File: vectormath_exp.h

package info (click to toggle)
iqtree 1.6.12%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 12,140 kB
  • sloc: cpp: 111,752; ansic: 53,619; python: 242; sh: 195; makefile: 52
file content (2160 lines) | stat: -rwxr-xr-x 73,831 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
/****************************  vectormath_exp.h   ******************************
* Author:        Agner Fog
* Date created:  2014-04-18
* Last modified: 2016-12-26
* Version:       1.26
* Project:       vector classes
* Description:
* Header file containing inline vector functions of logarithms, exponential 
* and power functions:
* exp         exponential function
* exp2        exponential function base 2
* exp10       exponential function base 10
* exmp1       exponential function minus 1
* log         natural logarithm
* log2        logarithm base 2
* log10       logarithm base 10
* log1p       natural logarithm of 1+x
* cbrt        cube root
* pow         raise vector elements to power
* pow_ratio   raise vector elements to rational power
*
* Theory, methods and inspiration based partially on these sources:
* > Moshier, Stephen Lloyd Baluk: Methods and programs for mathematical functions.
*   Ellis Horwood, 1989.
* > VDT library developed on CERN by Danilo Piparo, Thomas Hauth and
*   Vincenzo Innocente, 2012, https://svnweb.cern.ch/trac/vdt
* > Cephes math library by Stephen L. Moshier 1992,
*   http://www.netlib.org/cephes/
*
* For detailed instructions, see vectormath_common.h and VectorClass.pdf
*
* (c) Copyright 2014-2016 GNU General Public License http://www.gnu.org/licenses
******************************************************************************/

#ifndef VECTORMATH_EXP_H
#define VECTORMATH_EXP_H  1 

#include "vectormath_common.h"  

#ifdef VCL_NAMESPACE
namespace VCL_NAMESPACE {
#endif

/******************************************************************************
*                 Exponential functions
******************************************************************************/

// Helper functions, used internally:

// This function calculates pow(2,n) where n must be an integer. Does not check for overflow or underflow
static inline Vec2d vm_pow2n (Vec2d const & n) {
    const double pow2_52 = 4503599627370496.0;   // 2^52
    const double bias = 1023.0;                  // bias in exponent
    Vec2d a = n + (bias + pow2_52);              // put n + bias in least significant bits
    Vec2q b = reinterpret_i(a);                  // bit-cast to integer
    Vec2q c = b << 52;                           // shift left 52 places to get into exponent field
    Vec2d d = reinterpret_d(c);                  // bit-cast back to double
    return d;
}

static inline Vec4f vm_pow2n (Vec4f const & n) {
    const float pow2_23 =  8388608.0;            // 2^23
    const float bias = 127.0;                    // bias in exponent
    Vec4f a = n + (bias + pow2_23);              // put n + bias in least significant bits
    Vec4i b = reinterpret_i(a);                  // bit-cast to integer
    Vec4i c = b << 23;                           // shift left 23 places to get into exponent field
    Vec4f d = reinterpret_f(c);                  // bit-cast back to float
    return d;
}

#if MAX_VECTOR_SIZE >= 256

static inline Vec4d vm_pow2n (Vec4d const & n) {
    const double pow2_52 = 4503599627370496.0;   // 2^52
    const double bias = 1023.0;                  // bias in exponent
    Vec4d a = n + (bias + pow2_52);              // put n + bias in least significant bits
    Vec4q b = reinterpret_i(a);                  // bit-cast to integer
    Vec4q c = b << 52;                           // shift left 52 places to get value into exponent field
    Vec4d d = reinterpret_d(c);                  // bit-cast back to double
    return d;
}

static inline Vec8f vm_pow2n (Vec8f const & n) {
    const float pow2_23 =  8388608.0;            // 2^23
    const float bias = 127.0;                    // bias in exponent
    Vec8f a = n + (bias + pow2_23);              // put n + bias in least significant bits
    Vec8i b = reinterpret_i(a);                  // bit-cast to integer
    Vec8i c = b << 23;                           // shift left 23 places to get into exponent field
    Vec8f d = reinterpret_f(c);                  // bit-cast back to float
    return d;
}

#endif // MAX_VECTOR_SIZE >= 256

#if MAX_VECTOR_SIZE >= 512

static inline Vec8d vm_pow2n (Vec8d const & n) {
#ifdef __AVX512ER__
    return _mm512_exp2a23_round_pd(n, _MM_FROUND_NO_EXC); // this is exact only for integral n
#else
    const double pow2_52 = 4503599627370496.0;   // 2^52
    const double bias = 1023.0;                  // bias in exponent
    Vec8d a = n + (bias + pow2_52);              // put n + bias in least significant bits
    Vec8q b = Vec8q(reinterpret_i(a));           // bit-cast to integer
    Vec8q c = b << 52;                           // shift left 52 places to get value into exponent field
    Vec8d d = Vec8d(reinterpret_d(c));           // bit-cast back to double
    return d;
#endif
}

static inline Vec16f vm_pow2n (Vec16f const & n) {
#ifdef __AVX512ER__
    return _mm512_exp2a23_round_ps(n, _MM_FROUND_NO_EXC);
#else
    const float pow2_23 =  8388608.0;            // 2^23
    const float bias = 127.0;                    // bias in exponent
    Vec16f a = n + (bias + pow2_23);             // put n + bias in least significant bits
    Vec16i b = Vec16i(reinterpret_i(a));         // bit-cast to integer
    Vec16i c = b << 23;                          // shift left 23 places to get into exponent field
    Vec16f d = Vec16f(reinterpret_f(c));         // bit-cast back to float
    return d;
#endif
}

#endif // MAX_VECTOR_SIZE >= 512


// Template for exp function, double precision
// The limit of abs(x) is defined by max_x below
// This function does not produce denormals
// Template parameters:
// VTYPE:  double vector type
// BVTYPE: boolean vector type
// M1: 0 for exp, 1 for expm1
// BA: 0 for exp, 1 for 0.5*exp, 2 for pow(2,x), 10 for pow(10,x)

#if 1  // choose method

// Taylor expansion
template<class VTYPE, class BVTYPE, int M1, int BA> 
static inline VTYPE exp_d(VTYPE const & initial_x) {    

    // Taylor coefficients, 1/n!
    // Not using minimax approximation because we prioritize precision close to x = 0
    const double p2  = 1./2.;
    const double p3  = 1./6.;
    const double p4  = 1./24.;
    const double p5  = 1./120.; 
    const double p6  = 1./720.; 
    const double p7  = 1./5040.; 
    const double p8  = 1./40320.; 
    const double p9  = 1./362880.; 
    const double p10 = 1./3628800.; 
    const double p11 = 1./39916800.; 
    const double p12 = 1./479001600.; 
    const double p13 = 1./6227020800.; 

    // maximum abs(x), value depends on BA, defined below
    // The lower limit of x is slightly more restrictive than the upper limit.
    // We are specifying the lower limit, except for BA = 1 because it is not used for negative x
    double max_x;

    // data vectors
    VTYPE  x, r, z, n2;
    BVTYPE inrange;                              // boolean vector

    if (BA <= 1) { // exp(x)
        max_x = BA == 0 ? 708.39 : 709.7; // lower limit for 0.5*exp(x) is -707.6, but we are using 0.5*exp(x) only for positive x in hyperbolic functions
        const double ln2d_hi = 0.693145751953125;
        const double ln2d_lo = 1.42860682030941723212E-6;
        x  = initial_x;
        r  = round(initial_x*VM_LOG2E);
        // subtraction in two steps for higher precision
        x = nmul_add(r, ln2d_hi, x);             //  x -= r * ln2d_hi;
        x = nmul_add(r, ln2d_lo, x);             //  x -= r * ln2d_lo;
    }
    else if (BA == 2) { // pow(2,x)
        max_x = 1022.0;
        r  = round(initial_x);
        x  = initial_x - r;
        x *= VM_LN2;
    }
    else if (BA == 10) { // pow(10,x)
        max_x = 307.65;
        const double log10_2_hi = 0.30102999554947019;     // log10(2) in two parts
        const double log10_2_lo = 1.1451100899212592E-10;
        x  = initial_x;
        r  = round(initial_x*(VM_LOG2E*VM_LN10));
        // subtraction in two steps for higher precision
        x  = nmul_add(r, log10_2_hi, x);         //  x -= r * log10_2_hi;
        x  = nmul_add(r, log10_2_lo, x);         //  x -= r * log10_2_lo;
        x *= VM_LN10;
    }
    else  {  // undefined value of BA
        return 0.;
    }

    z = polynomial_13m(x, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13);

    if (BA == 1) r--;  // 0.5 * exp(x)

    // multiply by power of 2 
    n2 = vm_pow2n(r);

    if (M1 == 0) {
        // exp
        z = (z + 1.0) * n2;
    }
    else {
        // expm1
        z = mul_add(z, n2, n2 - 1.0);            // z = z * n2 + (n2 - 1.0);
    }

    // check for overflow
    inrange  = abs(initial_x) < max_x;
    // check for INF and NAN
    inrange &= is_finite(initial_x);

    if (horizontal_and(inrange)) {
        // fast normal path
        return z;
    }
    else {
        // overflow, underflow and NAN
        r = select(sign_bit(initial_x), 0.-M1, infinite_vec<VTYPE>()); // value in case of +/- overflow or INF
        z = select(inrange, z, r);                                     // +/- underflow
        z = select(is_nan(initial_x), initial_x, z);                   // NAN goes through
        return z;
    }
}

#else

// Pade expansion uses less code and fewer registers, but is slower
template<class VTYPE, class BVTYPE, int M1, int BA> 
static inline VTYPE exp_d(VTYPE const & initial_x) {

    // define constants
    const double ln2p1   = 0.693145751953125;
    const double ln2p2   = 1.42860682030941723212E-6;
    const double log2e   = VM_LOG2E;
    const double max_exp = 708.39;
    // coefficients of pade polynomials
    const double P0exp = 9.99999999999999999910E-1;
    const double P1exp = 3.02994407707441961300E-2;
    const double P2exp = 1.26177193074810590878E-4;
    const double Q0exp = 2.00000000000000000009E0;
    const double Q1exp = 2.27265548208155028766E-1;
    const double Q2exp = 2.52448340349684104192E-3;
    const double Q3exp = 3.00198505138664455042E-6;

    VTYPE  x, r, xx, px, qx, y, n2;              // data vectors
    BVTYPE inrange;                              // boolean vector

    x = initial_x;
    r = round(initial_x*log2e);

    // subtraction in one step would gives loss of precision
    x -= r * ln2p1;
    x -= r * ln2p2;

    xx = x * x;

    // px = x * P(x^2).
    px = polynomial_2(xx, P0exp, P1exp, P2exp) * x;

    // Evaluate Q(x^2).
    qx = polynomial_3(xx, Q0exp, Q1exp, Q2exp, Q3exp);

    // e^x = 1 + 2*P(x^2)/( Q(x^2) - P(x^2) )
    y = (2.0 * px) / (qx - px);

    // Get 2^n in double.
    // n  = round_to_int64_limited(r);
    // n2 = exp2(n);
    n2 = vm_pow2n(r);  // this is faster

    if (M1 == 0) {
        // exp
        y = (y + 1.0) * n2;
    }
    else {
        // expm1
        y = y * n2 + (n2 - 1.0);
    }

    // overflow
    inrange  = abs(initial_x) < max_exp;
    // check for INF and NAN
    inrange &= is_finite(initial_x);

    if (horizontal_and(inrange)) {
        // fast normal path
        return y;
    }
    else {
        // overflow, underflow and NAN
        r = select(sign_bit(initial_x), 0.-M1, infinite_vec<VTYPE>()); // value in case of overflow or INF
        y = select(inrange, y, r);                                     // +/- overflow
        y = select(is_nan(initial_x), initial_x, y);                   // NAN goes through
        return y;
    }
}
#endif

// instances of exp_d template
static inline Vec2d exp(Vec2d const & x) {
    return exp_d<Vec2d, Vec2db, 0, 0>(x);
}

static inline Vec2d expm1(Vec2d const & x) {
    return exp_d<Vec2d, Vec2db, 1, 0>(x);
}

static inline Vec2d exp2(Vec2d const & x) {
    return exp_d<Vec2d, Vec2db, 0, 2>(x);
}

static inline Vec2d exp10(Vec2d const & x) {
    return exp_d<Vec2d, Vec2db, 0, 10>(x);
}

#if MAX_VECTOR_SIZE >= 256

static inline Vec4d exp(Vec4d const & x) {
    return exp_d<Vec4d, Vec4db, 0, 0>(x);
}

static inline Vec4d expm1(Vec4d const & x) {
    return exp_d<Vec4d, Vec4db, 1, 0>(x);
}

static inline Vec4d exp2(Vec4d const & x) {
    return exp_d<Vec4d, Vec4db, 0, 2>(x);
}

static inline Vec4d exp10(Vec4d const & x) {
    return exp_d<Vec4d, Vec4db, 0, 10>(x);
}

#endif // MAX_VECTOR_SIZE >= 256

#if MAX_VECTOR_SIZE >= 512

static inline Vec8d exp(Vec8d const & x) {
    return exp_d<Vec8d, Vec8db, 0, 0>(x);
}

static inline Vec8d expm1(Vec8d const & x) {
    return exp_d<Vec8d, Vec8db, 1, 0>(x);
}

static inline Vec8d exp2(Vec8d const & x) {
    return exp_d<Vec8d, Vec8db, 0, 2>(x);
}

static inline Vec8d exp10(Vec8d const & x) {
    return exp_d<Vec8d, Vec8db, 0, 10>(x);
}

#endif // MAX_VECTOR_SIZE >= 512

// Template for exp function, single precision
// The limit of abs(x) is defined by max_x below
// This function does not produce denormals
// Template parameters:
// VTYPE:  float vector type
// BVTYPE: boolean vector type
// M1: 0 for exp, 1 for expm1
// BA: 0 for exp, 1 for 0.5*exp, 2 for pow(2,x), 10 for pow(10,x)

template<class VTYPE, class BVTYPE, int M1, int BA> 
static inline VTYPE exp_f(VTYPE const & initial_x) {

    // Taylor coefficients
    const float P0expf   =  1.f/2.f;
    const float P1expf   =  1.f/6.f;
    const float P2expf   =  1.f/24.f;
    const float P3expf   =  1.f/120.f; 
    const float P4expf   =  1.f/720.f; 
    const float P5expf   =  1.f/5040.f; 

    VTYPE  x, r, x2, z, n2;                      // data vectors        
    BVTYPE inrange;                              // boolean vector

    // maximum abs(x), value depends on BA, defined below
    // The lower limit of x is slightly more restrictive than the upper limit.
    // We are specifying the lower limit, except for BA = 1 because it is not used for negative x
    float max_x;

    if (BA <= 1) { // exp(x)
        const float ln2f_hi  =  0.693359375f;
        const float ln2f_lo  = -2.12194440e-4f;
        max_x = (BA == 0) ? 87.3f : 89.0f;

        x = initial_x;
        r = round(initial_x*float(VM_LOG2E));
        x = nmul_add(r, VTYPE(ln2f_hi), x);      //  x -= r * ln2f_hi;
        x = nmul_add(r, VTYPE(ln2f_lo), x);      //  x -= r * ln2f_lo;
    }
    else if (BA == 2) {                          // pow(2,x)
        max_x = 126.f;
        r = round(initial_x);
        x = initial_x - r;
        x = x * (float)VM_LN2;
    }
    else if (BA == 10) {                         // pow(10,x)
        max_x = 37.9f;
        const float log10_2_hi = 0.301025391f;   // log10(2) in two parts
        const float log10_2_lo = 4.60503907E-6f;
        x = initial_x;
        r = round(initial_x*float(VM_LOG2E*VM_LN10));
        x = nmul_add(r, VTYPE(log10_2_hi), x);   //  x -= r * log10_2_hi;
        x = nmul_add(r, VTYPE(log10_2_lo), x);   //  x -= r * log10_2_lo;
        x = x * (float)VM_LN10;
    }
    else  {  // undefined value of BA
        return 0.;
    }

    x2 = x * x;
    z = polynomial_5(x,P0expf,P1expf,P2expf,P3expf,P4expf,P5expf);    
    z = mul_add(z, x2, x);                       // z *= x2;  z += x;

    if (BA == 1) r--;                            // 0.5 * exp(x)

    // multiply by power of 2 
    n2 = vm_pow2n(r);

    if (M1 == 0) {
        // exp
        z = (z + 1.0f) * n2;
    }
    else {
        // expm1
        z = mul_add(z, n2, n2 - 1.0f);           //  z = z * n2 + (n2 - 1.0f);
    }

    // check for overflow
    inrange  = abs(initial_x) < max_x;
    // check for INF and NAN
    inrange &= is_finite(initial_x);

    if (horizontal_and(inrange)) {
        // fast normal path
        return z;
    }
    else {
        // overflow, underflow and NAN
        r = select(sign_bit(initial_x), 0.f-M1, infinite_vec<VTYPE>()); // value in case of +/- overflow or INF
        z = select(inrange, z, r);                                      // +/- underflow
        z = select(is_nan(initial_x), initial_x, z);                    // NAN goes through
        return z;
    }
}
#if defined(__AVX512ER__) && MAX_VECTOR_SIZE >= 512
// forward declarations of fast 512 bit versions
static Vec16f exp(Vec16f const & x);
static Vec16f exp2(Vec16f const & x);
static Vec16f exp10(Vec16f const & x);
#endif

// instances of exp_f template
static inline Vec4f exp(Vec4f const & x) {
#if defined(__AVX512ER__) && MAX_VECTOR_SIZE >= 512 // use faster 512 bit version
    return _mm512_castps512_ps128(exp(Vec16f(_mm512_castps128_ps512(x))));
#else
    return exp_f<Vec4f, Vec4fb, 0, 0>(x);
#endif
}

static inline Vec4f expm1(Vec4f const & x) {
    return exp_f<Vec4f, Vec4fb, 1, 0>(x);
}

static inline Vec4f exp2(Vec4f const & x) {
#if defined(__AVX512ER__) && MAX_VECTOR_SIZE >= 512 // use faster 512 bit version
    return _mm512_castps512_ps128(exp2(Vec16f(_mm512_castps128_ps512(x))));
#else
    return exp_f<Vec4f, Vec4fb, 0, 2>(x);
#endif
}

static inline Vec4f exp10(Vec4f const & x) {
#if defined(__AVX512ER__) && MAX_VECTOR_SIZE >= 512 // use faster 512 bit version
    return _mm512_castps512_ps128(exp10(Vec16f(_mm512_castps128_ps512(x))));
#else
    return exp_f<Vec4f, Vec4fb, 0, 10>(x);
#endif
}

#if MAX_VECTOR_SIZE >= 256

static inline Vec8f exp(Vec8f const & x) {
#if defined(__AVX512ER__) && MAX_VECTOR_SIZE >= 512 // use faster 512 bit version
    return _mm512_castps512_ps256(exp(Vec16f(_mm512_castps256_ps512(x))));
#else
    return exp_f<Vec8f, Vec8fb, 0, 0>(x);
#endif
}

static inline Vec8f expm1(Vec8f const & x) {
    return exp_f<Vec8f, Vec8fb, 1, 0>(x);
}

static inline Vec8f exp2(Vec8f const & x) {
#if defined(__AVX512ER__) && MAX_VECTOR_SIZE >= 512 // use faster 512 bit version
    return _mm512_castps512_ps256(exp2(Vec16f(_mm512_castps256_ps512(x))));
#else
    return exp_f<Vec8f, Vec8fb, 0, 2>(x);
#endif
}

static inline Vec8f exp10(Vec8f const & x) {
#if defined(__AVX512ER__) && MAX_VECTOR_SIZE >= 512 // use faster 512 bit version
    return _mm512_castps512_ps256(exp10(Vec16f(_mm512_castps256_ps512(x))));
#else
    return exp_f<Vec8f, Vec8fb, 0, 10>(x);
#endif
}

#endif // MAX_VECTOR_SIZE >= 256

#if MAX_VECTOR_SIZE >= 512

static inline Vec16f exp(Vec16f const & x) {
#ifdef __AVX512ER__  // AVX512ER instruction set includes fast exponential function
#ifdef VCL_FASTEXP
    // very fast, but less precise for large x:
    return _mm512_exp2a23_round_ps(x*float(VM_LOG2E), _MM_FROUND_NO_EXC);
#else
    // best precision, also for large x:
    const Vec16f log2e = float(VM_LOG2E);
    const float ln2f_hi = 0.693359375f;
    const float ln2f_lo = -2.12194440e-4f;
    Vec16f x1 = x, r, y;
    r = round(x1*log2e);
    x1 = nmul_add(r, Vec16f(ln2f_hi), x1);      //  x -= r * ln2f_hi;
    x1 = nmul_add(r, Vec16f(ln2f_lo), x1);      //  x -= r * ln2f_lo;
    x1 = x1 * log2e;
    y = _mm512_exp2a23_round_ps(r, _MM_FROUND_NO_EXC);
    // y = vm_pow2n(r);
    return y * _mm512_exp2a23_round_ps(x1, _MM_FROUND_NO_EXC);
#endif // VCL_FASTEXP
#else  // no AVX512ER, use above template
    return exp_f<Vec16f, Vec16fb, 0, 0>(x);
#endif
} 

static inline Vec16f expm1(Vec16f const & x) {
    return exp_f<Vec16f, Vec16fb, 1, 0>(x);
}

static inline Vec16f exp2(Vec16f const & x) {
#ifdef __AVX512ER__
    return Vec16f(_mm512_exp2a23_round_ps(x, _MM_FROUND_NO_EXC));
#else
    return exp_f<Vec16f, Vec16fb, 0, 2>(x);
#endif
}

static inline Vec16f exp10(Vec16f const & x) {
#ifdef __AVX512ER__  // AVX512ER instruction set includes fast exponential function
#ifdef VCL_FASTEXP
    // very fast, but less precise for large x:
    return _mm512_exp2a23_round_ps(x*float(VM_LOG210), _MM_FROUND_NO_EXC);
#else
    // best precision, also for large x:
    const float log10_2_hi = 0.301025391f;   // log10(2) in two parts
    const float log10_2_lo = 4.60503907E-6f;
    Vec16f x1 = x, r, y;
    Vec16f log210 = float(VM_LOG210);
    r = round(x1*log210);
    x1 = nmul_add(r, Vec16f(log10_2_hi), x1);      //  x -= r * log10_2_hi
    x1 = nmul_add(r, Vec16f(log10_2_lo), x1);      //  x -= r * log10_2_lo
    x1 = x1 * log210;
    // y = vm_pow2n(r);
    y = _mm512_exp2a23_round_ps(r, _MM_FROUND_NO_EXC);
    return y * _mm512_exp2a23_round_ps(x1, _MM_FROUND_NO_EXC);
#endif // VCL_FASTEXP
#else  // no AVX512ER, use above template
    return exp_f<Vec16f, Vec16fb, 0, 10>(x);
#endif
}

#endif // MAX_VECTOR_SIZE >= 512


/******************************************************************************
*                 Logarithm functions
******************************************************************************/

// Helper functions: fraction_2(x) = fraction(x)*0.5

// Modified fraction function:
// Extract the fraction part of a floating point number, and divide by 2
// The fraction function is defined in vectorf128.h etc.
// fraction_2(x) = fraction(x)*0.5
// This version gives half the fraction without extra delay
// Does not work for x = 0
static inline Vec4f fraction_2(Vec4f const & a) {
    Vec4ui t1 = _mm_castps_si128(a);   // reinterpret as 32-bit integer
    Vec4ui t2 = Vec4ui((t1 & 0x007FFFFF) | 0x3F000000); // set exponent to 0 + bias
    return _mm_castsi128_ps(t2);
}

static inline Vec2d fraction_2(Vec2d const & a) {
    Vec2uq t1 = _mm_castpd_si128(a);   // reinterpret as 64-bit integer
    Vec2uq t2 = Vec2uq((t1 & 0x000FFFFFFFFFFFFFll) | 0x3FE0000000000000ll); // set exponent to 0 + bias
    return _mm_castsi128_pd(t2);
}

#if MAX_VECTOR_SIZE >= 256

static inline Vec8f fraction_2(Vec8f const & a) {
#if defined (VECTORI256_H) && VECTORI256_H > 2  // 256 bit integer vectors are available, AVX2
    Vec8ui t1 = _mm256_castps_si256(a);   // reinterpret as 32-bit integer
    Vec8ui t2 = (t1 & 0x007FFFFF) | 0x3F000000; // set exponent to 0 + bias
    return _mm256_castsi256_ps(t2);
#else
    return Vec8f(fraction_2(a.get_low()), fraction_2(a.get_high()));
#endif
}

static inline Vec4d fraction_2(Vec4d const & a) {
#if VECTORI256_H > 1  // AVX2
    Vec4uq t1 = _mm256_castpd_si256(a);   // reinterpret as 64-bit integer
    Vec4uq t2 = Vec4uq((t1 & 0x000FFFFFFFFFFFFFll) | 0x3FE0000000000000ll); // set exponent to 0 + bias
    return _mm256_castsi256_pd(t2);
#else
    return Vec4d(fraction_2(a.get_low()), fraction_2(a.get_high()));
#endif
}

#endif // MAX_VECTOR_SIZE >= 256

#if MAX_VECTOR_SIZE >= 512

static inline Vec16f fraction_2(Vec16f const & a) {
#if INSTRSET >= 9                    // 512 bit integer vectors are available, AVX512
    return _mm512_getmant_ps(a, _MM_MANT_NORM_p5_1, _MM_MANT_SIGN_zero);
    //return Vec16f(_mm512_getmant_ps(a, _MM_MANT_NORM_1_2, _MM_MANT_SIGN_zero)) * 0.5f;
#else
    return Vec16f(fraction_2(a.get_low()), fraction_2(a.get_high()));
#endif
}

static inline Vec8d fraction_2(Vec8d const & a) {
#if INSTRSET >= 9                    // 512 bit integer vectors are available, AVX512
    return _mm512_getmant_pd(a, _MM_MANT_NORM_p5_1, _MM_MANT_SIGN_zero);
    //return Vec8d(_mm512_getmant_pd(a, _MM_MANT_NORM_1_2, _MM_MANT_SIGN_zero)) * 0.5;
#else
    return Vec8d(fraction_2(a.get_low()), fraction_2(a.get_high()));
#endif
}

#endif // MAX_VECTOR_SIZE >= 512


// Helper functions: exponent_f(x) = exponent(x) as floating point number

union vm_ufi {
    float f;
    uint32_t i;
};

union vm_udi {
    double d;
    uint64_t i;
};

// extract exponent of a positive number x as a floating point number
//Note: the AVX512 version return -inf for x=0, the non-AVX versions return a negative number
static inline Vec4f exponent_f(Vec4f const & x) {
#ifdef __AVX512VL__                              // AVX512VL
    // note: this version returns -inf for x=0
    return _mm_getexp_ps(x);
#else
    const float pow2_23 =  8388608.0f;           // 2^23
    const float bias = 127.f;                    // bias in exponent
    const vm_ufi upow2_23 = {pow2_23};
    Vec4ui a = reinterpret_i(x);                 // bit-cast x to integer
    Vec4ui b = a >> 23;                          // shift down exponent to low bits
    Vec4ui c = b | Vec4ui(upow2_23.i);           // insert new exponent
    Vec4f  d = reinterpret_f(c);                 // bit-cast back to double
    Vec4f  e = d - (pow2_23 + bias);             // subtract magic number and bias
    return e;
#endif
}

static inline Vec2d exponent_f(Vec2d const & x) {
#ifdef __AVX512VL__                              // AVX512VL
    // note: this version returns -inf for x=0
    return _mm_getexp_pd(x);
#else
    const double pow2_52 = 4503599627370496.0;   // 2^52
    const double bias = 1023.0;                  // bias in exponent
    const vm_udi upow2_52 = {pow2_52};

    Vec2uq a = reinterpret_i(x);                 // bit-cast x to integer
    Vec2uq b = a >> 52;                          // shift down exponent to low bits
    Vec2uq c = b | Vec2uq(upow2_52.i);           // insert new exponent
    Vec2d  d = reinterpret_d(c);                 // bit-cast back to double
    Vec2d  e = d - (pow2_52 + bias);             // subtract magic number and bias
    return e;
#endif
}

#if MAX_VECTOR_SIZE >= 256

static inline Vec8f exponent_f(Vec8f const & x) {
#ifdef __AVX512VL__                              // AVX512VL
    // note: this version returns -inf for x=0
    return _mm256_getexp_ps(x);
#else
    const float pow2_23 =  8388608.0f;           // 2^23
    const float bias = 127.f;                    // bias in exponent
    const vm_ufi upow2_23 = {pow2_23};
    Vec8ui a = reinterpret_i(x);                 // bit-cast x to integer
    Vec8ui b = a >> 23;                          // shift down exponent to low bits
    Vec8ui c = b | Vec8ui(upow2_23.i);           // insert new exponent
    Vec8f  d = reinterpret_f(c);                 // bit-cast back to double
    Vec8f  e = d - (pow2_23 + bias);             // subtract magic number and bias
    return e;
#endif
} 

// extract exponent of a positive number x as a floating point number
static inline Vec4d exponent_f(Vec4d const & x) {
#ifdef __AVX512VL__                              // AVX512VL
    return _mm256_getexp_pd(x);
#else
    const double pow2_52 = 4503599627370496.0;   // 2^52
    const double bias = 1023.0;                  // bias in exponent
    const vm_udi upow2_52 = {pow2_52};

    Vec4uq a = reinterpret_i(x);                 // bit-cast x to integer
    Vec4uq b = a >> 52;                          // shift down exponent to low bits
    Vec4uq c = b | Vec4uq(upow2_52.i);           // insert new exponent
    Vec4d  d = reinterpret_d(c);                 // bit-cast back to double
    Vec4d  e = d - (pow2_52 + bias);             // subtract magic number and bias
    return e;
#endif
}

#endif // MAX_VECTOR_SIZE >= 256

#if MAX_VECTOR_SIZE >= 512

static inline Vec16f exponent_f(Vec16f const & x) {
#if INSTRSET >= 9                                // AVX512
    // note: this version returns -inf for x=0
    return _mm512_getexp_ps(x);
#else
    return Vec16f(exponent_f(x.get_low()), exponent_f(x.get_high()));
#endif
} 

// extract exponent of a positive number x as a floating point number
static inline Vec8d exponent_f(Vec8d const & x) {
#if INSTRSET >= 9                                // AVX512
    // note: this returns -inf for x=0
    return _mm512_getexp_pd(x);
#else
    return Vec8d(exponent_f(x.get_low()), exponent_f(x.get_high()));
#endif
}

#endif // MAX_VECTOR_SIZE >= 512


// log function, double precision
// template parameters:
// VTYPE:  f.p. vector type
// BVTYPE: boolean vector type
// M1: 0 for log, 1 for log1p
template<class VTYPE, class BVTYPE, int M1> 
static inline VTYPE log_d(VTYPE const & initial_x) {

    // define constants
    const double ln2_hi =  0.693359375;
    const double ln2_lo = -2.121944400546905827679E-4;
    const double P0log  =  7.70838733755885391666E0;
    const double P1log  =  1.79368678507819816313E1;
    const double P2log  =  1.44989225341610930846E1;
    const double P3log  =  4.70579119878881725854E0;
    const double P4log  =  4.97494994976747001425E-1;
    const double P5log  =  1.01875663804580931796E-4;
    const double Q0log  =  2.31251620126765340583E1;
    const double Q1log  =  7.11544750618563894466E1;
    const double Q2log  =  8.29875266912776603211E1;
    const double Q3log  =  4.52279145837532221105E1;
    const double Q4log  =  1.12873587189167450590E1;

    VTYPE  x1, x, x2, px, qx, res, fe;           // data vectors
    BVTYPE blend, overflow, underflow;           // boolean vectors

    if (M1 == 0) {
        x1 = initial_x;                          // log(x)
    }
    else {
        x1 = initial_x + 1.0;                    // log(x+1)
    }
    // separate mantissa from exponent 
    // VTYPE x  = fraction(x1) * 0.5;
    x  = fraction_2(x1);
    fe = exponent_f(x1);

    blend = x > VM_SQRT2*0.5;
    x  = if_add(!blend, x, x);                   // conditional add
    fe = if_add(blend, fe, 1.);                  // conditional add

    if (M1 == 0) {
        // log(x). Expand around 1.0
        x -= 1.0;
    }
    else {
        // log(x+1). Avoid loss of precision when adding 1 and later subtracting 1 if exponent = 0
        x = select(fe==0., initial_x, x - 1.0);
    }

    // rational form 
    px  = polynomial_5 (x, P0log, P1log, P2log, P3log, P4log, P5log);
    x2  = x * x;
    px *= x * x2;
    qx  = polynomial_5n(x, Q0log, Q1log, Q2log, Q3log, Q4log);
    res = px / qx ;

    // add exponent
    res  = mul_add(fe, ln2_lo, res);             // res += fe * ln2_lo;
    res += nmul_add(x2, 0.5, x);                 // res += x  - 0.5 * x2;
    res  = mul_add(fe, ln2_hi, res);             // res += fe * ln2_hi;

    overflow  = !is_finite(x1);
    underflow = x1 < VM_SMALLEST_NORMAL;         // denormals not supported by this functions

    if (!horizontal_or(overflow | underflow)) {
        // normal path
        return res;
    }
    else {
        // overflow and underflow
        res = select(underflow, nan_vec<VTYPE>(NAN_LOG), res);                   // x1  < 0 gives NAN
        res = select(x1 == 0. || is_subnormal(x1), -infinite_vec<VTYPE>(), res); // x1 == 0 gives -INF
        res = select(overflow,  x1, res);                                        // INF or NAN goes through
        res = select(is_inf(x1)&sign_bit(x1), nan_vec<VTYPE>(NAN_LOG), res);     // -INF gives NAN
        return res;
    }
}


static inline Vec2d log(Vec2d const & x) {
    return log_d<Vec2d, Vec2db, 0>(x);
}

static inline Vec2d log1p(Vec2d const & x) {
    return log_d<Vec2d, Vec2db, 1>(x);
}

static inline Vec2d log2(Vec2d const & x) {
    return VM_LOG2E * log_d<Vec2d, Vec2db, 0>(x);
}

static inline Vec2d log10(Vec2d const & x) {
    return VM_LOG10E * log_d<Vec2d, Vec2db, 0>(x);
}

#if MAX_VECTOR_SIZE >= 256

static inline Vec4d log(Vec4d const & x) {
    return log_d<Vec4d, Vec4db, 0>(x);
}

static inline Vec4d log1p(Vec4d const & x) {
    return log_d<Vec4d, Vec4db, 1>(x);
}

static inline Vec4d log2(Vec4d const & x) {
    return VM_LOG2E * log_d<Vec4d, Vec4db, 0>(x);
}

static inline Vec4d log10(Vec4d const & x) {
    return VM_LOG10E * log_d<Vec4d, Vec4db, 0>(x);
}

#endif // MAX_VECTOR_SIZE >= 256

#if MAX_VECTOR_SIZE >= 512

static inline Vec8d log(Vec8d const & x) {
    return log_d<Vec8d, Vec8db, 0>(x);
}

static inline Vec8d log1p(Vec8d const & x) {
    return log_d<Vec8d, Vec8db, 1>(x);
}

static inline Vec8d log2(Vec8d const & x) {
    return VM_LOG2E * log_d<Vec8d, Vec8db, 0>(x);
}

static inline Vec8d log10(Vec8d const & x) {
    return VM_LOG10E * log_d<Vec8d, Vec8db, 0>(x);
}

#endif // MAX_VECTOR_SIZE >= 512



// log function, single precision
// template parameters:
// VTYPE:  f.p. vector type
// ITYPE:  integer vector type with same element size
// BVTYPE: boolean vector type
// BTYPEI: boolean vector type for ITYPE
// M1: 0 for log, 1 for log1p
template<class VTYPE, class ITYPE, class BVTYPE, class BTYPEI, int M1> 
static inline VTYPE log_f(VTYPE const & initial_x) {

    // define constants
    const float ln2f_hi =  0.693359375f;
    const float ln2f_lo = -2.12194440E-4f;
    const float P0logf  =  3.3333331174E-1f;
    const float P1logf  = -2.4999993993E-1f;
    const float P2logf  =  2.0000714765E-1f;
    const float P3logf  = -1.6668057665E-1f;
    const float P4logf  =  1.4249322787E-1f;
    const float P5logf  = -1.2420140846E-1f;
    const float P6logf  =  1.1676998740E-1f;
    const float P7logf  = -1.1514610310E-1f;
    const float P8logf  =  7.0376836292E-2f;

    VTYPE  x1, x, res, x2, fe;                   // data vectors
    ITYPE  e;                                    // integer vector
    BVTYPE blend, overflow, underflow;           // boolean vectors

    if (M1 == 0) {
        x1 = initial_x;                          // log(x)
    }
    else {
        x1 = initial_x + 1.0f;                   // log(x+1)
    }

    // separate mantissa from exponent 
    x = fraction_2(x1);
    e = exponent(x1);

    blend = x > float(VM_SQRT2*0.5);
    x  = if_add(!blend, x, x);                   // conditional add
    e  = if_add(BTYPEI(blend),  e, ITYPE(1));    // conditional add
    fe = to_float(e);

    if (M1 == 0) {
        // log(x). Expand around 1.0
        x -= 1.0f;
    }
    else {
        // log(x+1). Avoid loss of precision when adding 1 and later subtracting 1 if exponent = 0
        x = select(BVTYPE(e==0), initial_x, x - 1.0f);
    }

    // Taylor expansion
    res = polynomial_8(x, P0logf, P1logf, P2logf, P3logf, P4logf, P5logf, P6logf, P7logf, P8logf);
    x2  = x*x;
    res *= x2*x;

    // add exponent
    res  = mul_add(fe, ln2f_lo, res);            // res += ln2f_lo  * fe;
    res += nmul_add(x2, 0.5f, x);                // res += x - 0.5f * x2;
    res  = mul_add(fe, ln2f_hi, res);            // res += ln2f_hi  * fe;

    overflow  = !is_finite(x1);
    underflow = x1 < VM_SMALLEST_NORMALF;        // denormals not supported by this functions

    if (!horizontal_or(overflow | underflow)) {
        // normal path
        return res;
    }
    else {
        // overflow and underflow
        res = select(underflow, nan_vec<VTYPE>(NAN_LOG), res);                    // x1 < 0 gives NAN
        res = select(x1 == 0.f || is_subnormal(x1), -infinite_vec<VTYPE>(), res); // x1 == 0 or denormal gives -INF
        res = select(overflow,  x1, res);                                         // INF or NAN goes through
        res = select(is_inf(x1)&sign_bit(x1), nan_vec<VTYPE>(NAN_LOG), res);      // -INF gives NAN
        return res;
    }
}

static inline Vec4f log(Vec4f const & x) {
    return log_f<Vec4f, Vec4i, Vec4fb, Vec4ib, 0>(x);
}

static inline Vec4f log1p(Vec4f const & x) {
    return log_f<Vec4f, Vec4i, Vec4fb, Vec4ib, 1>(x);
}

static inline Vec4f log2(Vec4f const & x) {
    return float(VM_LOG2E) * log_f<Vec4f, Vec4i, Vec4fb, Vec4ib, 0>(x);
}

static inline Vec4f log10(Vec4f const & x) {
    return float(VM_LOG10E) * log_f<Vec4f, Vec4i, Vec4fb, Vec4ib, 0>(x);
}

#if MAX_VECTOR_SIZE >= 256

static inline Vec8f log(Vec8f const & x) {
    return log_f<Vec8f, Vec8i, Vec8fb, Vec8ib, 0>(x);
}

static inline Vec8f log1p(Vec8f const & x) {
    return log_f<Vec8f, Vec8i, Vec8fb, Vec8ib, 1>(x);
}

static inline Vec8f log2(Vec8f const & x) {
    return float(VM_LOG2E) * log_f<Vec8f, Vec8i, Vec8fb, Vec8ib, 0>(x);
}

static inline Vec8f log10(Vec8f const & x) {
    return float(VM_LOG10E) * log_f<Vec8f, Vec8i, Vec8fb, Vec8ib, 0>(x);
}

#endif // MAX_VECTOR_SIZE >= 256

#if MAX_VECTOR_SIZE >= 512

static inline Vec16f log(Vec16f const & x) {
    return log_f<Vec16f, Vec16i, Vec16fb, Vec16ib, 0>(x);
}

static inline Vec16f log1p(Vec16f const & x) {
    return log_f<Vec16f, Vec16i, Vec16fb, Vec16ib, 1>(x);
}

static inline Vec16f log2(Vec16f const & x) {
    return float(VM_LOG2E) * log_f<Vec16f, Vec16i, Vec16fb, Vec16ib, 0>(x);
}

static inline Vec16f log10(Vec16f const & x) {
    return float(VM_LOG10E) * log_f<Vec16f, Vec16i, Vec16fb, Vec16ib, 0>(x);
}

#endif // MAX_VECTOR_SIZE >= 512


/******************************************************************************
*           Cube root and reciprocal cube root
******************************************************************************/

// cube root template, double precision
// template parameters:
// VTYPE:  f.p. vector type
// ITYPE:  uint32_t integer vector type with same total number of bits
// ITYPE2: uint64_t integer vector type with same total number of bits
// BVTYPE: boolean vector type
// CR:     -1 for reciprocal cube root, 1 for cube root, 2 for cube root squared
template<class VTYPE, class ITYPE, class ITYPE2, class BVTYPE, int CR> 
static inline VTYPE cbrt_d(VTYPE const & x) {
    const int iter = 7;     // iteration count of x^(-1/3) loop
    int i;
    VTYPE  xa, xa3, a, a2;
    ITYPE  m1, m2;
    BVTYPE underflow;
    ITYPE2 q1(0x5540000000000000ULL);            // exponent bias
    ITYPE2 q2(0x0005555500000000ULL);            // exponent multiplier for 1/3
    ITYPE2 q3(0x0010000000000000ULL);            // denormal limit
    const double one_third  = 1./3.;
    const double four_third = 4./3.;

    xa  = abs(x);
    xa3 = one_third*xa;

    // multiply exponent by -1/3
    m1 = reinterpret_i(xa);
    m2 = ITYPE(q1) - (m1 >> 20) * ITYPE(q2);
    a  = reinterpret_d(m2);
    underflow = BVTYPE(ITYPE2(m1) < q3);          // true if denormal or zero

    // Newton Raphson iteration
    for (i = 0; i < iter-1; i++) {
        a2 = a * a;
        a = nmul_add(xa3, a2*a2, four_third*a);  // a = four_third*a - xa3*a2*a2;
    }
    // last iteration with better precision
    a2 = a * a;    
    a = mul_add(one_third, nmul_add(xa, a2*a2, a), a); // a = a + one_third*(a - xa*a2*a2);

    if (CR == -1) {  // reciprocal cube root
        // (note: gives wrong sign when input is INF)
        // generate INF if underflow
        a = select(underflow, infinite_vec<VTYPE>(), a);
        // get sign
        a = sign_combine(a, x);
    }
    else if (CR == 1) {     // cube root
        a = a * a * x;
        // generate 0 if underflow
        a = select(underflow, 0., a);
    }
    else if (CR == 2) {     // cube root squared
        // (note: gives wrong sign when input is INF)
        a = a * xa;
        // generate 0 if underflow
        a = select(underflow, 0., a);
    }
    return a;
}

// template instances for cbrt and reciprocal_cbrt

// cube root
static inline Vec2d cbrt(Vec2d const & x) {
    return cbrt_d<Vec2d, Vec4ui, Vec2uq, Vec2db, 1> (x);
}

// reciprocal cube root
static inline Vec2d reciprocal_cbrt(Vec2d const & x) {
    return cbrt_d<Vec2d, Vec4ui, Vec2uq, Vec2db, -1> (x);
}

// square cube root
static inline Vec2d square_cbrt(Vec2d const & x) {
    return cbrt_d<Vec2d, Vec4ui, Vec2uq, Vec2db, 2> (x);
}

#if MAX_VECTOR_SIZE >= 256

static inline Vec4d cbrt(Vec4d const & x) {
    return cbrt_d<Vec4d, Vec8ui, Vec4uq, Vec4db, 1> (x);
}

static inline Vec4d reciprocal_cbrt(Vec4d const & x) {
    return cbrt_d<Vec4d, Vec8ui, Vec4uq, Vec4db, -1> (x);
}

static inline Vec4d square_cbrt(Vec4d const & x) {
    return cbrt_d<Vec4d, Vec8ui, Vec4uq, Vec4db, 2> (x);
}

#endif // MAX_VECTOR_SIZE >= 256

#if MAX_VECTOR_SIZE >= 512

static inline Vec8d cbrt(Vec8d const & x) {
    return cbrt_d<Vec8d, Vec16ui, Vec8uq, Vec8db, 1> (x);
}

static inline Vec8d reciprocal_cbrt(Vec8d const & x) {
    return cbrt_d<Vec8d, Vec16ui, Vec8uq, Vec8db, -1> (x);
}

static inline Vec8d square_cbrt(Vec8d const & x) {
    return cbrt_d<Vec8d, Vec16ui, Vec8uq, Vec8db, 2> (x);
}

#endif // MAX_VECTOR_SIZE >= 512


// cube root template, single precision
// template parameters:
// VTYPE:  f.p. vector type
// ITYPE:  uint32_t integer vector type
// BVTYPE: boolean vector type
// CR:     -1 for reciprocal cube root, 1 for cube root, 2 for cube root squared
template<class VTYPE, class ITYPE, class BVTYPE, int CR> 
static inline VTYPE cbrt_f(VTYPE const & x) {

    const int iter = 6;                          // iteration count of x^(-1/3) loop
    int i;
    VTYPE  xa, xa3, a, a2;
    ITYPE  m1, m2;
    BVTYPE underflow;
    ITYPE  q1(0x54800000U);                      // exponent bias
    ITYPE  q2(0x002AAAAAU);                      // exponent multiplier for 1/3
    ITYPE  q3(0x00800000U);                      // denormal limit
    const  float one_third  = float(1./3.);
    const  float four_third = float(4./3.);

    xa  = abs(x);
    xa3 = one_third*xa;

    // multiply exponent by -1/3
    m1 = reinterpret_i(xa);
    m2 = q1 - (m1 >> 23) * q2;
    a  = reinterpret_f(m2);

    underflow = BVTYPE(m1 < q3);                  // true if denormal or zero

    // Newton Raphson iteration
    for (i = 0; i < iter-1; i++) {
        a2 = a*a;        
        a = nmul_add(xa3, a2*a2, four_third*a);  // a = four_third*a - xa3*a2*a2;
    }
    // last iteration with better precision
    a2 = a*a;    
    a = mul_add(one_third, nmul_add(xa, a2*a2, a), a); //a = a + one_third*(a - xa*a2*a2);

    if (CR == -1) {                              // reciprocal cube root
        // generate INF if underflow
        a = select(underflow, infinite_vec<VTYPE>(), a);
        // get sign
        a = sign_combine(a, x);
    }
    else if (CR == 1) {                          // cube root
        a = a * a * x;
        // generate 0 if underflow
        a = select(underflow, 0., a);
    }
    else if (CR == 2) {                          // cube root squared
        a = a * xa;
        // generate 0 if underflow
        a = select(underflow, 0., a);
    }
    return a;
}

// template instances for cbrt and reciprocal_cbrt

// cube root
static inline Vec4f cbrt(Vec4f const & x) {
    return cbrt_f<Vec4f, Vec4ui, Vec4fb, 1> (x);
}

// reciprocal cube root
static inline Vec4f reciprocal_cbrt(Vec4f const & x) {
    return cbrt_f<Vec4f, Vec4ui, Vec4fb, -1> (x);
}

// square cube root
static inline Vec4f square_cbrt(Vec4f const & x) {
    return cbrt_f<Vec4f, Vec4ui, Vec4fb, 2> (x);
}

#if MAX_VECTOR_SIZE >= 256

static inline Vec8f cbrt(Vec8f const & x) {
    return cbrt_f<Vec8f, Vec8ui, Vec8fb, 1> (x);
}

static inline Vec8f reciprocal_cbrt(Vec8f const & x) {
    return cbrt_f<Vec8f, Vec8ui, Vec8fb, -1> (x);
}

static inline Vec8f square_cbrt(Vec8f const & x) {
    return cbrt_f<Vec8f, Vec8ui, Vec8fb, 2> (x);
}

#endif // MAX_VECTOR_SIZE >= 256

#if MAX_VECTOR_SIZE >= 512

static inline Vec16f cbrt(Vec16f const & x) {
    return cbrt_f<Vec16f, Vec16ui, Vec16fb, 1> (x);
}

static inline Vec16f reciprocal_cbrt(Vec16f const & x) {
    return cbrt_f<Vec16f, Vec16ui, Vec16fb, -1> (x);
}

static inline Vec16f square_cbrt(Vec16f const & x) {
    return cbrt_f<Vec16f, Vec16ui, Vec16fb, 2> (x);
}

// Helper function for power function: insert special values of pow(x,y) when x=0:
// y<0 -> inf, y=0 -> 1, y>0 -> 0, y=nan -> nan
static inline Vec8d wm_pow_case_x0(Vec8db const & xiszero, Vec8d const & y, Vec8d const & z) {
#if INSTRSET >= 9
    const __m512i table = Vec8q(0x85858A00);
    return _mm512_mask_fixupimm_pd(z, xiszero, y, table, 0);
#else
    return select(xiszero, select(y < 0., infinite_vec<Vec8d>(), select(y == 0., Vec8d(1.), Vec8d(0.))), z);
#endif
}

#endif // MAX_VECTOR_SIZE >= 512

#if MAX_VECTOR_SIZE >= 256

static inline Vec4d wm_pow_case_x0(Vec4db const & xiszero, Vec4d const & y, Vec4d const & z) {
//#if defined __AVX512VL__ && defined ?
//   const __m256i table = Vec4q(0x85858A00);
//    return _mm256_mask_fixupimm_pd(z, xiszero, y, table, 0);
//#else
    return select(xiszero, select(y < 0., infinite_vec<Vec4d>(), select(y == 0., Vec4d(1.), Vec4d(0.))), z);
//#endif
}
#endif

static inline Vec2d wm_pow_case_x0(Vec2db const & xiszero, Vec2d const & y, Vec2d const & z) {
//#if defined __AVX512VL__ && defined ?
//    const __m128i table = Vec2q(0x85858A00);
//    return _mm_mask_fixupimm_pd(z, xiszero, y, table, 0);
//#else
    return select(xiszero, select(y < 0., infinite_vec<Vec2d>(), select(y == 0., Vec2d(1.), Vec2d(0.))), z);
//#endif
}

// ****************************************************************************
//                pow template, double precision
// ****************************************************************************
// Calculate x to the power of y.

// Precision is important here because rounding errors get multiplied by y.
// The logarithm is calculated with extra precision, and the exponent is 
// calculated separately.
// The logarithm is calculated by Pad\E9 approximation with 6'th degree 
// polynomials. A 7'th degree would be preferred for best precision by high y.
// The alternative method: log(x) = z + z^3*R(z)/S(z), where z = 2(x-1)/(x+1)
// did not give better precision.

// Template parameters:
// VTYPE:  data vector type
// ITYPE:  signed integer vector type
// BVTYPE: boolean vector type
template <class VTYPE, class ITYPE, class BVTYPE>
static inline VTYPE pow_template_d(VTYPE const & x0, VTYPE const & y) {

    // define constants
    const double ln2d_hi = 0.693145751953125;           // log(2) in extra precision, high bits
    const double ln2d_lo = 1.42860682030941723212E-6;   // low bits of log(2)
    const double log2e   = VM_LOG2E;                    // 1/log(2)
    const double pow2_52 = 4503599627370496.0;          // 2^52

    // coefficients for Pad\E9 polynomials
    const double P0logl =  2.0039553499201281259648E1;
    const double P1logl =  5.7112963590585538103336E1;
    const double P2logl =  6.0949667980987787057556E1;
    const double P3logl =  2.9911919328553073277375E1;
    const double P4logl =  6.5787325942061044846969E0;
    const double P5logl =  4.9854102823193375972212E-1;
    const double P6logl =  4.5270000862445199635215E-5;
    const double Q0logl =  6.0118660497603843919306E1;
    const double Q1logl =  2.1642788614495947685003E2;
    const double Q2logl =  3.0909872225312059774938E2;
    const double Q3logl =  2.2176239823732856465394E2;
    const double Q4logl =  8.3047565967967209469434E1;
    const double Q5logl =  1.5062909083469192043167E1;

    // Taylor coefficients for exp function, 1/n!
    const double p2  = 1./2.;
    const double p3  = 1./6.;
    const double p4  = 1./24.;
    const double p5  = 1./120.; 
    const double p6  = 1./720.; 
    const double p7  = 1./5040.; 
    const double p8  = 1./40320.; 
    const double p9  = 1./362880.; 
    const double p10 = 1./3628800.; 
    const double p11 = 1./39916800.; 
    const double p12 = 1./479001600.; 
    const double p13 = 1./6227020800.; 

    // data vectors
    VTYPE x, x1, x2;
    VTYPE px, qx, ef, yr, v, z, z1;
    VTYPE lg, lg1, lg2;
    VTYPE lgerr, x2err;
    VTYPE e1, e2, e3, ee;
    // integer vectors
    ITYPE ei, ej, yodd;
    // boolean vectors
    BVTYPE blend, xzero, xnegative;
    BVTYPE overflow, underflow, xfinite, yfinite, efinite;

    // remove sign
    x1 = abs(x0);

    // Separate mantissa from exponent 
    // This gives the mantissa * 0.5
    x  = fraction_2(x1);

    // reduce range of x = +/- sqrt(2)/2
    blend = x > VM_SQRT2*0.5;
    x  = if_add(!blend, x, x);                   // conditional add

    // Pade approximation
    // Higher precision than in log function. Still higher precision wanted
    x -= 1.0;
    x2 = x*x;
    px = polynomial_6  (x, P0logl, P1logl, P2logl, P3logl, P4logl, P5logl, P6logl);
    px *= x * x2;
    qx = polynomial_6n (x, Q0logl, Q1logl, Q2logl, Q3logl, Q4logl, Q5logl);
    lg1 = px / qx;
 
    // extract exponent
    ef = exponent_f(x1);
    ef = if_add(blend, ef, 1.);                  // conditional add

    // multiply exponent by y
    // nearest integer e1 goes into exponent of result, remainder yr is added to log
    e1 = round(ef * y);
    yr = mul_sub_x(ef, y, e1);                   // calculate remainder yr. precision very important here

    // add initial terms to Pade expansion
    lg = nmul_add(0.5, x2, x) + lg1;             // lg = (x - 0.5 * x2) + lg1;
    // calculate rounding errors in lg
    // rounding error in multiplication 0.5*x*x
    x2err = mul_sub_x(0.5*x, x, 0.5*x2);
    // rounding error in additions and subtractions
    lgerr = mul_add(0.5, x2, lg - x) - lg1;      // lgerr = ((lg - x) + 0.5 * x2) - lg1;

    // extract something for the exponent
    e2 = round(lg * y * VM_LOG2E);
    // subtract this from lg, with extra precision
    v = mul_sub_x(lg, y, e2 * ln2d_hi);
    v = nmul_add(e2, ln2d_lo, v);                // v -= e2 * ln2d_lo;

    // add remainder from ef * y
    v = mul_add(yr, VM_LN2, v);                  // v += yr * VM_LN2;

    // correct for previous rounding errors
    v = nmul_add(lgerr + x2err, y, v);           // v -= (lgerr + x2err) * y;

    // exp function

    // extract something for the exponent if possible
    x = v;
    e3 = round(x*log2e);
    // high precision multiplication not needed here because abs(e3) <= 1
    x = nmul_add(e3, VM_LN2, x);                 // x -= e3 * VM_LN2;

    z = polynomial_13m(x, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13);
    z = z + 1.0;

    // contributions to exponent
    ee = e1 + e2 + e3;
    ei = round_to_int64_limited(ee);
    // biased exponent of result:
    ej = ei + (ITYPE(reinterpret_i(z)) >> 52);
    // check exponent for overflow and underflow
    overflow  = BVTYPE(ej >= 0x07FF) | (ee >  3000.);
    underflow = BVTYPE(ej <= 0x0000) | (ee < -3000.);

    // add exponent by integer addition
    z = reinterpret_d(ITYPE(reinterpret_i(z)) + (ei << 52));

    // check for special cases
    xfinite   = is_finite(x0);
    yfinite   = is_finite(y);
    efinite   = is_finite(ee);
    xzero     = is_zero_or_subnormal(x0);
    xnegative = x0  < 0.;

    // check for overflow and underflow
    if (horizontal_or(overflow | underflow)) {
        // handle errors
        z = select(underflow, VTYPE(0.), z);
        z = select(overflow, infinite_vec<VTYPE>(), z);
    }

    // check for x == 0
    z = wm_pow_case_x0(xzero, y, z);
    //z = select(xzero, select(y < 0., infinite_vec<VTYPE>(), select(y == 0., VTYPE(1.), VTYPE(0.))), z);

    // check for x < 0. y must be integer
    if (horizontal_or(xnegative)) {
        // test if y odd
        yodd = ITYPE(reinterpret_i(abs(y) + pow2_52)) << 63;     // convert y to integer and shift bit 0 to position of sign bit
        z1 = z | (x0 & VTYPE(reinterpret_d(yodd)));              // apply sign if y odd
        z1 = select(y == round(y), z1, nan_vec<VTYPE>(NAN_POW)); // NAN if y not integer
        z = select(xnegative, z1, z);
    }

    // check for range errors
    if (horizontal_and(xfinite & yfinite & (efinite | xzero))) {
        // fast return if no special cases
        return z;
    }

    // handle special error cases
    z = select(yfinite & efinite, z, select(x1 == 1., VTYPE(1.), select((x1 > 1.) ^ sign_bit(y), infinite_vec<VTYPE>(), 0.)));
    yodd = ITYPE(reinterpret_i(abs(y) + pow2_52)) << 63; // same as above
    z = select(xfinite, z, select(y == 0., VTYPE(1.), select(y < 0., VTYPE(0.), infinite_vec<VTYPE>() | ( VTYPE(reinterpret_d(yodd)) & x0))));
    z = select(is_nan(x0), select(is_nan(y), x0 | y, x0), select(is_nan(y), y, z));
    return z;
}


//This template is in vectorf128.h to prevent implicit conversion of float y to int when float version is not defined:
//template <typename TT> static Vec2d pow(Vec2d const & a, TT n);

// instantiations of pow_template_d:
template <>
inline Vec2d pow<Vec2d>(Vec2d const & x, Vec2d const & y) {
    return pow_template_d<Vec2d, Vec2q, Vec2db>(x, y);
}

template <>
inline Vec2d pow<double>(Vec2d const & x, double const & y) {
    return pow_template_d<Vec2d, Vec2q, Vec2db>(x, y);
}
template <>
inline Vec2d pow<float>(Vec2d const & x, float const & y) {
    return pow_template_d<Vec2d, Vec2q, Vec2db>(x, (double)y);
}

#if MAX_VECTOR_SIZE >= 256

template <>
inline Vec4d pow<Vec4d>(Vec4d const & x, Vec4d const & y) {
    return pow_template_d<Vec4d, Vec4q, Vec4db>(x, y);
}

template <>
inline Vec4d pow<double>(Vec4d const & x, double const & y) {
    return pow_template_d<Vec4d, Vec4q, Vec4db>(x, y);
}

template <>
inline Vec4d pow<float>(Vec4d const & x, float const & y) {
    return pow_template_d<Vec4d, Vec4q, Vec4db>(x, (double)y);
}

#endif // MAX_VECTOR_SIZE >= 256

#if MAX_VECTOR_SIZE >= 512

template <>
inline Vec8d pow<Vec8d>(Vec8d const & x, Vec8d const & y) {
    return pow_template_d<Vec8d, Vec8q, Vec8db>(x, y);
}

template <>
inline Vec8d pow<double>(Vec8d const & x, double const & y) {
    return pow_template_d<Vec8d, Vec8q, Vec8db>(x, y);
}

template <>
inline Vec8d pow<float>(Vec8d const & x, float const & y) {
    return pow_template_d<Vec8d, Vec8q, Vec8db>(x, (double)y);
}

// Helper function for power function: insert special values of pow(x,y) when x=0:
// y<0 -> inf, y=0 -> 1, y>0 -> 0, y=nan -> nan
static inline Vec16f wm_pow_case_x0(Vec16fb const & xiszero, Vec16f const & y, Vec16f const & z) {
#if INSTRSET >= 9
    const __m512i table = Vec16ui(0x85858A00);
    return _mm512_mask_fixupimm_ps(z, xiszero, y, table, 0);
#else
    return select(xiszero, select(y < 0.f, infinite_vec<Vec16f>(), select(y == 0.f, Vec16f(1.f), Vec16f(0.f))), z);
#endif
}

#endif // MAX_VECTOR_SIZE >= 512

#if MAX_VECTOR_SIZE >= 256
static inline Vec8f wm_pow_case_x0(Vec8fb const & xiszero, Vec8f const & y, Vec8f const & z) {
    return select(xiszero, select(y < 0.f, infinite_vec<Vec8f>(), select(y == 0.f, Vec8f(1.f), Vec8f(0.f))), z);
}
#endif

static inline Vec4f wm_pow_case_x0(Vec4fb const & xiszero, Vec4f const & y, Vec4f const & z) {
    return select(xiszero, select(y < 0.f, infinite_vec<Vec4f>(), select(y == 0.f, Vec4f(1.f), Vec4f(0.f))), z);
}

// ****************************************************************************
//                pow template, single precision
// ****************************************************************************

// Template parameters:
// VTYPE:  data vector type
// ITYPE:  signed integer vector type
// BVTYPE: boolean vector type
// Calculate x to the power of y
template <class VTYPE, class ITYPE, class BVTYPE>
static inline VTYPE pow_template_f(VTYPE const & x0, VTYPE const & y) {

    // define constants
    const float ln2f_hi  =  0.693359375f;
    const float ln2f_lo  = -2.12194440e-4f;
    //const float max_expf =  87.3f;
    const float log2e    =  float(VM_LOG2E);     // 1/log(2)
    const float pow2_23  =  8388608.0f;          // 2^23

    const float P0logf  =  3.3333331174E-1f;
    const float P1logf  = -2.4999993993E-1f;
    const float P2logf  =  2.0000714765E-1f;
    const float P3logf  = -1.6668057665E-1f;
    const float P4logf  =  1.4249322787E-1f;
    const float P5logf  = -1.2420140846E-1f;
    const float P6logf  =  1.1676998740E-1f;
    const float P7logf  = -1.1514610310E-1f;
    const float P8logf  =  7.0376836292E-2f;

    // Taylor coefficients for exp function, 1/n!
    const float p2expf   =  1.f/2.f;
    const float p3expf   =  1.f/6.f;
    const float p4expf   =  1.f/24.f;
    const float p5expf   =  1.f/120.f; 
    const float p6expf   =  1.f/720.f; 
    const float p7expf   =  1.f/5040.f; 

    // data vectors
    VTYPE x, x1, x2;
    VTYPE ef, yr, v, z, z1;
    VTYPE lg, lg1;
    VTYPE lgerr, x2err;
    VTYPE e1, e2, e3, ee;
    // integer vectors
    ITYPE ei, ej, yodd;
    // boolean vectors
    BVTYPE blend, xzero, xnegative;
    BVTYPE overflow, underflow, xfinite, yfinite, efinite;

    // remove sign
    x1 = abs(x0);

    // Separate mantissa from exponent 
    // This gives the mantissa * 0.5
    x  = fraction_2(x1);

    // reduce range of x = +/- sqrt(2)/2
    blend = x > float(VM_SQRT2 * 0.5);
    x  = if_add(!blend, x, x);                   // conditional add

    // Taylor expansion, high precision
    x   -= 1.0f;
    x2   = x * x;
    lg1  = polynomial_8(x, P0logf, P1logf, P2logf, P3logf, P4logf, P5logf, P6logf, P7logf, P8logf);
    lg1 *= x2 * x; 
 
    // extract exponent
    ef = exponent_f(x1);
    ef = if_add(blend, ef, 1.0f);                // conditional add

    // multiply exponent by y
    // nearest integer e1 goes into exponent of result, remainder yr is added to log
    e1 = round(ef * y);
    yr = mul_sub_x(ef, y, e1);                   // calculate remainder yr. precision very important here

    // add initial terms to expansion
    lg = nmul_add(0.5f, x2, x) + lg1;            // lg = (x - 0.5f * x2) + lg1;

    // calculate rounding errors in lg
    // rounding error in multiplication 0.5*x*x
    x2err = mul_sub_x(0.5f*x, x, 0.5f * x2);
    // rounding error in additions and subtractions
    lgerr = mul_add(0.5f, x2, lg - x) - lg1;     // lgerr = ((lg - x) + 0.5f * x2) - lg1;

    // extract something for the exponent
    e2 = round(lg * y * float(VM_LOG2E));
    // subtract this from lg, with extra precision
    v = mul_sub_x(lg, y, e2 * ln2f_hi);
    v = nmul_add(e2, ln2f_lo, v);                // v -= e2 * ln2f_lo;

    // correct for previous rounding errors
    v -= mul_sub(lgerr + x2err, y, yr * float(VM_LN2)); // v -= (lgerr + x2err) * y - yr * float(VM_LN2) ;

    // exp function

    // extract something for the exponent if possible
    x = v;
    e3 = round(x*log2e);
    // high precision multiplication not needed here because abs(e3) <= 1
    x = nmul_add(e3, float(VM_LN2), x);          // x -= e3 * float(VM_LN2);

    // Taylor polynomial
    x2  = x  * x;
    z = polynomial_5(x, p2expf, p3expf, p4expf, p5expf, p6expf, p7expf)*x2 + x + 1.0f;

    // contributions to exponent
    ee = e1 + e2 + e3;
    ei = round_to_int(ee);
    // biased exponent of result:
    ej = ei + (ITYPE(reinterpret_i(z)) >> 23);
    // check exponent for overflow and underflow
    overflow  = BVTYPE(ej >= 0x0FF) | (ee >  300.f);
    underflow = BVTYPE(ej <= 0x000) | (ee < -300.f);

    // add exponent by integer addition
    z = reinterpret_f(ITYPE(reinterpret_i(z)) + (ei << 23)); // the extra 0x10000 is shifted out here

    // check for special cases
    xfinite   = is_finite(x0);
    yfinite   = is_finite(y);
    efinite   = is_finite(ee);

    xzero     = is_zero_or_subnormal(x0);
    xnegative = x0  < 0.f;

    // check for overflow and underflow
    if (horizontal_or(overflow | underflow)) {
        // handle errors
        z = select(underflow, VTYPE(0.f), z);
        z = select(overflow, infinite_vec<VTYPE>(), z);
    }

    // check for x == 0
    z = wm_pow_case_x0(xzero, y, z);
    //z = select(xzero, select(y < 0.f, infinite_vec<VTYPE>(), select(y == 0.f, VTYPE(1.f), VTYPE(0.f))), z);

    // check for x < 0. y must be integer
    if (horizontal_or(xnegative)) {
        // test if y odd
        yodd = ITYPE(reinterpret_i(abs(y) + pow2_23)) << 31;     // convert y to integer and shift bit 0 to position of sign bit
        z1 = z | (x0 & VTYPE(reinterpret_f(yodd)));              // apply sign if y odd
        z1 = select(y == round(y), z1, nan_vec<VTYPE>(NAN_POW)); // NAN if y not integer
        z = select(xnegative, z1, z);
    }

    // check for range errors
    if (horizontal_and(xfinite & yfinite & (efinite | xzero))) {
        // fast return if no special cases
        return z;
    }

    // handle special error cases
    z = select(yfinite & efinite, z, select(x1 == 1.f, VTYPE(1.f), select((x1 > 1.f) ^ sign_bit(y), infinite_vec<VTYPE>(), 0.f)));
    yodd = ITYPE(reinterpret_i(abs(y) + pow2_23)) << 31; // same as above
    z = select(xfinite, z, select(y == 0.f, VTYPE(1.f), select(y < 0.f, VTYPE(0.f), infinite_vec<VTYPE>() | (VTYPE(reinterpret_f(yodd)) & x0))));
    z = select(is_nan(x0), select(is_nan(y), x0 | y, x0), select(is_nan(y), y, z));
    return z;
}

//This template is in vectorf128.h to prevent implicit conversion of float y to int when float version is not defined:
//template <typename TT> static Vec4f pow(Vec4f const & a, TT n);

template <>
inline Vec4f pow<Vec4f>(Vec4f const & x, Vec4f const & y) {
    return pow_template_f<Vec4f, Vec4i, Vec4fb>(x, y);
}

template <>
inline Vec4f pow<float>(Vec4f const & x, float const & y) {
    return pow_template_f<Vec4f, Vec4i, Vec4fb>(x, y);
}

template <>
inline Vec4f pow<double>(Vec4f const & x, double const & y) {
    return pow_template_f<Vec4f, Vec4i, Vec4fb>(x, (float)y);
}

#if MAX_VECTOR_SIZE >= 256

template <>
inline Vec8f pow<Vec8f>(Vec8f const & x, Vec8f const & y) {
    return pow_template_f<Vec8f, Vec8i,  Vec8fb>(x, y);
}

template <>
inline Vec8f pow<float>(Vec8f const & x, float const & y) {
    return pow_template_f<Vec8f, Vec8i,  Vec8fb>(x, y);
}
template <>
inline Vec8f pow<double>(Vec8f const & x, double const & y) {
    return pow_template_f<Vec8f, Vec8i,  Vec8fb>(x, (float)y);
}

#endif // MAX_VECTOR_SIZE >= 256

#if MAX_VECTOR_SIZE >= 512

template <>
inline Vec16f pow<Vec16f>(Vec16f const & x, Vec16f const & y) {
    return pow_template_f<Vec16f, Vec16i,  Vec16fb>(x, y);
}

template <>
inline Vec16f pow<float>(Vec16f const & x, float const & y) {
    return pow_template_f<Vec16f, Vec16i,  Vec16fb>(x, y);
}

template <>
inline Vec16f pow<double>(Vec16f const & x, double const & y) {
    return pow_template_f<Vec16f, Vec16i,  Vec16fb>(x, (float)y);
}

#endif // MAX_VECTOR_SIZE >= 512


// *************************************************************
//             power function with rational exponent
// *************************************************************
// Power function with rational exponent: x^(a/b)
// Template must be defined as class to allow partial template specialization
template <int a, int b>
class Power_rational {
public:
    // overloaded member function for each vector type
    Vec4f pow(Vec4f const & x) {
        Vec4f y = x;
        // negative x allowed when b odd or a even
        // (if a is even then either b is odd or a/b can be reduced, 
        // but we can check a even anyway at no cost to be sure)
        if (a == 0) return 1.f;
        if ((b | ~a) & 1) y = abs(y);
        y = pow(y, float(double(a)/double(b)));
        if (a & b & 1) y = sign_combine(y, x);          // apply sign if a and b both odd
        if ((a ^ b) >= 0) y = select(x == 0.f, 0.f, y); // zero allowed for positive a and b
        return y;
    }
    Vec2d pow(Vec2d const & x) {
        Vec2d y = x;
        if (a == 0) return 1.;
        if ((b | ~a) & 1) y = abs(y);
        y = pow(y, double((long double)a/(long double)b));
        if (a & b & 1) y = sign_combine(y, x);
        if ((a ^ b) >= 0) y = select(x == 0., 0., y);
        return y;
    }
#if MAX_VECTOR_SIZE >= 256
    Vec8f pow(Vec8f const & x) {
        Vec8f y = x;
        if (a == 0) return 1.f;
        if ((b | ~a) & 1) y = abs(y);
        y = pow(y, float(double(a)/double(b)));
        if (a & b & 1) y = sign_combine(y, x);
        if ((a ^ b) >= 0) y = select(x == 0.f, 0.f, y);
        return y;
    }
    Vec4d pow(Vec4d const & x) {
        Vec4d y = x;
        if (a == 0) return 1.;
        if ((b | ~a) & 1) y = abs(y);
        y = pow(y, double((long double)a/(long double)b));
        if (a & b & 1) y = sign_combine(y, x);
        if ((a ^ b) >= 0) y = select(x == 0., 0., y);
        return y;
    }
#endif // MAX_VECTOR_SIZE >= 256
#if MAX_VECTOR_SIZE >= 512
    Vec16f pow(Vec16f const & x) {
        Vec16f y = x;
        if (a == 0) return 1.f;
        if ((b | ~a) & 1) y = abs(y);
        y = pow(y, float(double(a)/double(b)));
        if (a & b & 1) y = sign_combine(y, x);
        if ((a ^ b) >= 0) y = select(x == 0.f, 0.f, y);
        return y;
    }
    Vec8d pow(Vec8d const & x) {
        Vec8d y = x;
        if (a == 0) return 1.;
        if ((b | ~a) & 1) y = abs(y);
        y = pow(y, double((long double)a/(long double)b));
        if (a & b & 1) y = sign_combine(y, x);
        if ((a ^ b) >= 0) y = select(x == 0., 0., y);
        return y;
    }
#endif // MAX_VECTOR_SIZE >= 512
};

// partial specialization for b = 1
template<int a>
class Power_rational<a,1> {
public:
    template<class VTYPE>
    VTYPE pow(VTYPE const & x) {return pow_n<a>(x);}
};

// partial specialization for b = 2
template<int a>
class Power_rational<a,2> {
public:
    template<class VTYPE>
    VTYPE pow(VTYPE const & x) {
        VTYPE y = pow_n<(a > 0 ? a/2 : (a-1)/2)>(x);
        if (a & 1) y *= sqrt(x);
        return y;
    }
};

// full specialization for a = 1, b = 2
template<>
class Power_rational<1,2> {
public:
    template<class VTYPE>
    VTYPE pow(VTYPE const & x) {        
        return sqrt(x);
    }
};

// full specialization for a = -1, b = 2
template<>
class Power_rational<-1,2> {
public:
    template<class VTYPE>
    VTYPE pow(VTYPE const & x) {        
        // (this is faster than iteration method on modern CPUs)
        return VTYPE(1.f) / sqrt(x);
    }
};

// partial specialization for b = 3
template<int a>
class Power_rational<a,3> {
public:
    template<class VTYPE>
    VTYPE pow(VTYPE const & x) {
        VTYPE t;
        switch (a % 3) {
        case -2:
            t = reciprocal_cbrt(x);
            t *= t;
            if (a == -2) return t;
            t = t / pow_n<(-a-2)/3>(x);
            break;
        case -1:
            t = reciprocal_cbrt(x);
            if (a == -1) return t;
            t = t / pow_n<(-a-1)/3>(x);
            break;
        case  0:
            t = pow_n<a/3>(x);
            break;
        case  1:
            t = cbrt(x);
            if (a == 1) return t;
            t = t * pow_n<a/3>(x);
            break;
        case  2:
            t = square_cbrt(x);
            if (a == 2) return t;
            t = t * pow_n<a/3>(x);
            break;
        }
        return t;
    }
};

// partial specialization for b = 4
template<int a>
class Power_rational<a,4> {
public:
    template<class VTYPE>
    VTYPE pow(VTYPE const & x) {
        VTYPE t, s1, s2;
        s1 = sqrt(x);
        if (a & 1) s2 = sqrt(s1);
        switch (a % 4) {
        case -3:
            t = s2 / pow_n<1+(-a)/4>(x);
            break;
        case -2:
            t = s1 / pow_n<1+(-a)/4>(x);
            break;
        case -1:
            if (a != -1) s2 *= pow_n<(-a)/4>(x);
            t = VTYPE(1.f) / s2;
            break;
        case  0: default:
            t = pow_n<a/4>(x);
            break;
        case  1:
            t = s2;
            if (a != 1) t *= pow_n<a/4>(x);
            break;
        case  2:
            t = s1;
            if (a != 2) t *= pow_n<a/4>(x);
            break;
        case  3:
            t = s1 * s2;
            if (a != 3) t *= pow_n<a/4>(x);
            break;
        }
        return t;
    }
};

// partial specialization for b = 6
template<int a>
class Power_rational<a,6> {
public:
    template<class VTYPE>
    VTYPE pow(VTYPE const & x) {
        VTYPE t, s1, s2, s3;
        switch (a % 6) {
        case -5:
            t = reciprocal_cbrt(x);
            t = t * t * sqrt(t);
            if (a != -5) t /= pow_n<(-a)/6>(x);
            break;
        case -4:
            t = reciprocal_cbrt(x);
            t *= t;
            if (a != -4) t /= pow_n<(-a)/6>(x);
            break;
        case -3:
            t = pow_n<a/6>(x);
            t /= sqrt(x);
            break;
        case -2:
            t = reciprocal_cbrt(x);
            if (a != -2) t /= pow_n<(-a)/6>(x);
            break;
        case -1:
            t = sqrt(reciprocal_cbrt(x));
            if (a != -1) t /= pow_n<(-a)/6>(x);
            break;
        case  0: default:
            t = pow_n<a/6>(x);
            break;
        case  1:
            t = sqrt(cbrt(x));
            if (a != 1) t *= pow_n<a/6>(x);
            break;
        case  2:
            t = cbrt(x);
            if (a != 2) t *= pow_n<a/6>(x);
            break;
        case  3:
            t = sqrt(x);
            if (a != 3) t *= pow_n<a/6>(x);
            break;
        case  4:
            t = square_cbrt(x);
            if (a != 4) t *= pow_n<a/6>(x);
            break;
        case  5:
            t = cbrt(x);
            t = t * t * sqrt(t);
            if (a != 5) t *= pow_n<a/6>(x);
            break;
        }
        return t;
    }
};

// partial specialization for b = 8
template<int a>
class Power_rational<a,8> {
public:
    template<class VTYPE>
    VTYPE pow(VTYPE const & x) {
        VTYPE t, s1, s2, s3;
        s1 = sqrt(x);               // x^(1/2)
        if (a & 3) s2 = sqrt(s1);   // x^(1/4)
        if (a & 1) s3 = sqrt(s2);   // x^(1/8)
        switch (a % 8) {
        case -7:
            t = s3 / pow_n<1+(-a)/8>(x);
            break;
        case -6:
            t = s2 / pow_n<1+(-a)/8>(x);
            break;
        case -5:
            t = s3 * (s2 / pow_n<1+(-a)/8>(x));
            break;
        case -4:
            t = s1 / pow_n<1+(-a)/8>(x);
            break;
        case -3:
            t = s3 * (s1 / pow_n<1+(-a)/8>(x));
            break;
        case -2:
            if (a != -2) s2 *= pow_n<(-a)/8>(x);
            t = VTYPE(1.f) / s2;
            break;
        case -1:
            if (a != -1) s3 *= pow_n<(-a)/8>(x);
            t = VTYPE(1.f) / s3;
            break;
        case  0: default:
            t = pow_n<a/8>(x);
            break;
        case  1:
            t = s3;
            if (a != 1) t *= pow_n<a/8>(x);
            break;
        case  2:
            t = s2;
            if (a != 2) t *= pow_n<a/8>(x);
            break;
        case  3:
            t = s2 * s3;
            if (a != 3) t *= pow_n<a/8>(x);
            break;
        case  4:
            t = s1;
            if (a != 4) t *= pow_n<a/8>(x);
            break;
        case  5:
            t = s1 * s3;
            if (a != 5) t *= pow_n<a/8>(x);
            break;
        case  6:
            t = s1 * s2;
            if (a != 6) t *= pow_n<a/8>(x);
            break;
        case  7:
            t = s2 * s3;
            if (a != 7) s1 *= pow_n<a/8>(x);
            t *= s1;
            break;

        }
        return t;
    }
};

// macro to call template class member function pow
#define pow_ratio(x, a, b) (Power_rational<(b)<0 ? -(a):(a), (b)<0 ? -(b):(b)> ().pow(x))


/******************************************************************************
*                 Detect NAN codes
*
* These functions return the code hidden in a NAN. The sign bit is ignored
******************************************************************************/

static inline Vec4i nan_code(Vec4f const & x) {
    Vec4i  a = reinterpret_i(x);
    Vec4ib b = (a & 0x7F800000) == 0x7F800000;   // check if NAN/INF
    return a & 0x007FFFFF & Vec4i(b);            // isolate NAN code bits
}

// This function returns the code hidden in a NAN. The sign bit is ignored
static inline Vec2q nan_code(Vec2d const & x) {
    Vec2q  a = reinterpret_i(x);
    Vec2q const m = 0x7FF0000000000000;
    Vec2q const n = 0x000FFFFFFFFFFFFF;
    Vec2qb b = (a & m) == m;                     // check if NAN/INF
    return a & n & Vec2q(b);                     // isolate NAN code bits
}

#if MAX_VECTOR_SIZE >= 256

// This function returns the code hidden in a NAN. The sign bit is ignored
static inline Vec8i nan_code(Vec8f const & x) {
    Vec8i  a = reinterpret_i(x);
    Vec8ib b = (a & 0x7F800000) == 0x7F800000;   // check if NAN/INF
    return a & 0x007FFFFF & Vec8i(b);            // isolate NAN code bits
}

// This function returns the code hidden in a NAN. The sign bit is ignored
static inline Vec4q nan_code(Vec4d const & x) {
    Vec4q  a = reinterpret_i(x);
    Vec4q const m = 0x7FF0000000000000;
    Vec4q const n = 0x000FFFFFFFFFFFFF;
    Vec4qb b = (a & m) == m;                     // check if NAN/INF
    return a & n & Vec4q(b);                     // isolate NAN code bits
}

#endif // MAX_VECTOR_SIZE >= 256 
#if MAX_VECTOR_SIZE >= 512

// This function returns the code hidden in a NAN. The sign bit is ignored
static inline Vec16i nan_code(Vec16f const & x) {
    Vec16i  a = Vec16i(reinterpret_i(x));
    Vec16ib b = (a & 0x7F800000) == 0x7F800000;  // check if NAN/INF
    return a & 0x007FFFFF & Vec16i(b);           // isolate NAN code bits
}

// This function returns the code hidden in a NAN. The sign bit is ignored
static inline Vec8q nan_code(Vec8d const & x) {
    Vec8q  a = Vec8q(reinterpret_i(x));
    Vec8q const m = 0x7FF0000000000000;
    Vec8q const n = 0x000FFFFFFFFFFFFF;
    Vec8qb b = (a & m) == m;                     // check if NAN/INF
    return a & n & Vec8q(b);                     // isolate NAN code bits
}

#endif // MAX_VECTOR_SIZE >= 512

#ifdef VCL_NAMESPACE
}
#endif

#endif  // VECTORMATH_EXP_H