Vec8uq const & a, Vec8uq const & b) {
return Vec8uq(Vec8q(a) | Vec8q(b));
}
// vector operator ^ : bitwise xor
static inline Vec8uq operator ^ (Vec8uq const & a, Vec8uq const & b) {
return Vec8uq(Vec8q(a) ^ Vec8q(b));
}
// Functions for this class
// Select between two operands. Corresponds to this pseudocode:
// for (int i = 0; i < 4; i++) result[i] = s[i] ? a[i] : b[i];
static inline Vec8uq select (Vec8qb const & s, Vec8uq const & a, Vec8uq const & b) {
return Vec8uq(select(s, Vec8q(a), Vec8q(b)));
}
// Conditional add: For all vector elements i: result[i] = f[i] ? (a[i] + b[i]) : a[i]
static inline Vec8uq if_add (Vec8qb const & f, Vec8uq const & a, Vec8uq const & b) {
return _mm512_mask_add_epi64(a, f, a, b);
}
// Horizontal add: Calculates the sum of all vector elements.
// Overflow will wrap around
static inline uint64_t horizontal_add (Vec8uq const & a) {
return horizontal_add(Vec8q(a));
}
// function max: a > b ? a : b
static inline Vec8uq max(Vec8uq const & a, Vec8uq const & b) {
return _mm512_max_epu64(a, b);
}
// function min: a < b ? a : b
static inline Vec8uq min(Vec8uq const & a, Vec8uq const & b) {
return _mm512_min_epu64(a, b);
}
/*****************************************************************************
*
* Vector permute functions
*
******************************************************************************
*
* These permute functions can reorder the elements of a vector and optionally
* set some elements to zero.
*
* The indexes are inserted as template parameters in <>. These indexes must be
* constants. Each template parameter is an index to the element you want to select.
* An index of -1 will generate zero. An index of -256 means don't care.
*
* Example:
* Vec8q a(10,11,12,13,14,15,16,17); // a is (10,11,12,13,14,15,16,17)
* Vec8q b;
* b = permute8q<0,2,7,7,-1,-1,1,1>(a); // b is (10,12,17,17, 0, 0,11,11)
*
* A lot of the code here is metaprogramming aiming to find the instructions
* that best fit the template parameters and instruction set. The metacode
* will be reduced out to leave only a few vector instructions in release
* mode with optimization on.
*****************************************************************************/
// Permute vector of 8 64-bit integers.
// Index -1 gives 0, index -256 means don't care.
template <int i0, int i1, int i2, int i3, int i4, int i5, int i6, int i7>
static inline Vec8q permute8q(Vec8q const & a) {
// Combine indexes into a single bitfield, with 4 bits for each
const int m1 = (i0&7) | (i1&7)<<4 | (i2&7)<< 8 | (i3&7)<<12 | (i4&7)<<16 | (i5&7)<<20 | (i6&7)<<24 | (i7&7)<<28;
// Mask to zero out negative indexes
const int mz = (i0<0?0:0xF) | (i1<0?0:0xF0) | (i2<0?0:0xF00) | (i3<0?0:0xF000) | (i4<0?0:0xF0000) | (i5<0?0:0xF00000) | (i6<0?0:0xF000000) | (i7<0?0:0xF0000000);
const int m2 = m1 & mz;
// zeroing needed
const bool dozero = ((i0|i1|i2|i3|i4|i5|i6|i7) & 0x80) != 0;
// special case: all zero
if (mz == 0) return _mm512_setzero_epi32();
// mask for elements not zeroed
const __mmask16 z = __mmask16((i0>=0)<<0 | (i1>=0)<<1 | (i2>=0)<<2 | (i3>=0)<<3 | (i4>=0)<<4 | (i5>=0)<<5 | (i6>=0)<<6 | (i7>=0)<<7);
// same with 2 bits for each element
const __mmask16 zz = __mmask16((i0>=0?3:0) | (i1>=0?0xC:0) | (i2>=0?0x30:0) | (i3>=0?0xC0:0) | (i4>=0?0x300:0) | (i5>=0?0xC00:0) | (i6>=0?0x3000:0) | (i7>=0?0xC000:0));
if (((m1 ^ 0x76543210) & mz) == 0) {
// no shuffling
if (dozero) {
// zero some elements
return _mm512_maskz_mov_epi64(z, a);
}
return a; // do nothing
}
if (((m1 ^ 0x66442200) & 0x66666666 & mz) == 0) {
// no exchange of data between the four 128-bit lanes
const int pat = ((m2 | m2 >> 8 | m2 >> 16 | m2 >> 24) & 0x11) * 0x01010101;
const int pmask = ((pat & 1) * 10 + 4) | ((((pat >> 4) & 1) * 10 + 4) << 4);
if (((m1 ^ pat) & mz & 0x11111111) == 0) {
// same permute pattern in all lanes
if (dozero) { // permute within lanes and zero
return _mm512_maskz_shuffle_epi32(zz, a, (_MM_PERM_ENUM)pmask);
}
else { // permute within lanes
return _mm512_shuffle_epi32(a, (_MM_PERM_ENUM)pmask);
}
}
// different permute patterns in each lane. It's faster to do a full permute than four masked permutes within lanes
}
if ((((m1 ^ 0x10101010) & 0x11111111 & mz) == 0)
&& ((m1 ^ (m1 >> 4)) & 0x06060606 & mz & (mz >> 4)) == 0) {
// permute lanes only. no permutation within each lane
const int m3 = m2 | (m2 >> 4);
const int s = ((m3 >> 1) & 3) | (((m3 >> 9) & 3) << 2) | (((m3 >> 17) & 3) << 4) | (((m3 >> 25) & 3) << 6);
if (dozero) {
// permute lanes and zero some 64-bit elements
return _mm512_maskz_shuffle_i64x2(z, a, a, (_MM_PERM_ENUM)s);
}
else {
// permute lanes
return _mm512_shuffle_i64x2(a, a, (_MM_PERM_ENUM)s);
}
}
// full permute needed
const __m512i pmask = constant16i<i0&7, 0, i1&7, 0, i2&7, 0, i3&7, 0, i4&7, 0, i5&7, 0, i6&7, 0, i7&7, 0>();
if (dozero) {
// full permute and zeroing
// Documentation is inconsistent. which order of the operands is correct?
return _mm512_maskz_permutexvar_epi64(z, pmask, a);
}
else {
return _mm512_permutexvar_epi64(pmask, a);
}
}
template <int i0, int i1, int i2, int i3, int i4, int i5, int i6, int i7>
static inline Vec8uq permute8uq(Vec8uq const & a) {
return Vec8uq (permute8q<i0,i1,i2,i3,i4,i5,i6,i7> (a));
}
// Permute vector of 16 32-bit integers.
// Index -1 gives 0, index -256 means don't care.
template <int i0, int i1, int i2, int i3, int i4, int i5, int i6, int i7, int i8, int i9, int i10, int i11, int i12, int i13, int i14, int i15>
static inline Vec16i permute16i(Vec16i const & a) {
// Combine indexes into a single bitfield, with 4 bits for each
const uint64_t m1 = (i0&15) | (i1&15)<<4 | (i2&15)<< 8 | (i3&15)<<12 | (i4&15)<<16 | (i5&15)<<20 | (i6&15)<<24 | (i7&15LL)<<28 // 15LL avoids sign extension of (int32_t | int64_t)
| (i8&15LL)<<32 | (i9&15LL)<<36 | (i10&15LL)<<40 | (i11&15LL)<<44 | (i12&15LL)<<48 | (i13&15LL)<<52 | (i14&15LL)<<56 | (i15&15LL)<<60;
// Mask to zero out negative indexes
const uint64_t mz = (i0<0?0:0xF) | (i1<0?0:0xF0) | (i2<0?0:0xF00) | (i3<0?0:0xF000) | (i4<0?0:0xF0000) | (i5<0?0:0xF00000) | (i6<0?0:0xF000000) | (i7<0?0:0xF0000000ULL) | (i8<0?0:0xF00000000)
| (i9<0?0:0xF000000000) | (i10<0?0:0xF0000000000) | (i11<0?0:0xF00000000000) | (i12<0?0:0xF000000000000) | (i13<0?0:0xF0000000000000) | (i14<0?0:0xF00000000000000) | (i15<0?0:0xF000000000000000);
const uint64_t m2 = m1 & mz;
// zeroing needed
const bool dozero = ((i0|i1|i2|i3|i4|i5|i6|i7|i8|i9|i10|i11|i12|i13|i14|i15) & 0x80) != 0;
// special case: all zero
if (mz == 0) return _mm512_setzero_epi32();
// mask for elements not zeroed
const __mmask16 z = __mmask16((i0>=0)<<0 | (i1>=0)<<1 | (i2>=0)<<2 | (i3>=0)<<3 | (i4>=0)<<4 | (i5>=0)<<5 | (i6>=0)<<6 | (i7>=0)<<7
| (i8>=0)<<8 | (i9>=0)<<9 | (i10>=0)<<10 | (i11>=0)<<11 | (i12>=0)<<12 | (i13>=0)<<13 | (i14>=0)<<14 | (i15>=0)<<15);
if (((m1 ^ 0xFEDCBA9876543210) & mz) == 0) {
// no shuffling
if (dozero) {
// zero some elements
return _mm512_maskz_mov_epi32(z, a);
}
return a; // do nothing
}
if (((m1 ^ 0xCCCC888844440000) & 0xCCCCCCCCCCCCCCCC & mz) == 0) {
// no exchange of data between the four 128-bit lanes
const uint64_t pat = ((m2 | (m2 >> 16) | (m2 >> 32) | (m2 >> 48)) & 0x3333) * 0x0001000100010001;
const int pmask = (pat & 3) | (((pat >> 4) & 3) << 2) | (((pat >> 8) & 3) << 4) | (((pat >> 12) & 3) << 6);
if (((m1 ^ pat) & 0x3333333333333333 & mz) == 0) {
// same permute pattern in all lanes
if (dozero) { // permute within lanes and zero
return _mm512_maskz_shuffle_epi32(z, a, (_MM_PERM_ENUM)pmask);
}
else { // permute within lanes
return _mm512_shuffle_epi32(a, (_MM_PERM_ENUM)pmask);
}
}
// different permute patterns in each lane. It's faster to do a full permute than four masked permutes within lanes
}
const uint64_t lane = (m2 | m2 >> 4 | m2 >> 8 | m2 >> 12) & 0x000C000C000C000C;
if ((((m1 ^ 0x3210321032103210) & 0x3333333333333333 & mz) == 0)
&& ((m1 ^ (lane * 0x1111)) & 0xCCCCCCCCCCCCCCCC & mz) == 0) {
// permute lanes only. no permutation within each lane
const uint64_t s = ((lane >> 2) & 3) | (((lane >> 18) & 3) << 2) | (((lane >> 34) & 3) << 4) | (((lane >> 50) & 3) << 6);
if (dozero) {
// permute lanes and zero some 64-bit elements
return _mm512_maskz_shuffle_i32x4(z, a, a, (_MM_PERM_ENUM)s);
}
else {
// permute lanes
return _mm512_shuffle_i32x4(a, a, (_MM_PERM_ENUM)s);
}
}
// full permute needed
const __m512i pmask = constant16i<i0&15, i1&15, i2&15, i3&15, i4&15, i5&15, i6&15, i7&15, i8&15, i9&15, i10&15, i11&15, i12&15, i13&15, i14&15, i15&15>();
if (dozero) {
// full permute and zeroing
return _mm512_maskz_permutexvar_epi32(z, pmask, a);
}
else {
return _mm512_permutexvar_epi32(pmask, a);
}
}
template <int i0, int i1, int i2, int i3, int i4, int i5, int i6, int i7, int i8, int i9, int i10, int i11, int i12, int i13, int i14, int i15>
static inline Vec16ui permute16ui(Vec16ui const & a) {
return Vec16ui (permute16i<i0,i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14,i15> (a));
}
/*****************************************************************************
*
* Vector blend functions
*
******************************************************************************
*
* These blend functions can mix elements from two different vectors and
* optionally set some elements to zero.
*
* The indexes are inserted as template parameters in <>. These indexes must be
* constants. Each template parameter is an index to the element you want to
* select, where higher indexes indicate an element from the second source
* vector. For example, if each vector has 8 elements, then indexes 0 - 7
* will select an element from the first vector and indexes 8 - 15 will select
* an element from the second vector. A negative index will generate zero.
*
* Example:
* Vec8q a(100,101,102,103,104,105,106,107); // a is (100, 101, 102, 103, 104, 105, 106, 107)
* Vec8q b(200,201,202,203,204,205,206,207); // b is (200, 201, 202, 203, 204, 205, 206, 207)
* Vec8q c;
* c = blend8q<1,0,9,8,7,-1,15,15> (a,b); // c is (101, 100, 201, 200, 107, 0, 207, 207)
*
* A lot of the code here is metaprogramming aiming to find the instructions
* that best fit the template parameters and instruction set. The metacode
* will be reduced out to leave only a few vector instructions in release
* mode with optimization on.
*****************************************************************************/
template <int i0, int i1, int i2, int i3, int i4, int i5, int i6, int i7>
static inline Vec8q blend8q(Vec8q const & a, Vec8q const & b) {
// Combine indexes into a single bitfield, with 4 bits for each
const int m1 = (i0&0xF) | (i1&0xF)<<4 | (i2&0xF)<< 8 | (i3&0xF)<<12 | (i4&0xF)<<16 | (i5&0xF)<<20 | (i6&0xF)<<24 | (i7&0xF)<<28;
// Mask to zero out negative indexes
const int mz = (i0<0?0:0xF) | (i1<0?0:0xF0) | (i2<0?0:0xF00) | (i3<0?0:0xF000) | (i4<0?0:0xF0000) | (i5<0?0:0xF00000) | (i6<0?0:0xF000000) | (i7<0?0:0xF0000000);
const int m2 = m1 & mz;
// zeroing needed
const bool dozero = ((i0|i1|i2|i3|i4|i5|i6|i7) & 0x80) != 0;
// mask for elements not zeroed
const __mmask16 z = __mmask16((i0>=0)<<0 | (i1>=0)<<1 | (i2>=0)<<2 | (i3>=0)<<3 | (i4>=0)<<4 | (i5>=0)<<5 | (i6>=0)<<6 | (i7>=0)<<7);
// special case: all zero
if (mz == 0) return _mm512_setzero_epi32();
// special case: all from a
if ((m1 & 0x88888888 & mz) == 0) {
return permute8q <i0, i1, i2, i3, i4, i5, i6, i7> (a);
}
// special case: all from b
if ((~m1 & 0x88888888 & mz) == 0) {
return permute8q <i0^8, i1^8, i2^8, i3^8, i4^8, i5^8, i6^8, i7^8> (b);
}
// special case: blend without permute
if (((m1 ^ 0x76543210) & 0x77777777 & mz) == 0) {
__mmask16 blendmask = __mmask16((i0&8)>>3 | (i1&8)>>2 | (i2&8)>>1 | (i3&8)>>0 | (i4&8)<<1 | (i5&8)<<2 | (i6&8)<<3 | (i7&8)<<4 );
__m512i t = _mm512_mask_blend_epi64(blendmask, a, b);
if (dozero) {
t = _mm512_maskz_mov_epi64(z, t);
}
return t;
}
// special case: all data stay within their lane
if (((m1 ^ 0x66442200) & 0x66666666 & mz) == 0) {
// mask for elements from a and b
const uint32_t mb = ((i0&8)?0xF:0) | ((i1&8)?0xF0:0) | ((i2&8)?0xF00:0) | ((i3&8)?0xF000:0) | ((i4&8)?0xF0000:0) | ((i5&8)?0xF00000:0) | ((i6&8)?0xF000000:0) | ((i7&8)?0xF0000000:0);
const uint32_t mbz = mb & mz; // mask for nonzero elements from b
const uint32_t maz = ~mb & mz; // mask for nonzero elements from a
const uint32_t m1a = m1 & maz;
const uint32_t m1b = m1 & mbz;
const uint32_t pata = ((m1a | m1a >> 8 | m1a >> 16 | m1a >> 24) & 0xFF) * 0x01010101; // permute pattern for elements from a
const uint32_t patb = ((m1b | m1b >> 8 | m1b >> 16 | m1b >> 24) & 0xFF) * 0x01010101; // permute pattern for elements from b
if (((m1 ^ pata) & 0x11111111 & maz) == 0 && ((m1 ^ patb) & 0x11111111 & mbz) == 0) {
// Same permute pattern in all lanes:
// This code generates two instructions instead of one, but we are avoiding the slow lane-crossing instruction,
// and we are saving 64 bytes of data cache.
// 1. Permute a, zero elements not from a (using _mm512_maskz_shuffle_epi32)
__m512i ta = permute8q< (maz&0xF)?i0&7:-1, (maz&0xF0)?i1&7:-1, (maz&0xF00)?i2&7:-1, (maz&0xF000)?i3&7:-1,
(maz&0xF0000)?i4&7:-1, (maz&0xF00000)?i5&7:-1, (maz&0xF000000)?i6&7:-1, (maz&0xF0000000)?i7&7:-1> (a);
// write mask for elements from b
const __mmask16 sb = ((mbz&0xF)?3:0) | ((mbz&0xF0)?0xC:0) | ((mbz&0xF00)?0x30:0) | ((mbz&0xF000)?0xC0:0) | ((mbz&0xF0000)?0x300:0) | ((mbz&0xF00000)?0xC00:0) | ((mbz&0xF000000)?0x3000:0) | ((mbz&0xF0000000)?0xC000:0);
// permute index for elements from b
const int pi = ((patb & 1) * 10 + 4) | ((((patb >> 4) & 1) * 10 + 4) << 4);
// 2. Permute elements from b and combine with elements from a through write mask
return _mm512_mask_shuffle_epi32(ta, sb, b, (_MM_PERM_ENUM)pi);
}
// not same permute pattern in all lanes. use full permute
}
// general case: full permute
const __m512i pmask = constant16i<i0&0xF, 0, i1&0xF, 0, i2&0xF, 0, i3&0xF, 0, i4&0xF, 0, i5&0xF, 0, i6&0xF, 0, i7&0xF, 0>();
if (dozero) {
return _mm512_maskz_permutex2var_epi64(z, a, pmask, b);
}
else {
return _mm512_permutex2var_epi64(a, pmask, b);
}
}
template <int i0, int i1, int i2, int i3, int i4, int i5, int i6, int i7>
static inline Vec8uq blend8uq(Vec8uq const & a, Vec8uq const & b) {
return Vec8uq( blend8q<i0,i1,i2,i3,i4,i5,i6,i7> (a,b));
}
template <int i0, int i1, int i2, int i3, int i4, int i5, int i6, int i7,
int i8, int i9, int i10, int i11, int i12, int i13, int i14, int i15 >
static inline Vec16i blend16i(Vec16i const & a, Vec16i const & b) {
// Combine indexes into a single bitfield, with 4 bits for each indicating shuffle, but not source
const uint64_t m1 = (i0&0xF) | (i1&0xF)<<4 | (i2&0xF)<<8 | (i3&0xF)<<12 | (i4&0xF)<<16 | (i5&0xF)<<20 | (i6&0xF)<<24 | (i7&0xFLL)<<28
| (i8&0xFLL)<<32 | (i9&0xFLL)<<36 | (i10&0xFLL)<<40 | (i11&0xFLL)<<44 | (i12&0xFLL)<<48 | (i13&0xFLL)<<52 | (i14&0xFLL)<<56 | (i15&0xFLL)<<60;
// Mask to zero out negative indexes
const uint64_t mz = (i0<0?0:0xF) | (i1<0?0:0xF0) | (i2<0?0:0xF00) | (i3<0?0:0xF000) | (i4<0?0:0xF0000) | (i5<0?0:0xF00000) | (i6<0?0:0xF000000) | (i7<0?0:0xF0000000ULL)
| (i8<0?0:0xF00000000) | (i9<0?0:0xF000000000) | (i10<0?0:0xF0000000000) | (i11<0?0:0xF00000000000) | (i12<0?0:0xF000000000000) | (i13<0?0:0xF0000000000000) | (i14<0?0:0xF00000000000000) | (i15<0?0:0xF000000000000000);
const uint64_t m2 = m1 & mz;
// collect bit 4 of each index = select source
const uint64_t ms = ((i0&16)?0xF:0) | ((i1&16)?0xF0:0) | ((i2&16)?0xF00:0) | ((i3&16)?0xF000:0) | ((i4&16)?0xF0000:0) | ((i5&16)?0xF00000:0) | ((i6&16)?0xF000000:0) | ((i7&16)?0xF0000000ULL:0)
| ((i8&16)?0xF00000000:0) | ((i9&16)?0xF000000000:0) | ((i10&16)?0xF0000000000:0) | ((i11&16)?0xF00000000000:0) | ((i12&16)?0xF000000000000:0) | ((i13&16)?0xF0000000000000:0) | ((i14&16)?0xF00000000000000:0) | ((i15&16)?0xF000000000000000:0);
// zeroing needed
const bool dozero = ((i0|i1|i2|i3|i4|i5|i6|i7|i8|i9|i10|i11|i12|i13|i14|i15) & 0x80) != 0;
// mask for elements not zeroed
const __mmask16 z = __mmask16((i0>=0)<<0 | (i1>=0)<<1 | (i2>=0)<<2 | (i3>=0)<<3 | (i4>=0)<<4 | (i5>=0)<<5 | (i6>=0)<<6 | (i7>=0)<<7
| (i8>=0)<<8 | (i9>=0)<<9 | (i10>=0)<<10 | (i11>=0)<<11 | (i12>=0)<<12 | (i13>=0)<<13 | (i14>=0)<<14 | (i15>=0)<<15);
// special case: all zero
if (mz == 0) return _mm512_setzero_epi32();
// special case: all from a
if ((ms & mz) == 0) {
return permute16i<i0,i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14,i15> (a);
}
// special case: all from b
if ((~ms & mz) == 0) {
return permute16i<i0^16,i1^16,i2^16,i3^16,i4^16,i5^16,i6^16,i7^16,i8^16,i9^16,i10^16,i11^16,i12^16,i13^16,i14^16,i15^16 > (b);
}
// special case: blend without permute
if (((m1 ^ 0xFEDCBA9876543210) & mz) == 0) {
__mmask16 blendmask = __mmask16((i0&16)>>4 | (i1&16)>>3 | (i2&16)>>2 | (i3&16)>>1 | (i4&16) | (i5&16)<<1 | (i6&16)<<2 | (i7&16)<<3
| (i8&16)<<4 | (i9&16)<<5 | (i10&16)<<6 | (i11&16)<<7 | (i12&16)<<8 | (i13&16)<<9 | (i14&16)<<10 | (i15&16)<<11);
__m512i t = _mm512_mask_blend_epi32(blendmask, a, b);
if (dozero) {
t = _mm512_maskz_mov_epi32(z, t);
}
return t;
}
// special case: all data stay within their lane
if (((m1 ^ 0xCCCC888844440000) & 0xCCCCCCCCCCCCCCCC & mz) == 0) {
// mask for elements from a and b
const uint64_t mb = ms;
const uint64_t mbz = mb & mz; // mask for nonzero elements from b
const uint64_t maz = ~mb & mz; // mask for nonzero elements from a
const uint64_t m1a = m1 & maz;
const uint64_t m1b = m1 & mbz;
const uint64_t pata = ((m1a | m1a >> 16 | m1a >> 32 | m1a >> 48) & 0xFFFF) * 0x0001000100010001; // permute pattern for elements from a
const uint64_t patb = ((m1b | m1b >> 16 | m1b >> 32 | m1b >> 48) & 0xFFFF) * 0x0001000100010001; // permute pattern for elements from b
if (((m1 ^ pata) & 0x3333333333333333 & maz) == 0 && ((m1 ^ patb) & 0x3333333333333333 & mbz) == 0) {
// Same permute pattern in all lanes:
// This code generates two instructions instead of one, but we are avoiding the slow lane-crossing instruction,
// and we are saving 64 bytes of data cache.
// 1. Permute a, zero elements not from a (using _mm512_maskz_shuffle_epi32)
__m512i ta = permute16i< (maz&0xF)?i0&15:-1, (maz&0xF0)?i1&15:-1, (maz&0xF00)?i2&15:-1, (maz&0xF000)?i3&15:-1,
(maz&0xF0000)?i4&15:-1, (maz&0xF00000)?i5&15:-1, (maz&0xF000000)?i6&15:-1, (maz&0xF0000000)?i7&15:-1,
(maz&0xF00000000)?i8&15:-1, (maz&0xF000000000)?i9&15:-1, (maz&0xF0000000000)?i10&15:-1, (maz&0xF00000000000)?i11&15:-1,
(maz&0xF000000000000)?i12&15:-1, (maz&0xF0000000000000)?i13&15:-1, (maz&0xF00000000000000)?i14&15:-1, (maz&0xF000000000000000)?i15&15:-1> (a);
// write mask for elements from b
const __mmask16 sb = ((mbz&0xF)?1:0) | ((mbz&0xF0)?0x2:0) | ((mbz&0xF00)?0x4:0) | ((mbz&0xF000)?0x8:0) | ((mbz&0xF0000)?0x10:0) | ((mbz&0xF00000)?0x20:0) | ((mbz&0xF000000)?0x40:0) | ((mbz&0xF0000000)?0x80:0)
| ((mbz&0xF00000000)?0x100:0) | ((mbz&0xF000000000)?0x200:0) | ((mbz&0xF0000000000)?0x400:0) | ((mbz&0xF00000000000)?0x800:0) | ((mbz&0xF000000000000)?0x1000:0) | ((mbz&0xF0000000000000)?0x2000:0) | ((mbz&0xF00000000000000)?0x4000:0) | ((mbz&0xF000000000000000)?0x8000:0);
// permute index for elements from b
const int pi = (patb & 3) | (((patb >> 4) & 3) << 2) | (((patb >> 8) & 3) << 4) | (((patb >> 12) & 3) << 6);
// 2. Permute elements from b and combine with elements from a through write mask
return _mm512_mask_shuffle_epi32(ta, sb, b, (_MM_PERM_ENUM)pi);
}
// not same permute pattern in all lanes. use full permute
}
// general case: full permute
const __m512i pmask = constant16i<i0&0x1F, i1&0x1F, i2&0x1F, i3&0x1F, i4&0x1F, i5&0x1F, i6&0x1F, i7&0x1F,
i8&0x1F, i9&0x1F, i10&0x1F, i11&0x1F, i12&0x1F, i13&0x1F, i14&0x1F, i15&0x1F>();
if (dozero) {
return _mm512_maskz_permutex2var_epi32(z, a, pmask, b);
}
else {
return _mm512_permutex2var_epi32(a, pmask, b);
}
}
template <int i0, int i1, int i2, int i3, int i4, int i5, int i6, int i7,
int i8, int i9, int i10, int i11, int i12, int i13, int i14, int i15 >
static inline Vec16ui blend16ui(Vec16ui const & a, Vec16ui const & b) {
return Vec16ui( blend16i<i0,i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14,i15> (Vec16i(a),Vec16i(b)));
}
/*****************************************************************************
*
* Vector lookup functions
*
******************************************************************************
*
* These functions use vector elements as indexes into a table.
* The table is given as one or more vectors or as an array.
*
* This can be used for several purposes:
* - table lookup
* - permute or blend with variable indexes
* - blend from more than two sources
* - gather non-contiguous data
*
* An index out of range may produce any value - the actual value produced is
* implementation dependent and may be different for different instruction
* sets. An index out of range does not produce an error message or exception.
*
* Example:
* Vec8q a(2,0,0,6,4,3,5,0); // index a is ( 2, 0, 0, 6, 4, 3, 5, 0)
* Vec8q b(100,101,102,103,104,105,106,107); // table b is (100, 101, 102, 103, 104, 105, 106, 107)
* Vec8q c;
* c = lookup8 (a,b); // c is (102, 100, 100, 106, 104, 103, 105, 100)
*
*****************************************************************************/
static inline Vec16i lookup16(Vec16i const & index, Vec16i const & table) {
return _mm512_permutexvar_epi32(index, table);
}
template <int n>
static inline Vec16i lookup(Vec16i const & index, void const * table) {
if (n <= 0) return 0;
if (n <= 16) {
Vec16i table1 = Vec16i().load(table);
return lookup16(index, table1);
}
if (n <= 32) {
Vec16i table1 = Vec16i().load(table);
Vec16i table2 = Vec16i().load((int8_t*)table + 64);
return _mm512_permutex2var_epi32(table1, index, table2);
}
// n > 32. Limit index
Vec16ui index1;
if ((n & (n-1)) == 0) {
// n is a power of 2, make index modulo n
index1 = Vec16ui(index) & (n-1);
}
else {
// n is not a power of 2, limit to n-1
index1 = min(Vec16ui(index), uint32_t(n-1));
}
return _mm512_i32gather_epi32(index1, (const int*)table, 4);
// return _mm512_i32gather_epi32(index1, table, _MM_UPCONV_EPI32_NONE, 4, 0);
}
static inline Vec8q lookup8(Vec8q const & index, Vec8q const & table) {
return _mm512_permutexvar_epi64(index, table);
}
template <int n>
static inline Vec8q lookup(Vec8q const & index, void const * table) {
if (n <= 0) return 0;
if (n <= 8) {
Vec8q table1 = Vec8q().load(table);
return lookup8(index, table1);
}
if (n <= 16) {
Vec8q table1 = Vec8q().load(table);
Vec8q table2 = Vec8q().load((int8_t*)table + 64);
return _mm512_permutex2var_epi64(table1, index, table2);
}
// n > 16. Limit index
Vec8uq index1;
if ((n & (n-1)) == 0) {
// n is a power of 2, make index modulo n
index1 = Vec8uq(index) & (n-1);
}
else {
// n is not a power of 2, limit to n-1
index1 = min(Vec8uq(index), uint32_t(n-1));
}
return _mm512_i64gather_epi64(index1, (const long long*)table, 8);
}
/*****************************************************************************
*
* Gather functions with fixed indexes
*
*****************************************************************************/
// Load elements from array a with indices i0,i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14,i15
template <int i0, int i1, int i2, int i3, int i4, int i5, int i6, int i7,
int i8, int i9, int i10, int i11, int i12, int i13, int i14, int i15>
static inline Vec16i gather16i(void const * a) {
Static_error_check<(i0|i1|i2|i3|i4|i5|i6|i7|i8|i9|i10|i11|i12|i13|i14|i15)>=0> Negative_array_index; // Error message if index is negative
// find smallest and biggest index, using only compile-time constant expressions
const int i01min = i0 < i1 ? i0 : i1;
const int i23min = i2 < i3 ? i2 : i3;
const int i45min = i4 < i5 ? i4 : i5;
const int i67min = i6 < i7 ? i6 : i7;
const int i89min = i8 < i9 ? i8 : i9;
const int i1011min = i10 < i11 ? i10 : i11;
const int i1213min = i12 < i13 ? i12 : i13;
const int i1415min = i14 < i15 ? i14 : i15;
const int i0_3min = i01min < i23min ? i01min : i23min;
const int i4_7min = i45min < i67min ? i45min : i67min;
const int i8_11min = i89min < i1011min ? i89min : i1011min;
const int i12_15min = i1213min < i1415min ? i1213min : i1415min;
const int i0_7min = i0_3min < i4_7min ? i0_3min : i4_7min;
const int i8_15min = i8_11min < i12_15min ? i8_11min : i12_15min;
const int imin = i0_7min < i8_15min ? i0_7min : i8_15min;
const int i01max = i0 > i1 ? i0 : i1;
const int i23max = i2 > i3 ? i2 : i3;
const int i45max = i4 > i5 ? i4 : i5;
const int i67max = i6 > i7 ? i6 : i7;
const int i89max = i8 > i9 ? i8 : i9;
const int i1011max = i10 > i11 ? i10 : i11;
const int i1213max = i12 > i13 ? i12 : i13;
const int i1415max = i14 > i15 ? i14 : i15;
const int i0_3max = i01max > i23max ? i01max : i23max;
const int i4_7max = i45max > i67max ? i45max : i67max;
const int i8_11max = i89max > i1011max ? i89max : i1011max;
const int i12_15max = i1213max > i1415max ? i1213max : i1415max;
const int i0_7max = i0_3max > i4_7max ? i0_3max : i4_7max;
const int i8_15max = i8_11max > i12_15max ? i8_11max : i12_15max;
const int imax = i0_7max > i8_15max ? i0_7max : i8_15max;
if (imax - imin <= 15) {
// load one contiguous block and permute
if (imax > 15) {
// make sure we don't read past the end of the array
Vec16i b = Vec16i().load((int32_t const *)a + imax-15);
return permute16i<i0-imax+15, i1-imax+15, i2-imax+15, i3-imax+15, i4-imax+15, i5-imax+15, i6-imax+15, i7-imax+15,
i8-imax+15, i9-imax+15, i10-imax+15, i11-imax+15, i12-imax+15, i13-imax+15, i14-imax+15, i15-imax+15> (b);
}
else {
Vec16i b = Vec16i().load((int32_t const *)a + imin);
return permute16i<i0-imin, i1-imin, i2-imin, i3-imin, i4-imin, i5-imin, i6-imin, i7-imin,
i8-imin, i9-imin, i10-imin, i11-imin, i12-imin, i13-imin, i14-imin, i15-imin> (b);
}
}
if ((i0<imin+16 || i0>imax-16) && (i1<imin+16 || i1>imax-16) && (i2<imin+16 || i2>imax-16) && (i3<imin+16 || i3>imax-16)
&& (i4<imin+16 || i4>imax-16) && (i5<imin+16 || i5>imax-16) && (i6<imin+16 || i6>imax-16) && (i7<imin+16 || i7>imax-16)
&& (i8<imin+16 || i8>imax-16) && (i9<imin+16 || i9>imax-16) && (i10<imin+16 || i10>imax-16) && (i11<imin+16 || i11>imax-16)
&& (i12<imin+16 || i12>imax-16) && (i13<imin+16 || i13>imax-16) && (i14<imin+16 || i14>imax-16) && (i15<imin+16 || i15>imax-16) ) {
// load two contiguous blocks and blend
Vec16i b = Vec16i().load((int32_t const *)a + imin);
Vec16i c = Vec16i().load((int32_t const *)a + imax-15);
const int j0 = i0 <imin+16 ? i0 -imin : 31-imax+i0;
const int j1 = i1 <imin+16 ? i1 -imin : 31-imax+i1;
const int j2 = i2 <imin+16 ? i2 -imin : 31-imax+i2;
const int j3 = i3 <imin+16 ? i3 -imin : 31-imax+i3;
const int j4 = i4 <imin+16 ? i4 -imin : 31-imax+i4;
const int j5 = i5 <imin+16 ? i5 -imin : 31-imax+i5;
const int j6 = i6 <imin+16 ? i6 -imin : 31-imax+i6;
const int j7 = i7 <imin+16 ? i7 -imin : 31-imax+i7;
const int j8 = i8 <imin+16 ? i8 -imin : 31-imax+i8;
const int j9 = i9 <imin+16 ? i9 -imin : 31-imax+i9;
const int j10 = i10<imin+16 ? i10-imin : 31-imax+i10;
const int j11 = i11<imin+16 ? i11-imin : 31-imax+i11;
const int j12 = i12<imin+16 ? i12-imin : 31-imax+i12;
const int j13 = i13<imin+16 ? i13-imin : 31-imax+i13;
const int j14 = i14<imin+16 ? i14-imin : 31-imax+i14;
const int j15 = i15<imin+16 ? i15-imin : 31-imax+i15;
return blend16i<j0,j1,j2,j3,j4,j5,j6,j7,j8,j9,j10,j11,j12,j13,j14,j15>(b, c);
}
// use gather instruction
return _mm512_i32gather_epi32(Vec16i(i0,i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14,i15), (const int *)a, 4);
}
template <int i0, int i1, int i2, int i3, int i4, int i5, int i6, int i7>
static inline Vec8q gather8q(void const * a) {
Static_error_check<(i0|i1|i2|i3|i4|i5|i6|i7)>=0> Negative_array_index; // Error message if index is negative
const int i01min = i0 < i1 ? i0 : i1;
const int i23min = i2 < i3 ? i2 : i3;
const int i45min = i4 < i5 ? i4 : i5;
const int i67min = i6 < i7 ? i6 : i7;
const int i0123min = i01min < i23min ? i01min : i23min;
const int i4567min = i45min < i67min ? i45min : i67min;
const int imin = i0123min < i4567min ? i0123min : i4567min;
const int i01max = i0 > i1 ? i0 : i1;
const int i23max = i2 > i3 ? i2 : i3;
const int i45max = i4 > i5 ? i4 : i5;
const int i67max = i6 > i7 ? i6 : i7;
const int i0123max = i01max > i23max ? i01max : i23max;
const int i4567max = i45max > i67max ? i45max : i67max;
const int imax = i0123max > i4567max ? i0123max : i4567max;
if (imax - imin <= 7) {
// load one contiguous block and permute
if (imax > 7) {
// make sure we don't read past the end of the array
Vec8q b = Vec8q().load((int64_t const *)a + imax-7);
return permute8q<i0-imax+7, i1-imax+7, i2-imax+7, i3-imax+7, i4-imax+7, i5-imax+7, i6-imax+7, i7-imax+7> (b);
}
else {
Vec8q b = Vec8q().load((int64_t const *)a + imin);
return permute8q<i0-imin, i1-imin, i2-imin, i3-imin, i4-imin, i5-imin, i6-imin, i7-imin> (b);
}
}
if ((i0<imin+8 || i0>imax-8) && (i1<imin+8 || i1>imax-8) && (i2<imin+8 || i2>imax-8) && (i3<imin+8 || i3>imax-8)
&& (i4<imin+8 || i4>imax-8) && (i5<imin+8 || i5>imax-8) && (i6<imin+8 || i6>imax-8) && (i7<imin+8 || i7>imax-8)) {
// load two contiguous blocks and blend
Vec8q b = Vec8q().load((int64_t const *)a + imin);
Vec8q c = Vec8q().load((int64_t const *)a + imax-7);
const int j0 = i0<imin+8 ? i0-imin : 15-imax+i0;
const int j1 = i1<imin+8 ? i1-imin : 15-imax+i1;
const int j2 = i2<imin+8 ? i2-imin : 15-imax+i2;
const int j3 = i3<imin+8 ? i3-imin : 15-imax+i3;
const int j4 = i4<imin+8 ? i4-imin : 15-imax+i4;
const int j5 = i5<imin+8 ? i5-imin : 15-imax+i5;
const int j6 = i6<imin+8 ? i6-imin : 15-imax+i6;
const int j7 = i7<imin+8 ? i7-imin : 15-imax+i7;
return blend8q<j0, j1, j2, j3, j4, j5, j6, j7>(b, c);
}
// use gather instruction
return _mm512_i64gather_epi64(Vec8q(i0,i1,i2,i3,i4,i5,i6,i7), (const long long *)a, 8);
}
/*****************************************************************************
*
* Vector scatter functions
*
******************************************************************************
*
* These functions write the elements of a vector to arbitrary positions in an
* array in memory. Each vector element is written to an array position
* determined by an index. An element is not written if the corresponding
* index is out of range.
* The indexes can be specified as constant template parameters or as an
* integer vector.
*
* The scatter functions are useful if the data are distributed in a sparce
* manner into the array. If the array is dense then it is more efficient
* to permute the data into the right positions and then write the whole
* permuted vector into the array.
*
* Example:
* Vec8q a(10,11,12,13,14,15,16,17);
* int64_t b[16] = {0};
* scatter<0,2,14,10,1,-1,5,9>(a,b);
* // Now, b = {10,14,11,0,0,16,0,0,0,17,13,0,0,0,12,0}
*
*****************************************************************************/
template <int i0, int i1, int i2, int i3, int i4, int i5, int i6, int i7,
int i8, int i9, int i10, int i11, int i12, int i13, int i14, int i15>
static inline void scatter(Vec16i const & data, void * array) {
__m512i indx = constant16i<i0,i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14,i15>();
Vec16ib mask(i0>=0, i1>=0, i2>=0, i3>=0, i4>=0, i5>=0, i6>=0, i7>=0,
i8>=0, i9>=0, i10>=0, i11>=0, i12>=0, i13>=0, i14>=0, i15>=0);
_mm512_mask_i32scatter_epi32((int*)array, mask, indx, data, 4);
}
template <int i0, int i1, int i2, int i3, int i4, int i5, int i6, int i7>
static inline void scatter(Vec8q const & data, void * array) {
__m256i indx = constant8i<i0,i1,i2,i3,i4,i5,i6,i7>();
Vec8qb mask(i0>=0, i1>=0, i2>=0, i3>=0, i4>=0, i5>=0, i6>=0, i7>=0);
_mm512_mask_i32scatter_epi64((long long *)array, mask, indx, data, 8);
}
static inline void scatter(Vec16i const & index, uint32_t limit, Vec16i const & data, void * array) {
Vec16ib mask = Vec16ui(index) < limit;
_mm512_mask_i32scatter_epi32((int*)array, mask, index, data, 4);
}
static inline void scatter(Vec8q const & index, uint32_t limit, Vec8q const & data, void * array) {
Vec8qb mask = Vec8uq(index) < uint64_t(limit);
_mm512_mask_i64scatter_epi64((long long *)array, mask, index, data, 8);
}
static inline void scatter(Vec8i const & index, uint32_t limit, Vec8q const & data, void * array) {
#if defined (__AVX512VL__)
__mmask16 mask = _mm256_cmplt_epu32_mask(index, Vec8ui(limit));
#else
__mmask16 mask = _mm512_cmplt_epu32_mask(_mm512_castsi256_si512(index), _mm512_castsi256_si512(Vec8ui(limit)));
#endif
_mm512_mask_i32scatter_epi64((long long *)array, mask, index, data, 8);
}
/*****************************************************************************
*
* Functions for conversion between integer sizes
*
*****************************************************************************/
// Extend 16-bit integers to 32-bit integers, signed and unsigned
// Function extend_to_int : extends Vec16s to Vec16i with sign extension
static inline Vec16i extend_to_int (Vec16s const & a) {
return _mm512_cvtepi16_epi32(a);
}
// Function extend_to_int : extends Vec16us to Vec16ui with zero extension
static inline Vec16ui extend_to_int (Vec16us const & a) {
return _mm512_cvtepu16_epi32(a);
}
// Function extend_to_int : extends Vec16c to Vec16i with sign extension
static inline Vec16i extend_to_int (Vec16c const & a) {
return _mm512_cvtepi8_epi32(a);
}
// Function extend_to_int : extends Vec16uc to Vec16ui with zero extension
static inline Vec16ui extend_to_int (Vec16uc const & a) {
return _mm512_cvtepu8_epi32(a);
}
// Extend 32-bit integers to 64-bit integers, signed and unsigned
// Function extend_low : extends the low 8 elements to 64 bits with sign extension
static inline Vec8q extend_low (Vec16i const & a) {
return _mm512_cvtepi32_epi64(a.get_low());
}
// Function extend_high : extends the high 8 elements to 64 bits with sign extension
static inline Vec8q extend_high (Vec16i const & a) {
return _mm512_cvtepi32_epi64(a.get_high());
}
// Function extend_low : extends the low 8 elements to 64 bits with zero extension
static inline Vec8uq extend_low (Vec16ui const & a) {
return _mm512_cvtepu32_epi64(a.get_low());
}
// Function extend_high : extends the high 8 elements to 64 bits with zero extension
static inline Vec8uq extend_high (Vec16ui const & a) {
return _mm512_cvtepu32_epi64(a.get_high());
}
// Compress 32-bit integers to 8-bit integers, signed and unsigned, with and without saturation
// Function compress : packs two vectors of 16-bit integers into one vector of 8-bit integers
// Overflow wraps around
static inline Vec16c compress_to_int8 (Vec16i const & a) {
return _mm512_cvtepi32_epi8(a);
}
static inline Vec16s compress_to_int16 (Vec16i const & a) {
return _mm512_cvtepi32_epi16(a);
}
// with signed saturation
static inline Vec16c compress_to_int8_saturated (Vec16i const & a) {
return _mm512_cvtsepi32_epi8(a);
}
static inline Vec16s compress_to_int16_saturated (Vec16i const & a) {
return _mm512_cvtsepi32_epi16(a);
}
// with unsigned saturation
static inline Vec16uc compress_to_int8_saturated (Vec16ui const & a) {
return _mm512_cvtusepi32_epi8(a);
}
static inline Vec16us compress_to_int16_saturated (Vec16ui const & a) {
return _mm512_cvtusepi32_epi16(a);
}
// Compress 64-bit integers to 32-bit integers, signed and unsigned, with and without saturation
// Function compress : packs two vectors of 64-bit integers into one vector of 32-bit integers
// Overflow wraps around
static inline Vec16i compress (Vec8q const & low, Vec8q const & high) {
Vec8i low2 = _mm512_cvtepi64_epi32(low);
Vec8i high2 = _mm512_cvtepi64_epi32(high);
return Vec16i(low2, high2);
}
// Function compress_saturated : packs two vectors of 64-bit integers into one vector of 32-bit integers
// Signed, with saturation
static inline Vec16i compress_saturated (Vec8q const & low, Vec8q const & high) {
Vec8i low2 = _mm512_cvtsepi64_epi32(low);
Vec8i high2 = _mm512_cvtsepi64_epi32(high);
return Vec16i(low2, high2);
}
// Function compress_saturated : packs two vectors of 64-bit integers into one vector of 32-bit integers
// Unsigned, with saturation
static inline Vec16ui compress_saturated (Vec8uq const & low, Vec8uq const & high) {
Vec8ui low2 = _mm512_cvtusepi64_epi32(low);
Vec8ui high2 = _mm512_cvtusepi64_epi32(high);
return Vec16ui(low2, high2);
}
/*****************************************************************************
*
* Integer division operators
*
* Please see the file vectori128.h for explanation.
*
*****************************************************************************/
// vector operator / : divide each element by divisor
// vector of 16 32-bit signed integers
static inline Vec16i operator / (Vec16i const & a, Divisor_i const & d) {
__m512i m = _mm512_broadcast_i32x4(d.getm()); // broadcast multiplier
__m512i sgn = _mm512_broadcast_i32x4(d.getsign()); // broadcast sign of d
__m512i t1 = _mm512_mul_epi32(a,m); // 32x32->64 bit signed multiplication of even elements of a
__m512i t3 = _mm512_srli_epi64(a,32); // get odd elements of a into position for multiplication
__m512i t4 = _mm512_mul_epi32(t3,m); // 32x32->64 bit signed multiplication of odd elements
__m512i t2 = _mm512_srli_epi64(t1,32); // dword of even index results
__m512i t7 = _mm512_mask_mov_epi32(t2, __mmask16(0xAAAA), t4); // blend two results
__m512i t8 = _mm512_add_epi32(t7,a); // add
__m512i t9 = _mm512_sra_epi32(t8,d.gets1()); // shift right artihmetic
__m512i t10 = _mm512_srai_epi32(a,31); // sign of a
__m512i t11 = _mm512_sub_epi32(t10,sgn); // sign of a - sign of d
__m512i t12 = _mm512_sub_epi32(t9,t11); // + 1 if a < 0, -1 if d < 0
return _mm512_xor_si512(t12,sgn); // change sign if divisor negative
}
// vector of 16 32-bit unsigned integers
static inline Vec16ui operator / (Vec16ui const & a, Divisor_ui const & d) {
__m512i m = _mm512_broadcast_i32x4(d.getm()); // broadcast multiplier
__m512i t1 = _mm512_mul_epu32(a,m); // 32x32->64 bit unsigned multiplication of even elements of a
__m512i t3 = _mm512_srli_epi64(a,32); // get odd elements of a into position for multiplication
__m512i t4 = _mm512_mul_epu32(t3,m); // 32x32->64 bit unsigned multiplication of odd elements
__m512i t2 = _mm512_srli_epi64(t1,32); // high dword of even index results
__m512i t7 = _mm512_mask_mov_epi32(t2, __mmask16(0xAAAA), t4); // blend two results
__m512i t8 = _mm512_sub_epi32(a,t7); // subtract
__m512i t9 = _mm512_srl_epi32(t8,d.gets1()); // shift right logical
__m512i t10 = _mm512_add_epi32(t7,t9); // add
return _mm512_srl_epi32(t10,d.gets2()); // shift right logical
}
// vector operator /= : divide
static inline Vec16i & operator /= (Vec16i & a, Divisor_i const & d) {
a = a / d;
return a;
}
// vector operator /= : divide
static inline Vec16ui & operator /= (Vec16ui & a, Divisor_ui const & d) {
a = a / d;
return a;
}
/*****************************************************************************
*
* Integer division 2: divisor is a compile-time constant
*
*****************************************************************************/
// Divide Vec16i by compile-time constant
template <int32_t d>
static inline Vec16i divide_by_i(Vec16i const & x) {
Static_error_check<(d!=0)> Dividing_by_zero; // Error message if dividing by zero
if (d == 1) return x;
if (d == -1) return -x;
if (uint32_t(d) == 0x80000000u) {
return _mm512_maskz_set1_epi32(x == Vec16i(0x80000000), 1); // avoid overflow of abs(d). return (x == 0x80000000) ? 1 : 0;
}
const uint32_t d1 = d > 0 ? uint32_t(d) : -uint32_t(d); // compile-time abs(d). (force GCC compiler to treat d as 32 bits, not 64 bits)
if ((d1 & (d1-1)) == 0) {
// d1 is a power of 2. use shift
const int k = bit_scan_reverse_const(d1);
__m512i sign;
if (k > 1) sign = _mm512_srai_epi32(x, k-1); else sign = x; // k copies of sign bit
__m512i bias = _mm512_srli_epi32(sign, 32-k); // bias = x >= 0 ? 0 : k-1
__m512i xpbias = _mm512_add_epi32 (x, bias); // x + bias
__m512i q = _mm512_srai_epi32(xpbias, k); // (x + bias) >> k
if (d > 0) return q; // d > 0: return q
return _mm512_sub_epi32(_mm512_setzero_epi32(), q); // d < 0: return -q
}
// general case
const int32_t sh = bit_scan_reverse_const(uint32_t(d1)-1); // ceil(log2(d1)) - 1. (d1 < 2 handled by power of 2 case)
const int32_t mult = int(1 + (uint64_t(1) << (32+sh)) / uint32_t(d1) - (int64_t(1) << 32)); // multiplier
const Divisor_i div(mult, sh, d < 0 ? -1 : 0);
return x / div;
}
// define Vec8i a / const_int(d)
template <int32_t d>
static inline Vec16i operator / (Vec16i const & a, Const_int_t<d>) {
return divide_by_i<d>(a);
}
// define Vec16i a / const_uint(d)
template <uint32_t d>
static inline Vec16i operator / (Vec16i const & a, Const_uint_t<d>) {
Static_error_check< (d<0x80000000u) > Error_overflow_dividing_signed_by_unsigned; // Error: dividing signed by overflowing unsigned
return divide_by_i<int32_t(d)>(a); // signed divide
}
// vector operator /= : divide
template <int32_t d>
static inline Vec16i & operator /= (Vec16i & a, Const_int_t<d> b) {
a = a / b;
return a;
}
// vector operator /= : divide
template <uint32_t d>
static inline Vec16i & operator /= (Vec16i & a, Const_uint_t<d> b) {
a = a / b;
return a;
}
// Divide Vec16ui by compile-time constant
template <uint32_t d>
static inline Vec16ui divide_by_ui(Vec16ui const & x) {
Static_error_check<(d!=0)> Dividing_by_zero; // Error message if dividing by zero
if (d == 1) return x; // divide by 1
const int b = bit_scan_reverse_const(d); // floor(log2(d))
if ((uint32_t(d) & (uint32_t(d)-1)) == 0) {
// d is a power of 2. use shift
return _mm512_srli_epi32(x, b); // x >> b
}
// general case (d > 2)
uint32_t mult = uint32_t((uint64_t(1) << (b+32)) / d); // multiplier = 2^(32+b) / d
const uint64_t rem = (uint64_t(1) << (b+32)) - uint64_t(d)*mult; // remainder 2^(32+b) % d
const bool round_down = (2*rem < d); // check if fraction is less than 0.5
if (!round_down) {
mult = mult + 1; // round up mult
}
// do 32*32->64 bit unsigned multiplication and get high part of result
const __m512i multv = Vec16ui(uint64_t(mult)); // zero-extend mult and broadcast
__m512i t1 = _mm512_mul_epu32(x,multv); // 32x32->64 bit unsigned multiplication of even elements
if (round_down) {
t1 = _mm512_add_epi64(t1,multv); // compensate for rounding error. (x+1)*m replaced by x*m+m to avoid overflow
}
__m512i t2 = _mm512_srli_epi64(t1,32); // high dword of result 0 and 2
__m512i t3 = _mm512_srli_epi64(x,32); // get odd elements into position for multiplication
__m512i t4 = _mm512_mul_epu32(t3,multv); // 32x32->64 bit unsigned multiplication of x[1] and x[3]
if (round_down) {
t4 = _mm512_add_epi64(t4,multv); // compensate for rounding error. (x+1)*m replaced by x*m+m to avoid overflow
}
__m512i t7 = _mm512_mask_mov_epi32(t2, __mmask16(0xAA), t4); // blend two results
Vec16ui q = _mm512_srli_epi32(t7, b); // shift right by b
return q; // no overflow possible
}
// define Vec8ui a / const_uint(d)
template <uint32_t d>
static inline Vec16ui operator / (Vec16ui const & a, Const_uint_t<d>) {
return divide_by_ui<d>(a);
}
// define Vec8ui a / const_int(d)
template <int32_t d>
static inline Vec16ui operator / (Vec16ui const & a, Const_int_t<d>) {
Static_error_check< (d>=0) > Error_dividing_unsigned_by_negative;// Error: dividing unsigned by negative is ambiguous
return divide_by_ui<d>(a); // unsigned divide
}
// vector operator /= : divide
template <uint32_t d>
static inline Vec16ui & operator /= (Vec16ui & a, Const_uint_t<d> b) {
a = a / b;
return a;
}
// vector operator /= : divide
template <int32_t d>
static inline Vec16ui & operator /= (Vec16ui & a, Const_int_t<d> b) {
a = a / b;
return a;
}
/*****************************************************************************
*
* Horizontal scan functions
*
*****************************************************************************/
// Get index to the first element that is true. Return -1 if all are false
static inline int horizontal_find_first(Vec16ib const & x) {
uint32_t b = uint16_t(__mmask16(x));
if (b) {
return bit_scan_forward(b);
}
else {
return -1;
}
}
static inline int horizontal_find_first(Vec8qb const & x) {
uint32_t b = uint8_t(__mmask16(x));
if (b) {
return bit_scan_forward(b);
}
else {
return -1;
}
}
static inline uint32_t horizontal_count(Vec16ib const & x) {
return vml_popcnt(uint32_t(uint16_t(__mmask16(x))));
}
static inline uint32_t horizontal_count(Vec8qb const & x) {
return vml_popcnt(uint32_t(uint16_t(__mmask16(x))));
}
/*****************************************************************************
*
* Boolean <-> bitfield conversion functions
*
*****************************************************************************/
// to_bits: convert boolean vector to integer bitfield
static inline uint8_t to_bits(Vec4ib x) {
__m512i a = _mm512_castsi128_si512(x);
__mmask16 b = _mm512_mask_testn_epi32_mask(0xF, a, a);
return uint8_t(b) ^ 0xF;
}
// to_Vec16c: convert integer bitfield to boolean vector
static inline Vec4ib to_Vec4ib(uint8_t x) {
return _mm512_castsi512_si128(_mm512_maskz_set1_epi32(__mmask16(x), -1));
}
// to_bits: convert boolean vector to integer bitfield
static inline uint8_t to_bits(Vec2qb x) {
__m512i a = _mm512_castsi128_si512(x);
__mmask16 b = _mm512_mask_testn_epi64_mask(0x3, a, a);
return uint8_t(b) ^ 0x3;
}
// to_Vec16c: convert integer bitfield to boolean vector
static inline Vec2qb to_Vec2qb(uint8_t x) {
return _mm512_castsi512_si128(_mm512_maskz_set1_epi64(__mmask16(x), -1LL));
}
// to_bits: convert boolean vector to integer bitfield
static inline uint8_t to_bits(Vec8ib x) {
__m512i a = _mm512_castsi256_si512(x);
__mmask16 b = _mm512_mask_testn_epi32_mask(0xFF, a, a);
return ~ uint8_t(b);
}
// to_Vec16c: convert integer bitfield to boolean vector
static inline Vec8ib to_Vec8ib(uint8_t x) {
return _mm512_castsi512_si256(_mm512_maskz_set1_epi32(__mmask16(x), -1));
}
// to_bits: convert boolean vector to integer bitfield
static inline uint8_t to_bits(Vec4qb x) {
__m512i a = _mm512_castsi256_si512(x);
__mmask16 b = _mm512_mask_testn_epi64_mask(0xF, a, a);
return uint8_t(b) ^ 0xF;
}
// to_Vec16c: convert integer bitfield to boolean vector
static inline Vec4qb to_Vec4qb(uint8_t x) {
return _mm512_castsi512_si256(_mm512_maskz_set1_epi64(__mmask16(x), -1LL));
}
// to_bits: convert to integer bitfield
static inline uint16_t to_bits(Vec16b a) {
return (uint16_t)(__mmask16)a;
}
// to_Vec16b: convert integer bitfield to boolean vector
static inline Vec16b to_Vec16b(uint16_t x) {
return (__mmask16)x;
}
// to_Vec16ib: convert integer bitfield to boolean vector
static inline Vec16ib to_Vec16ib(uint16_t x) {
return to_Vec16b(x);
}
// to_Vec8b: convert integer bitfield to boolean vector
static inline Vec8qb to_Vec8qb(uint8_t x) {
return (__mmask16)x;
}
#ifdef VCL_NAMESPACE
}
#endif
#endif // VECTORI512_H
|