1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
|
/*************************** vectormath_common.h ****************************
* Author: Agner Fog
* Date created: 2014-04-18
* Last modified: 2016-11-25
* Version: 1.25
* Project: vector classes
* Description:
* Header file containing common code for inline version of mathematical functions.
*
* Theory, methods and inspiration based partially on these sources:
* > Moshier, Stephen Lloyd Baluk: Methods and programs for mathematical functions.
* Ellis Horwood, 1989.
* > VDT library developed on CERN by Danilo Piparo, Thomas Hauth and
* Vincenzo Innocente, 2012, https://svnweb.cern.ch/trac/vdt
* > Cephes math library by Stephen L. Moshier 1992,
* http://www.netlib.org/cephes/
*
* Calculation methods:
* Some functions are using Pad approximations f(x) = P(x)/Q(x)
* Most single precision functions are using Taylor expansions
*
* For detailed instructions, see VectorClass.pdf
*
* (c) Copyright 2014-2016 GNU General Public License http://www.gnu.org/licenses
******************************************************************************/
#ifndef VECTORMATH_COMMON_H
#define VECTORMATH_COMMON_H 1
#ifdef VECTORMATH_LIB_H
#error conflicting header files: vectormath_lib.h for external math functions, other vectormath_xxx.h for inline math functions
#endif
#include <math.h>
#include "vectorclass.h"
/******************************************************************************
define mathematical constants
******************************************************************************/
#define VM_PI 3.14159265358979323846 // pi
#define VM_PI_2 1.57079632679489661923 // pi / 2
#define VM_PI_4 0.785398163397448309616 // pi / 4
#define VM_SQRT2 1.41421356237309504880 // sqrt(2)
#define VM_LOG2E 1.44269504088896340736 // 1/log(2)
#define VM_LOG10E 0.434294481903251827651 // 1/log(10)
#define VM_LOG210 3.321928094887362347808 // log2(10)
#define VM_LN2 0.693147180559945309417 // log(2)
#define VM_LN10 2.30258509299404568402 // log(10)
#define VM_SMALLEST_NORMAL 2.2250738585072014E-308 // smallest normal number, double
#define VM_SMALLEST_NORMALF 1.17549435E-38f // smallest normal number, float
#ifdef VCL_NAMESPACE
namespace VCL_NAMESPACE {
#endif
/******************************************************************************
templates for producing infinite and nan in desired vector type
******************************************************************************/
template <class VTYPE>
static inline VTYPE infinite_vec();
template <>
inline Vec2d infinite_vec<Vec2d>() {
return infinite2d();
}
template <>
inline Vec4f infinite_vec<Vec4f>() {
return infinite4f();
}
#if MAX_VECTOR_SIZE >= 256
template <>
inline Vec4d infinite_vec<Vec4d>() {
return infinite4d();
}
template <>
inline Vec8f infinite_vec<Vec8f>() {
return infinite8f();
}
#endif // MAX_VECTOR_SIZE >= 256
#if MAX_VECTOR_SIZE >= 512
template <>
inline Vec8d infinite_vec<Vec8d>() {
return infinite8d();
}
template <>
inline Vec16f infinite_vec<Vec16f>() {
return infinite16f();
}
#endif // MAX_VECTOR_SIZE >= 512
// template for producing quiet NAN
template <class VTYPE>
static inline VTYPE nan_vec(int n = 0x100);
template <>
inline Vec2d nan_vec<Vec2d>(int n) {
return nan2d(n);
}
template <>
inline Vec4f nan_vec<Vec4f>(int n) {
return nan4f(n);
}
#if MAX_VECTOR_SIZE >= 256
template <>
inline Vec4d nan_vec<Vec4d>(int n) {
return nan4d(n);
}
template <>
inline Vec8f nan_vec<Vec8f>(int n) {
return nan8f(n);
}
#endif // MAX_VECTOR_SIZE >= 256
#if MAX_VECTOR_SIZE >= 512
template <>
inline Vec8d nan_vec<Vec8d>(int n) {
return nan8d(n);
}
template <>
inline Vec16f nan_vec<Vec16f>(int n) {
return nan16f(n);
}
#endif // MAX_VECTOR_SIZE >= 512
// Define NAN trace values
#define NAN_LOG 0x101 // logarithm for x<0
#define NAN_POW 0x102 // negative number raised to non-integer power
#define NAN_HYP 0x104 // acosh for x<1 and atanh for abs(x)>1
/******************************************************************************
templates for polynomials
Using Estrin's scheme to make shorter dependency chains and use FMA, starting
longest dependency chains first.
******************************************************************************/
// template <typedef VECTYPE, typedef CTYPE>
template <class VTYPE, class CTYPE>
static inline VTYPE polynomial_2(VTYPE const & x, CTYPE c0, CTYPE c1, CTYPE c2) {
// calculates polynomial c2*x^2 + c1*x + c0
// VTYPE may be a vector type, CTYPE is a scalar type
VTYPE x2 = x * x;
//return = x2 * c2 + (x * c1 + c0);
return mul_add(x2, c2, mul_add(x, c1, c0));
}
template<class VTYPE, class CTYPE>
static inline VTYPE polynomial_3(VTYPE const & x, CTYPE c0, CTYPE c1, CTYPE c2, CTYPE c3) {
// calculates polynomial c3*x^3 + c2*x^2 + c1*x + c0
// VTYPE may be a vector type, CTYPE is a scalar type
VTYPE x2 = x * x;
//return (c2 + c3*x)*x2 + (c1*x + c0);
return mul_add(mul_add(c3, x, c2), x2, mul_add(c1, x, c0));
}
template<class VTYPE, class CTYPE>
static inline VTYPE polynomial_4(VTYPE const & x, CTYPE c0, CTYPE c1, CTYPE c2, CTYPE c3, CTYPE c4) {
// calculates polynomial c4*x^4 + c3*x^3 + c2*x^2 + c1*x + c0
// VTYPE may be a vector type, CTYPE is a scalar type
VTYPE x2 = x * x;
VTYPE x4 = x2 * x2;
//return (c2+c3*x)*x2 + ((c0+c1*x) + c4*x4);
return mul_add(mul_add(c3, x, c2), x2, mul_add(c1, x, c0) + c4*x4);
}
template<class VTYPE, class CTYPE>
static inline VTYPE polynomial_4n(VTYPE const & x, CTYPE c0, CTYPE c1, CTYPE c2, CTYPE c3) {
// calculates polynomial 1*x^4 + c3*x^3 + c2*x^2 + c1*x + c0
// VTYPE may be a vector type, CTYPE is a scalar type
VTYPE x2 = x * x;
VTYPE x4 = x2 * x2;
//return (c2+c3*x)*x2 + ((c0+c1*x) + x4);
return mul_add(mul_add(c3, x, c2), x2, mul_add(c1, x, c0) + x4);
}
template<class VTYPE, class CTYPE>
static inline VTYPE polynomial_5(VTYPE const & x, CTYPE c0, CTYPE c1, CTYPE c2, CTYPE c3, CTYPE c4, CTYPE c5) {
// calculates polynomial c5*x^5 + c4*x^4 + c3*x^3 + c2*x^2 + c1*x + c0
// VTYPE may be a vector type, CTYPE is a scalar type
VTYPE x2 = x * x;
VTYPE x4 = x2 * x2;
//return (c2+c3*x)*x2 + ((c4+c5*x)*x4 + (c0+c1*x));
return mul_add(mul_add(c3, x, c2), x2, mul_add(mul_add(c5, x, c4), x4, mul_add(c1, x, c0)));
}
template<class VTYPE, class CTYPE>
static inline VTYPE polynomial_5n(VTYPE const & x, CTYPE c0, CTYPE c1, CTYPE c2, CTYPE c3, CTYPE c4) {
// calculates polynomial 1*x^5 + c4*x^4 + c3*x^3 + c2*x^2 + c1*x + c0
// VTYPE may be a vector type, CTYPE is a scalar type
VTYPE x2 = x * x;
VTYPE x4 = x2 * x2;
//return (c2+c3*x)*x2 + ((c4+x)*x4 + (c0+c1*x));
return mul_add(mul_add(c3, x, c2), x2, mul_add(c4 + x, x4, mul_add(c1, x, c0)));
}
template<class VTYPE, class CTYPE>
static inline VTYPE polynomial_6(VTYPE const & x, CTYPE c0, CTYPE c1, CTYPE c2, CTYPE c3, CTYPE c4, CTYPE c5, CTYPE c6) {
// calculates polynomial c6*x^6 + c5*x^5 + c4*x^4 + c3*x^3 + c2*x^2 + c1*x + c0
// VTYPE may be a vector type, CTYPE is a scalar type
VTYPE x2 = x * x;
VTYPE x4 = x2 * x2;
//return (c4+c5*x+c6*x2)*x4 + ((c2+c3*x)*x2 + (c0+c1*x));
return mul_add(mul_add(c6, x2, mul_add(c5, x, c4)), x4, mul_add(mul_add(c3, x, c2), x2, mul_add(c1, x, c0)));
}
template<class VTYPE, class CTYPE>
static inline VTYPE polynomial_6n(VTYPE const & x, CTYPE c0, CTYPE c1, CTYPE c2, CTYPE c3, CTYPE c4, CTYPE c5) {
// calculates polynomial 1*x^6 + c5*x^5 + c4*x^4 + c3*x^3 + c2*x^2 + c1*x + c0
// VTYPE may be a vector type, CTYPE is a scalar type
VTYPE x2 = x * x;
VTYPE x4 = x2 * x2;
//return (c4+c5*x+x2)*x4 + ((c2+c3*x)*x2 + (c0+c1*x));
return mul_add(mul_add(c5, x, c4 + x2), x4, mul_add(mul_add(c3, x, c2), x2, mul_add(c1, x, c0)));
}
template<class VTYPE, class CTYPE>
static inline VTYPE polynomial_7(VTYPE const & x, CTYPE c0, CTYPE c1, CTYPE c2, CTYPE c3, CTYPE c4, CTYPE c5, CTYPE c6, CTYPE c7) {
// calculates polynomial c7*x^7 + c6*x^6 + c5*x^5 + c4*x^4 + c3*x^3 + c2*x^2 + c1*x + c0
// VTYPE may be a vector type, CTYPE is a scalar type
VTYPE x2 = x * x;
VTYPE x4 = x2 * x2;
//return ((c6+c7*x)*x2 + (c4+c5*x))*x4 + ((c2+c3*x)*x2 + (c0+c1*x));
return mul_add(mul_add(mul_add(c7, x, c6), x2, mul_add(c5, x, c4)), x4, mul_add(mul_add(c3, x, c2), x2, mul_add(c1, x, c0)));
}
template<class VTYPE, class CTYPE>
static inline VTYPE polynomial_8(VTYPE const & x, CTYPE c0, CTYPE c1, CTYPE c2, CTYPE c3, CTYPE c4, CTYPE c5, CTYPE c6, CTYPE c7, CTYPE c8) {
// calculates polynomial c8*x^8 + c7*x^7 + c6*x^6 + c5*x^5 + c4*x^4 + c3*x^3 + c2*x^2 + c1*x + c0
// VTYPE may be a vector type, CTYPE is a scalar type
VTYPE x2 = x * x;
VTYPE x4 = x2 * x2;
VTYPE x8 = x4 * x4;
//return ((c6+c7*x)*x2 + (c4+c5*x))*x4 + (c8*x8 + (c2+c3*x)*x2 + (c0+c1*x));
return mul_add(mul_add(mul_add(c7, x, c6), x2, mul_add(c5, x, c4)), x4,
mul_add(mul_add(c3, x, c2), x2, mul_add(c1, x, c0) + c8*x8));
}
template<class VTYPE, class CTYPE>
static inline VTYPE polynomial_9(VTYPE const & x, CTYPE c0, CTYPE c1, CTYPE c2, CTYPE c3, CTYPE c4, CTYPE c5, CTYPE c6, CTYPE c7, CTYPE c8, CTYPE c9) {
// calculates polynomial c9*x^9 + c8*x^8 + c7*x^7 + c6*x^6 + c5*x^5 + c4*x^4 + c3*x^3 + c2*x^2 + c1*x + c0
// VTYPE may be a vector type, CTYPE is a scalar type
VTYPE x2 = x * x;
VTYPE x4 = x2 * x2;
VTYPE x8 = x4 * x4;
//return (((c6+c7*x)*x2 + (c4+c5*x))*x4 + (c8+c9*x)*x8) + ((c2+c3*x)*x2 + (c0+c1*x));
return mul_add(mul_add(c9, x, c8), x8, mul_add(
mul_add(mul_add(c7, x, c6), x2, mul_add(c5, x, c4)), x4,
mul_add(mul_add(c3, x, c2), x2, mul_add(c1, x, c0))));
}
template<class VTYPE, class CTYPE>
static inline VTYPE polynomial_10(VTYPE const & x, CTYPE c0, CTYPE c1, CTYPE c2, CTYPE c3, CTYPE c4, CTYPE c5, CTYPE c6, CTYPE c7, CTYPE c8, CTYPE c9, CTYPE c10) {
// calculates polynomial c10*x^10 + c9*x^9 + c8*x^8 + c7*x^7 + c6*x^6 + c5*x^5 + c4*x^4 + c3*x^3 + c2*x^2 + c1*x + c0
// VTYPE may be a vector type, CTYPE is a scalar type
VTYPE x2 = x * x;
VTYPE x4 = x2 * x2;
VTYPE x8 = x4 * x4;
//return (((c6+c7*x)*x2 + (c4+c5*x))*x4 + (c8+c9*x+c10*x2)*x8) + ((c2+c3*x)*x2 + (c0+c1*x));
return mul_add(mul_add(x2, c10, mul_add(c9, x, c8)), x8,
mul_add(mul_add(mul_add(c7, x, c6), x2, mul_add(c5, x, c4)), x4,
mul_add(mul_add(c3, x, c2), x2, mul_add(c1, x, c0))));
}
template<class VTYPE, class CTYPE>
static inline VTYPE polynomial_13(VTYPE const & x, CTYPE c0, CTYPE c1, CTYPE c2, CTYPE c3, CTYPE c4, CTYPE c5, CTYPE c6, CTYPE c7, CTYPE c8, CTYPE c9, CTYPE c10, CTYPE c11, CTYPE c12, CTYPE c13) {
// calculates polynomial c13*x^13 + c12*x^12 + ... + c1*x + c0
// VTYPE may be a vector type, CTYPE is a scalar type
VTYPE x2 = x * x;
VTYPE x4 = x2 * x2;
VTYPE x8 = x4 * x4;
return mul_add(
mul_add(
mul_add(c13, x, c12), x4,
mul_add(mul_add(c11, x, c10), x2, mul_add(c9, x, c8))), x8,
mul_add(
mul_add(mul_add(c7, x, c6), x2, mul_add(c5, x, c4)), x4,
mul_add(mul_add(c3, x, c2), x2, mul_add(c1, x, c0))));
}
template<class VTYPE, class CTYPE>
static inline VTYPE polynomial_13m(VTYPE const & x, CTYPE c2, CTYPE c3, CTYPE c4, CTYPE c5, CTYPE c6, CTYPE c7, CTYPE c8, CTYPE c9, CTYPE c10, CTYPE c11, CTYPE c12, CTYPE c13) {
// calculates polynomial c13*x^13 + c12*x^12 + ... + x + 0
// VTYPE may be a vector type, CTYPE is a scalar type
VTYPE x2 = x * x;
VTYPE x4 = x2 * x2;
VTYPE x8 = x4 * x4;
// return ((c8+c9*x) + (c10+c11*x)*x2 + (c12+c13*x)*x4)*x8 + (((c6+c7*x)*x2 + (c4+c5*x))*x4 + ((c2+c3*x)*x2 + x));
return mul_add(
mul_add(mul_add(c13, x, c12), x4, mul_add(mul_add(c11, x, c10), x2, mul_add(c9, x, c8))), x8,
mul_add(mul_add(mul_add(c7, x, c6), x2, mul_add(c5, x, c4)), x4, mul_add(mul_add(c3, x, c2), x2, x)));
}
#ifdef VCL_NAMESPACE
}
#endif
#endif
|