1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
|
/**************************** vectormath_trig.h ******************************
* Author: Agner Fog
* Date created: 2014-04-18
* Last modified: 2016-05-02
* Version: 1.22
* Project: vector classes
* Description:
* Header file containing inline version of trigonometric functions
* and inverse trigonometric functions
* sin, cos, sincos, tan
* asin, acos, atan, atan2
*
* Theory, methods and inspiration based partially on these sources:
* > Moshier, Stephen Lloyd Baluk: Methods and programs for mathematical functions.
* Ellis Horwood, 1989.
* > VDT library developed on CERN by Danilo Piparo, Thomas Hauth and
* Vincenzo Innocente, 2012, https://svnweb.cern.ch/trac/vdt
* > Cephes math library by Stephen L. Moshier 1992,
* http://www.netlib.org/cephes/
*
* For detailed instructions, see vectormath_common.h and VectorClass.pdf
*
* (c) Copyright 2014-2016 GNU General Public License http://www.gnu.org/licenses
******************************************************************************/
#ifndef VECTORMATH_TRIG_H
#define VECTORMATH_TRIG_H 1
#include "vectormath_common.h"
#ifdef VCL_NAMESPACE
namespace VCL_NAMESPACE {
#endif
// Different overloaded functions for template resolution.
// These are used to fix the problem that the quadrant index uses
// a vector of 32-bit integers which doesn't fit the size of the
// 64-bit double precision vector:
// VTYPE | ITYPE | ITYPEH
// -----------------------
// Vec2d | Vec2q | Vec4i
// Vec4d | Vec4q | Vec4i
// Vec8d | Vec8q | Vec8i
// define overloaded truncate functions
static inline Vec4i vm_truncate_low_to_int(Vec2d const & x) {
return truncate_to_int(x, x);
}
#if MAX_VECTOR_SIZE >= 256
static inline Vec4i vm_truncate_low_to_int(Vec4d const & x) {
return truncate_to_int(x);
}
#endif // MAX_VECTOR_SIZE >= 256
#if MAX_VECTOR_SIZE >= 512
static inline Vec8i vm_truncate_low_to_int(Vec8d const & x) {
return truncate_to_int(x);
}
#endif // MAX_VECTOR_SIZE >= 512
// define int -> double conversions
template<class VTYPE, class ITYPE>
static inline VTYPE vm_half_int_vector_to_double(ITYPE const & x);
template<>
inline Vec2d vm_half_int_vector_to_double<Vec2d, Vec4i>(Vec4i const & x) {
return to_double_low(x);
}
#if MAX_VECTOR_SIZE >= 256
template<>
inline Vec4d vm_half_int_vector_to_double<Vec4d, Vec4i>(Vec4i const & x) {
return to_double(x);
}
#endif // MAX_VECTOR_SIZE >= 256
#if MAX_VECTOR_SIZE >= 512
template<>
inline Vec8d vm_half_int_vector_to_double<Vec8d, Vec8i>(Vec8i const & x) {
return to_double(x);
}
#endif // MAX_VECTOR_SIZE >= 512
// define int32_t to int64_t conversions
template<class ITYPE, class ITYPEH>
static inline ITYPE vm_half_int_vector_to_full(ITYPEH const & x);
template<>
inline Vec2q vm_half_int_vector_to_full<Vec2q, Vec4i>(Vec4i const & x) {
return extend_low(x);
}
#if MAX_VECTOR_SIZE >= 256
template<>
inline Vec4q vm_half_int_vector_to_full<Vec4q, Vec4i>(Vec4i const & x) {
return extend_low(Vec8i(x, x));
}
#endif // MAX_VECTOR_SIZE >= 256
#if MAX_VECTOR_SIZE >= 512
template<>
inline Vec8q vm_half_int_vector_to_full<Vec8q, Vec8i>(Vec8i const & x) {
return extend_low(Vec16i(x, x));
}
#endif // MAX_VECTOR_SIZE >= 512
// *************************************************************
// sincos template, double precision
// *************************************************************
// Template parameters:
// VTYPE: f.p. vector type
// ITYPE: integer vector type with same element size
// ITYPEH: integer vector type with half the element size
// BVTYPE: boolean vector type
// SC: 1 = sin, 2 = cos, 3 = sincos
// Paramterers:
// xx = input x (radians)
// cosret = return pointer (only if SC = 3)
template<class VTYPE, class ITYPE, class ITYPEH, class BVTYPE, int SC>
static inline VTYPE sincos_d(VTYPE * cosret, VTYPE const & xx) {
// define constants
const double ONEOPIO4 = 4. / VM_PI;
const double P0sin = -1.66666666666666307295E-1;
const double P1sin = 8.33333333332211858878E-3;
const double P2sin = -1.98412698295895385996E-4;
const double P3sin = 2.75573136213857245213E-6;
const double P4sin = -2.50507477628578072866E-8;
const double P5sin = 1.58962301576546568060E-10;
const double P0cos = 4.16666666666665929218E-2;
const double P1cos = -1.38888888888730564116E-3;
const double P2cos = 2.48015872888517045348E-5;
const double P3cos = -2.75573141792967388112E-7;
const double P4cos = 2.08757008419747316778E-9;
const double P5cos = -1.13585365213876817300E-11;
const double DP1 = 7.853981554508209228515625E-1;
const double DP2 = 7.94662735614792836714E-9;
const double DP3 = 3.06161699786838294307E-17;
/*
const double DP1sc = 7.85398125648498535156E-1;
const double DP2sc = 3.77489470793079817668E-8;
const double DP3sc = 2.69515142907905952645E-15;
*/
VTYPE xa, x, y, x2, s, c, sin1, cos1; // data vectors
ITYPEH q; // integer vectors, 32 bit
ITYPE qq, signsin, signcos; // integer vectors, 64 bit
BVTYPE swap, overflow; // boolean vectors
xa = abs(xx);
// Find quadrant
// 0 - pi/4 => 0
// pi/4 - 3*pi/4 => 2
// 3*pi/4 - 5*pi/4 => 4
// 5*pi/4 - 7*pi/4 => 6
// 7*pi/4 - 8*pi/4 => 8
// truncate to integer (magic number conversion is not faster here)
q = vm_truncate_low_to_int(xa * ONEOPIO4);
q = (q + 1) & ~1;
y = vm_half_int_vector_to_double<VTYPE>(q); // quadrant, as double
// Reduce by extended precision modular arithmetic
x = nmul_add(y, DP3, nmul_add(y, DP2, nmul_add(y, DP1, xa))); // x = ((xa - y * DP1) - y * DP2) - y * DP3;
// Expansion of sin and cos, valid for -pi/4 <= x <= pi/4
x2 = x * x;
s = polynomial_5(x2, P0sin, P1sin, P2sin, P3sin, P4sin, P5sin);
c = polynomial_5(x2, P0cos, P1cos, P2cos, P3cos, P4cos, P5cos);
s = mul_add(x * x2, s, x); // s = x + (x * x2) * s;
c = mul_add(x2 * x2, c, nmul_add(x2, 0.5, 1.0)); // c = 1.0 - x2 * 0.5 + (x2 * x2) * c;
// correct for quadrant
qq = vm_half_int_vector_to_full<ITYPE, ITYPEH>(q);
swap = BVTYPE((qq & 2) != 0);
// check for overflow
if (horizontal_or(q < 0)) {
overflow = (y < 0) & is_finite(xa);
s = select(overflow, 0., s);
c = select(overflow, 1., c);
}
if (SC & 1) { // calculate sin
sin1 = select(swap, c, s);
signsin = ((qq << 61) ^ ITYPE(reinterpret_i(xx))) & ITYPE(1ULL << 63);
sin1 ^= reinterpret_d(signsin);
}
if (SC & 2) { // calculate cos
cos1 = select(swap, s, c);
signcos = ((qq + 2) << 61) & (1ULL << 63);
cos1 ^= reinterpret_d(signcos);
}
if (SC == 3) { // calculate both. cos returned through pointer
*cosret = cos1;
}
if (SC & 1) return sin1; else return cos1;
}
// instantiations of sincos_d template:
static inline Vec2d sin(Vec2d const & x) {
return sincos_d<Vec2d, Vec2q, Vec4i, Vec2db, 1>(0, x);
}
static inline Vec2d cos(Vec2d const & x) {
return sincos_d<Vec2d, Vec2q, Vec4i, Vec2db, 2>(0, x);
}
static inline Vec2d sincos(Vec2d * cosret, Vec2d const & x) {
return sincos_d<Vec2d, Vec2q, Vec4i, Vec2db, 3>(cosret, x);
}
#if MAX_VECTOR_SIZE >= 256
static inline Vec4d sin(Vec4d const & x) {
return sincos_d<Vec4d, Vec4q, Vec4i, Vec4db, 1>(0, x);
}
static inline Vec4d cos(Vec4d const & x) {
return sincos_d<Vec4d, Vec4q, Vec4i, Vec4db, 2>(0, x);
}
static inline Vec4d sincos(Vec4d * cosret, Vec4d const & x) {
return sincos_d<Vec4d, Vec4q, Vec4i, Vec4db, 3>(cosret, x);
}
#endif // MAX_VECTOR_SIZE >= 256
#if MAX_VECTOR_SIZE >= 512
static inline Vec8d sin(Vec8d const & x) {
return sincos_d<Vec8d, Vec8q, Vec8i, Vec8db, 1>(0, x);
}
static inline Vec8d cos(Vec8d const & x) {
return sincos_d<Vec8d, Vec8q, Vec8i, Vec8db, 2>(0, x);
}
static inline Vec8d sincos(Vec8d * cosret, Vec8d const & x) {
return sincos_d<Vec8d, Vec8q, Vec8i, Vec8db, 3>(cosret, x);
}
#endif // MAX_VECTOR_SIZE >= 512
// *************************************************************
// sincos template, single precision
// *************************************************************
// Template parameters:
// VTYPE: f.p. vector type
// ITYPE: integer vector type with same element size
// BVTYPE: boolean vector type
// SC: 1 = sin, 2 = cos, 3 = sincos, 4 = tan
// Paramterers:
// xx = input x (radians)
// cosret = return pointer (only if SC = 3)
template<class VTYPE, class ITYPE, class BVTYPE, int SC>
static inline VTYPE sincos_f(VTYPE * cosret, VTYPE const & xx) {
// define constants
const float ONEOPIO4f = (float)(4. / VM_PI);
const float DP1F = 0.78515625f;
const float DP2F = 2.4187564849853515625E-4f;
const float DP3F = 3.77489497744594108E-8f;
const float P0sinf = -1.6666654611E-1f;
const float P1sinf = 8.3321608736E-3f;
const float P2sinf = -1.9515295891E-4f;
const float P0cosf = 4.166664568298827E-2f;
const float P1cosf = -1.388731625493765E-3f;
const float P2cosf = 2.443315711809948E-5f;
VTYPE xa, x, y, x2, s, c, sin1, cos1; // data vectors
ITYPE q, signsin, signcos; // integer vectors
BVTYPE swap, overflow; // boolean vectors
xa = abs(xx);
// Find quadrant
// 0 - pi/4 => 0
// pi/4 - 3*pi/4 => 2
// 3*pi/4 - 5*pi/4 => 4
// 5*pi/4 - 7*pi/4 => 6
// 7*pi/4 - 8*pi/4 => 8
q = truncate_to_int(xa * ONEOPIO4f);
q = (q + 1) & ~1;
y = to_float(q); // quadrant, as float
// Reduce by extended precision modular arithmetic
x = nmul_add(y, DP3F, nmul_add(y, DP2F, nmul_add(y, DP1F, xa))); // x = ((xa - y * DP1F) - y * DP2F) - y * DP3F;
// A two-step reduction saves time at the cost of precision for very big x:
//x = (xa - y * DP1F) - y * (DP2F+DP3F);
// Taylor expansion of sin and cos, valid for -pi/4 <= x <= pi/4
x2 = x * x;
s = polynomial_2(x2, P0sinf, P1sinf, P2sinf) * (x*x2) + x;
c = polynomial_2(x2, P0cosf, P1cosf, P2cosf) * (x2*x2) + nmul_add(0.5f, x2, 1.0f);
// correct for quadrant
swap = BVTYPE((q & 2) != 0);
// check for overflow
overflow = BVTYPE(q < 0); // q = 0x80000000 if overflow
if (horizontal_or(overflow & is_finite(xa))) {
s = select(overflow, 0.f, s);
c = select(overflow, 1.f, c);
}
if (SC & 5) { // calculate sin
sin1 = select(swap, c, s);
signsin = ((q << 29) ^ ITYPE(reinterpret_i(xx))) & ITYPE(1 << 31);
sin1 ^= reinterpret_f(signsin);
}
if (SC & 6) { // calculate cos
cos1 = select(swap, s, c);
signcos = ((q + 2) << 29) & (1 << 31);
cos1 ^= reinterpret_f(signcos);
}
if (SC == 1) return sin1;
else if (SC == 2) return cos1;
else if (SC == 3) { // calculate both. cos returned through pointer
*cosret = cos1;
return sin1;
}
else /*if (SC == 4)*/ return sin1 / cos1;
}
// instantiations of sincos_f template:
static inline Vec4f sin(Vec4f const & x) {
return sincos_f<Vec4f, Vec4i, Vec4fb, 1>(0, x);
}
static inline Vec4f cos(Vec4f const & x) {
return sincos_f<Vec4f, Vec4i, Vec4fb, 2>(0, x);
}
static inline Vec4f sincos(Vec4f * cosret, Vec4f const & x) {
return sincos_f<Vec4f, Vec4i, Vec4fb, 3>(cosret, x);
}
static inline Vec4f tan(Vec4f const & x) {
return sincos_f<Vec4f, Vec4i, Vec4fb, 4>(0, x);
}
#if MAX_VECTOR_SIZE >= 256
static inline Vec8f sin(Vec8f const & x) {
return sincos_f<Vec8f, Vec8i, Vec8fb, 1>(0, x);
}
static inline Vec8f cos(Vec8f const & x) {
return sincos_f<Vec8f, Vec8i, Vec8fb, 2>(0, x);
}
static inline Vec8f sincos(Vec8f * cosret, Vec8f const & x) {
return sincos_f<Vec8f, Vec8i, Vec8fb, 3>(cosret, x);
}
static inline Vec8f tan(Vec8f const & x) {
return sincos_f<Vec8f, Vec8i, Vec8fb, 4>(0, x);
}
#endif // MAX_VECTOR_SIZE >= 256
#if MAX_VECTOR_SIZE >= 512
static inline Vec16f sin(Vec16f const & x) {
return sincos_f<Vec16f, Vec16i, Vec16fb, 1>(0, x);
}
static inline Vec16f cos(Vec16f const & x) {
return sincos_f<Vec16f, Vec16i, Vec16fb, 2>(0, x);
}
static inline Vec16f sincos(Vec16f * cosret, Vec16f const & x) {
return sincos_f<Vec16f, Vec16i, Vec16fb, 3>(cosret, x);
}
static inline Vec16f tan(Vec16f const & x) {
return sincos_f<Vec16f, Vec16i, Vec16fb, 4>(0, x);
}
#endif // MAX_VECTOR_SIZE >= 512
// *************************************************************
// tan template, double precision
// *************************************************************
// Template parameters:
// VTYPE: f.p. vector type
// ITYPE: integer vector type with same element size
// ITYPEH: integer vector type with half the element size
// BVTYPE: boolean vector type
// Paramterers:
// x = input x (radians)
template<class VTYPE, class ITYPE, class ITYPEH, class BVTYPE>
static inline VTYPE tan_d(VTYPE const & x) {
// define constants
const double ONEOPIO4 = 4. / VM_PI;
const double DP1 = 7.853981554508209228515625E-1;
const double DP2 = 7.94662735614792836714E-9;
const double DP3 = 3.06161699786838294307E-17;
const double P2tan = -1.30936939181383777646E4;
const double P1tan = 1.15351664838587416140E6;
const double P0tan = -1.79565251976484877988E7;
const double Q3tan = 1.36812963470692954678E4;
const double Q2tan = -1.32089234440210967447E6;
const double Q1tan = 2.50083801823357915839E7;
const double Q0tan = -5.38695755929454629881E7;
VTYPE xa, y, z, zz, px, qx, tn, recip; // data vectors
ITYPEH q; // integer vector, 32 bit
ITYPE qq; // integer vector, 64 bit
BVTYPE doinvert, xzero, overflow; // boolean vectors
xa = abs(x);
// Find quadrant
// 0 - pi/4 => 0
// pi/4 - 3*pi/4 => 2
// 3*pi/4 - 5*pi/4 => 4
// 5*pi/4 - 7*pi/4 => 6
// 7*pi/4 - 8*pi/4 => 8
q = vm_truncate_low_to_int(xa * ONEOPIO4);
q = (q + 1) & ~1;
y = vm_half_int_vector_to_double<VTYPE>(q); // quadrant, as double
// Reduce by extended precision modular arithmetic
z = nmul_add(y, DP3, nmul_add(y, DP2, nmul_add(y, DP1, xa))); //z = ((xa - y * DP1) - y * DP2) - y * DP3;
// Pade expansion of tan, valid for -pi/4 <= x <= pi/4
zz = z * z;
px = polynomial_2(zz, P0tan, P1tan, P2tan);
qx = polynomial_4n(zz, Q0tan, Q1tan, Q2tan, Q3tan);
// qx cannot be 0 for x <= pi/4
tn = mul_add(px / qx, z * zz, z); // tn = z + z * zz * px / qx;
// if (q&2) tn = -1/tn
qq = vm_half_int_vector_to_full<ITYPE, ITYPEH>(q);
doinvert = BVTYPE((qq & 2) != 0);
xzero = (xa == 0.);
// avoid division by 0. We will not be using recip anyway if xa == 0.
// tn never becomes exactly 0 when x = pi/2 so we only have to make
// a special case for x == 0.
recip = (-1.) / select(xzero, VTYPE(-1.), tn);
tn = select(doinvert, recip, tn);
tn = sign_combine(tn, x); // get original sign
// check for overflow
if (horizontal_or(q < 0)) {
overflow = (y < 0) & is_finite(xa);
tn = select(overflow, 0., tn);
}
return tn;
}
// instantiations of tan_d template:
static inline Vec2d tan(Vec2d const & x) {
return tan_d<Vec2d, Vec2q, Vec4i, Vec2db>(x);
}
#if MAX_VECTOR_SIZE >= 256
static inline Vec4d tan(Vec4d const & x) {
return tan_d<Vec4d, Vec4q, Vec4i, Vec4db>(x);
}
#endif // MAX_VECTOR_SIZE >= 256
#if MAX_VECTOR_SIZE >= 512
static inline Vec8d tan(Vec8d const & x) {
return tan_d<Vec8d, Vec8q, Vec8i, Vec8db>(x);
}
#endif // MAX_VECTOR_SIZE >= 512
/*
This is removed for the single precision version.
It is faster to use tan(x) = sin(x)/cos(x)
// *************************************************************
// tan template, single precision
// *************************************************************
// Template parameters:
// VTYPE: f.p. vector type
// ITYPE: integer vector type with same element size
// BVTYPE: boolean vector type
// Paramterers:
// x = input x (radians)
// cosret = return pointer (only if SC = 3)
template<class VTYPE, class ITYPE, class BVTYPE>
static inline VTYPE tan_f(VTYPE const & x) {
// define constants
const float ONEOPIO4f = (float)(4./VM_PI);
const float DP1F = 0.78515625f;
const float DP2F = 2.4187564849853515625E-4f;
const float DP3F = 3.77489497744594108E-8f;
const float P5tanf = 9.38540185543E-3f;
const float P4tanf = 3.11992232697E-3f;
const float P3tanf = 2.44301354525E-2f;
const float P2tanf = 5.34112807005E-2f;
const float P1tanf = 1.33387994085E-1f;
const float P0tanf = 3.33331568548E-1f;
VTYPE xa, y, z, zz, tn, recip; // data vectors
ITYPE q; // integer vector
BVTYPE doinvert, xzero; // boolean vectors
xa = abs(x);
// Find quadrant
// 0 - pi/4 => 0
// pi/4 - 3*pi/4 => 2
// 3*pi/4 - 5*pi/4 => 4
// 5*pi/4 - 7*pi/4 => 6
// 7*pi/4 - 8*pi/4 => 8
q = truncate_to_int(xa * ONEOPIO4f);
q = (q + 1) & ~1;
y = to_float(q); // quadrant, as float
// Reduce by extended precision modular arithmetic
z = ((xa - y * DP1F) - y * DP2F) - y * DP3F;
//z = (xa - y * DP1F) - y * (DP2F + DP3F);
zz = z * z;
// Taylor expansion
tn = polynomial_5(zz, P0tanf, P1tanf, P2tanf, P3tanf, P4tanf, P5tanf) * (zz * z) + z;
// if (q&2) tn = -1/tn
doinvert = (q & 2) != 0;
xzero = (xa == 0.f);
// avoid division by 0. We will not be using recip anyway if xa == 0.
// tn never becomes exactly 0 when x = pi/2 so we only have to make
// a special case for x == 0.
recip = (-1.f) / select(xzero, VTYPE(-1.f), tn);
tn = select(doinvert, recip, tn);
tn = sign_combine(tn, x); // get original sign
return tn;
}
// instantiations of tan_f template:
static inline Vec4f tan(Vec4f const & x) {
return tan_f<Vec4f, Vec4i, Vec4fb>(x);
}
static inline Vec8f tan(Vec8f const & x) {
return tan_f<Vec8f, Vec8i, Vec8fb>(x);
}
*/
// *************************************************************
// asin/acos template, double precision
// *************************************************************
// Template parameters:
// VTYPE: f.p. vector type
// BVTYPE: boolean vector type
// AC: 0 = asin, 1 = acos
// Paramterers:
// x = input x
template<class VTYPE, class BVTYPE, int AC>
static inline VTYPE asin_d(VTYPE const & x) {
// define constants
const double R4asin = 2.967721961301243206100E-3;
const double R3asin = -5.634242780008963776856E-1;
const double R2asin = 6.968710824104713396794E0;
const double R1asin = -2.556901049652824852289E1;
const double R0asin = 2.853665548261061424989E1;
const double S3asin = -2.194779531642920639778E1;
const double S2asin = 1.470656354026814941758E2;
const double S1asin = -3.838770957603691357202E2;
const double S0asin = 3.424398657913078477438E2;
const double P5asin = 4.253011369004428248960E-3;
const double P4asin = -6.019598008014123785661E-1;
const double P3asin = 5.444622390564711410273E0;
const double P2asin = -1.626247967210700244449E1;
const double P1asin = 1.956261983317594739197E1;
const double P0asin = -8.198089802484824371615E0;
const double Q4asin = -1.474091372988853791896E1;
const double Q3asin = 7.049610280856842141659E1;
const double Q2asin = -1.471791292232726029859E2;
const double Q1asin = 1.395105614657485689735E2;
const double Q0asin = -4.918853881490881290097E1;
VTYPE xa, xb, x1, x2, x3, x4, x5, px, qx, rx, sx, vx, wx, y1, yb, z, z1, z2;
BVTYPE big;
bool dobig, dosmall;
xa = abs(x);
big = xa >= 0.625;
/*
Small: xa < 0.625
------------------
x = xa * xa;
px = PX(x);
qx = QX(x);
y1 = x*px/qx;
y1 = xa * y1 + xa;
Big: xa >= 0.625
------------------
x = 1.0 - xa;
rx = RX(x);
sx = SX(x);
y1 = x * rx/sx;
x3 = sqrt(x+x);
y3 = x3 * y1 - MOREBITS;
z = pi/2 - x3 - y3
*/
// select a common x for all polynomials
// This allows sharing of powers of x through common subexpression elimination
x1 = select(big, 1.0 - xa, xa * xa);
// calculate powers of x1 outside branches to make sure they are only calculated once
x2 = x1 * x1;
x4 = x2 * x2;
x5 = x4 * x1;
x3 = x2 * x1;
dosmall = !horizontal_and(big); // at least one element is small
dobig = horizontal_or(big); // at least one element is big
// calculate polynomials (reuse powers of x)
if (dosmall) {
// px = polynomial_5 (x1, P0asin, P1asin, P2asin, P3asin, P4asin, P5asin);
// qx = polynomial_5n(x1, Q0asin, Q1asin, Q2asin, Q3asin, Q4asin);
px = mul_add(x3, P3asin, P0asin) + mul_add(x4, P4asin, x1*P1asin) + mul_add(x5, P5asin, x2*P2asin);
qx = mul_add(x4, Q4asin, x5) + mul_add(x3, Q3asin, x1*Q1asin) + mul_add(x2, Q2asin, Q0asin);
}
if (dobig) {
// rx = polynomial_4 (x1, R0asin, R1asin, R2asin, R3asin, R4asin);
// sx = polynomial_4n(x1, S0asin, S1asin, S2asin, S3asin);
rx = mul_add(x3, R3asin, x2*R2asin) + mul_add(x4, R4asin, mul_add(x1, R1asin, R0asin));
sx = mul_add(x3, S3asin, x4) + mul_add(x2, S2asin, mul_add(x1, S1asin, S0asin));
}
// select and divide outside branches to avoid dividing twice
vx = select(big, rx, px);
wx = select(big, sx, qx);
y1 = vx / wx * x1;
// results for big
if (dobig) { // avoid square root if all are small
xb = sqrt(x1 + x1); // this produces NAN if xa > 1 so we don't need a special case for xa > 1
z1 = mul_add(xb, y1, xb); // yb = xb * y1; z1 = xb + yb;
}
// results for small
z2 = mul_add(xa, y1, xa); // z2 = xa * y1 + xa;
// correct for sign
if (AC) { // acos
z1 = select(x < 0., VM_PI - z1, z1);
z2 = VM_PI_2 - sign_combine(z2, x);
z = select(big, z1, z2);
}
else { // asin
z1 = VM_PI_2 - z1;
z = select(big, z1, z2);
z = sign_combine(z, x);
}
return z;
}
// instantiations of asin_d template:
static inline Vec2d asin(Vec2d const & x) {
return asin_d<Vec2d, Vec2db, 0>(x);
}
static inline Vec2d acos(Vec2d const & x) {
return asin_d<Vec2d, Vec2db, 1>(x);
}
#if MAX_VECTOR_SIZE >= 256
static inline Vec4d asin(Vec4d const & x) {
return asin_d<Vec4d, Vec4db, 0>(x);
}
static inline Vec4d acos(Vec4d const & x) {
return asin_d<Vec4d, Vec4db, 1>(x);
}
#endif // MAX_VECTOR_SIZE >= 256
#if MAX_VECTOR_SIZE >= 512
static inline Vec8d asin(Vec8d const & x) {
return asin_d<Vec8d, Vec8db, 0>(x);
}
static inline Vec8d acos(Vec8d const & x) {
return asin_d<Vec8d, Vec8db, 1>(x);
}
#endif // MAX_VECTOR_SIZE >= 512
// *************************************************************
// asin/acos template, single precision
// *************************************************************
// Template parameters:
// VTYPE: f.p. vector type
// BVTYPE: boolean vector type
// AC: 0 = asin, 1 = acos
// Paramterers:
// x = input x
template<class VTYPE, class BVTYPE, int AC>
static inline VTYPE asin_f(VTYPE const & x) {
// define constants
const float P4asinf = 4.2163199048E-2f;
const float P3asinf = 2.4181311049E-2f;
const float P2asinf = 4.5470025998E-2f;
const float P1asinf = 7.4953002686E-2f;
const float P0asinf = 1.6666752422E-1f;
VTYPE xa, x1, x2, x3, x4, xb, z, z1, z2;
BVTYPE big;
xa = abs(x);
big = xa > 0.5f;
x1 = 0.5f * (1.0f - xa);
x2 = xa * xa;
x3 = select(big, x1, x2);
//if (horizontal_or(big))
{
xb = sqrt(x1);
}
x4 = select(big, xb, xa);
z = polynomial_4(x3, P0asinf, P1asinf, P2asinf, P3asinf, P4asinf);
z = mul_add(z, x3*x4, x4); // z = z * (x3*x4) + x4;
z1 = z + z;
// correct for sign
if (AC) { // acos
z1 = select(x < 0., float(VM_PI) - z1, z1);
z2 = float(VM_PI_2) - sign_combine(z, x);
z = select(big, z1, z2);
}
else { // asin
z1 = float(VM_PI_2) - z1;
z = select(big, z1, z);
z = sign_combine(z, x);
}
return z;
}
// instantiations of asin_f template:
static inline Vec4f asin(Vec4f const & x) {
return asin_f<Vec4f, Vec4fb, 0>(x);
}
static inline Vec4f acos(Vec4f const & x) {
return asin_f<Vec4f, Vec4fb, 1>(x);
}
#if MAX_VECTOR_SIZE >= 256
static inline Vec8f asin(Vec8f const & x) {
return asin_f<Vec8f, Vec8fb, 0>(x);
}
static inline Vec8f acos(Vec8f const & x) {
return asin_f<Vec8f, Vec8fb, 1>(x);
}
#endif // MAX_VECTOR_SIZE >= 256
#if MAX_VECTOR_SIZE >= 512
static inline Vec16f asin(Vec16f const & x) {
return asin_f<Vec16f, Vec16fb, 0>(x);
}
static inline Vec16f acos(Vec16f const & x) {
return asin_f<Vec16f, Vec16fb, 1>(x);
}
#endif // MAX_VECTOR_SIZE >= 512
// *************************************************************
// atan template, double precision
// *************************************************************
// Template parameters:
// VTYPE: f.p. vector type
// BVTYPE: boolean vector type
// T2: 0 = atan, 1 = atan2
// Paramterers:
// y, x. calculate tan(y/x)
// result is between -pi/2 and +pi/2 when x > 0
// result is between -pi and -pi/2 or between pi/2 and pi when x < 0 for atan2
// atan2(0,0) gives NAN. Future versions may give 0
template<class VTYPE, class BVTYPE, int T2>
static inline VTYPE atan_d(VTYPE const & y, VTYPE const & x) {
// define constants
//const double ONEOPIO4 = 4./VM_PI;
const double MOREBITS = 6.123233995736765886130E-17;
const double MOREBITSO2 = MOREBITS * 0.5;
const double T3PO8 = VM_SQRT2 + 1.; // 2.41421356237309504880;
const double P4atan = -8.750608600031904122785E-1;
const double P3atan = -1.615753718733365076637E1;
const double P2atan = -7.500855792314704667340E1;
const double P1atan = -1.228866684490136173410E2;
const double P0atan = -6.485021904942025371773E1;
const double Q4atan = 2.485846490142306297962E1;
const double Q3atan = 1.650270098316988542046E2;
const double Q2atan = 4.328810604912902668951E2;
const double Q1atan = 4.853903996359136964868E2;
const double Q0atan = 1.945506571482613964425E2;
VTYPE t, x1, x2, y1, y2, s, fac, a, b, z, zz, px, qx, re; // data vectors
BVTYPE swapxy, notbig, notsmal; // boolean vectors
if (T2) { // atan2(y,x)
// move in first octant
x1 = abs(x);
y1 = abs(y);
swapxy = (y1 > x1);
// swap x and y if y1 > x1
x2 = select(swapxy, y1, x1);
y2 = select(swapxy, x1, y1);
t = y2 / x2; // x = y = 0 gives NAN here
}
else { // atan(y)
t = abs(y);
}
// small: t < 0.66
// medium: 0.66 <= t <= 2.4142 (1+sqrt(2))
// big: t > 2.4142
notbig = t <= T3PO8; // t <= 2.4142
notsmal = t >= 0.66; // t >= 0.66
s = select(notbig, VTYPE(VM_PI_4), VTYPE(VM_PI_2));
s = notsmal & s; // select(notsmal, s, 0.);
fac = select(notbig, VTYPE(MOREBITSO2), VTYPE(MOREBITS));
fac = notsmal & fac; //select(notsmal, fac, 0.);
// small: z = t / 1.0;
// medium: z = (t-1.0) / (t+1.0);
// big: z = -1.0 / t;
a = notbig & t; // select(notbig, t, 0.);
a = if_add(notsmal, a, -1.);
b = notbig & VTYPE(1.); // select(notbig, 1., 0.);
b = if_add(notsmal, b, t);
z = a / b; // division by 0 will not occur unless x and y are both 0
zz = z * z;
px = polynomial_4(zz, P0atan, P1atan, P2atan, P3atan, P4atan);
qx = polynomial_5n(zz, Q0atan, Q1atan, Q2atan, Q3atan, Q4atan);
re = mul_add(px / qx, z * zz, z); // re = (px / qx) * (z * zz) + z;
re += s + fac;
if (T2) { // atan2(y,x)
// move back in place
re = select(swapxy, VM_PI_2 - re, re);
re = select(x < 0., VM_PI - re, re);
re = select((x | y) == 0., 0., re); // atan2(0,0) = 0 by convention
}
// get sign bit
re = sign_combine(re, y);
return re;
}
// instantiations of atan_d template:
static inline Vec2d atan2(Vec2d const & y, Vec2d const & x) {
return atan_d<Vec2d, Vec2db, 1>(y, x);
}
static inline Vec2d atan(Vec2d const & y) {
return atan_d<Vec2d, Vec2db, 0>(y, 0.);
}
#if MAX_VECTOR_SIZE >= 256
static inline Vec4d atan2(Vec4d const & y, Vec4d const & x) {
return atan_d<Vec4d, Vec4db, 1>(y, x);
}
static inline Vec4d atan(Vec4d const & y) {
return atan_d<Vec4d, Vec4db, 0>(y, 0.);
}
#endif // MAX_VECTOR_SIZE >= 256
#if MAX_VECTOR_SIZE >= 512
static inline Vec8d atan2(Vec8d const & y, Vec8d const & x) {
return atan_d<Vec8d, Vec8db, 1>(y, x);
}
static inline Vec8d atan(Vec8d const & y) {
return atan_d<Vec8d, Vec8db, 0>(y, 0.);
}
#endif // MAX_VECTOR_SIZE >= 512
// *************************************************************
// atan template, single precision
// *************************************************************
// Template parameters:
// VTYPE: f.p. vector type
// BVTYPE: boolean vector type
// T2: 0 = atan, 1 = atan2
// Paramterers:
// y, x. calculate tan(y/x)
// result is between -pi/2 and +pi/2 when x > 0
// result is between -pi and -pi/2 or between pi/2 and pi when x < 0 for atan2
// atan2(0,0) gives NAN. Future versions may give 0
template<class VTYPE, class BVTYPE, int T2>
static inline VTYPE atan_f(VTYPE const & y, VTYPE const & x) {
// define constants
const float P3atanf = 8.05374449538E-2f;
const float P2atanf = -1.38776856032E-1f;
const float P1atanf = 1.99777106478E-1f;
const float P0atanf = -3.33329491539E-1f;
VTYPE t, x1, x2, y1, y2, s, a, b, z, zz, re; // data vectors
BVTYPE swapxy, notbig, notsmal; // boolean vectors
if (T2) { // atan2(y,x)
// move in first octant
x1 = abs(x);
y1 = abs(y);
swapxy = (y1 > x1);
// swap x and y if y1 > x1
x2 = select(swapxy, y1, x1);
y2 = select(swapxy, x1, y1);
// do we need to protect against x = y = 0? It will just produce NAN, probably without delay
t = y2 / x2;
}
else { // atan(y)
t = abs(y);
}
// small: t < 0.4142
// medium: 0.4142 <= t <= 2.4142
// big: t > 2.4142 (not for atan2)
if (!T2) { // atan(y)
notsmal = t >= float(VM_SQRT2 - 1.); // t >= tan pi/8
notbig = t <= float(VM_SQRT2 + 1.); // t <= tan 3pi/8
s = select(notbig, VTYPE(float(VM_PI_4)), VTYPE(float(VM_PI_2)));
s = notsmal & s; // select(notsmal, s, 0.);
// small: z = t / 1.0;
// medium: z = (t-1.0) / (t+1.0);
// big: z = -1.0 / t;
a = notbig & t; // select(notbig, t, 0.);
a = if_add(notsmal, a, -1.f);
b = notbig & VTYPE(1.f); // select(notbig, 1., 0.);
b = if_add(notsmal, b, t);
z = a / b; // division by 0 will not occur unless x and y are both 0
}
else { // atan2(y,x)
// small: z = t / 1.0;
// medium: z = (t-1.0) / (t+1.0);
notsmal = t >= float(VM_SQRT2 - 1.);
a = if_add(notsmal, t, -1.f);
b = if_add(notsmal, 1.f, t);
s = notsmal & VTYPE(float(VM_PI_4));
z = a / b;
}
zz = z * z;
// Taylor expansion
re = polynomial_3(zz, P0atanf, P1atanf, P2atanf, P3atanf);
re = mul_add(re, zz * z, z) + s;
if (T2) { // atan2(y,x)
// move back in place
re = select(swapxy, float(VM_PI_2) - re, re);
re = select(x < 0., float(VM_PI) - re, re);
re = select((x | y) == 0.f, 0.f, re); // atan2(0,0) = 0 by convention
}
// get sign bit
re = sign_combine(re, y);
return re;
}
// instantiations of atan_f template:
static inline Vec4f atan2(Vec4f const & y, Vec4f const & x) {
return atan_f<Vec4f, Vec4fb, 1>(y, x);
}
static inline Vec4f atan(Vec4f const & y) {
return atan_f<Vec4f, Vec4fb, 0>(y, 0.);
}
#if MAX_VECTOR_SIZE >= 256
static inline Vec8f atan2(Vec8f const & y, Vec8f const & x) {
return atan_f<Vec8f, Vec8fb, 1>(y, x);
}
static inline Vec8f atan(Vec8f const & y) {
return atan_f<Vec8f, Vec8fb, 0>(y, 0.);
}
#endif // MAX_VECTOR_SIZE >= 256
#if MAX_VECTOR_SIZE >= 512
static inline Vec16f atan2(Vec16f const & y, Vec16f const & x) {
return atan_f<Vec16f, Vec16fb, 1>(y, x);
}
static inline Vec16f atan(Vec16f const & y) {
return atan_f<Vec16f, Vec16fb, 0>(y, 0.);
}
#endif // MAX_VECTOR_SIZE >= 512
#ifdef VCL_NAMESPACE
}
#endif
#endif
|