1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
|
/*
BOOSTER: BOOtstrap Support by TransfER:
BOOSTER is an alternative method to compute bootstrap branch supports
in large trees. It uses transfer distance between bipartitions, instead
of perfect match.
Copyright (C) 2017 Frederic Lemoine, Jean-Baka Domelevo Entfellner, Olivier Gascuel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "bitset_index.h"
bitset_hashmap* new_bitset_hashmap(int size, float loadfactor) {
int i;
bitset_hashmap* bh = malloc(sizeof(bitset_hashmap));
bh->capacity = size;
bh->loadfactor = loadfactor;
bh->total = 0;
bh->map_array = malloc(size*sizeof(bitset_bucket));
for(i=0;i<size;i++){
bh->map_array[i]=NULL;
}
return bh;
}
void free_bitset_hashmap(bitset_hashmap *hm){
bitset_hash_map_free_map_array(hm->map_array, hm->capacity);
free(hm);
}
void bitset_hash_map_free_map_array(bitset_bucket **map_array, int total){
int i;
for(i=0;i<total;i++){
if(map_array[i]!=NULL){
bitset_hash_map_free_buckets(map_array[i]->values, map_array[i]->size);
free(map_array[i]);
}
}
free(map_array);
}
void bitset_hash_map_free_buckets(bitset_keyvalue ** values, int total){
int i;
for(i=0;i<total;i++){
free(values[i]);
}
free(values);
}
// returns the index in the hash map, given a hashcode
int bitset_hashmap_indexfor(int hashcode, int capacity) {
return hashcode & (capacity - 1);
}
// Returns the count for the given Edge
// If the edge is not present, returns -1
// If the edge is present, returns the value
int bitset_hashmap_value(bitset_hashmap *hm, id_hash_table_t *bitset, int nb_taxa) {
int index = bitset_hashmap_indexfor(bitset_hashcode(bitset,nb_taxa), hm->capacity);
int k;
if(hm->map_array[index] != NULL){
for (k=0;k<hm->map_array[index]->size;k++){
if(bitset_hashEquals(hm->map_array[index]->values[k]->key,bitset,nb_taxa)) {
return hm->map_array[index]->values[k]->value;
}
}
}
return -1;
}
void bitset_hashmap_putvalue(bitset_hashmap *hm, id_hash_table_t *bitset, int nb_taxa, int value) {
int index = bitset_hashmap_indexfor(bitset_hashcode(bitset,nb_taxa), hm->capacity);
int k;
if(hm->map_array[index] == NULL) {
hm->map_array[index] = malloc(sizeof(bitset_bucket));
hm->map_array[index]->size=1;
hm->map_array[index]->capacity=3;
hm->map_array[index]->values=malloc(3*sizeof(bitset_keyvalue*));
hm->map_array[index]->values[0] = malloc(sizeof(bitset_keyvalue));
hm->map_array[index]->values[0]->key = bitset;
hm->map_array[index]->values[0]->value = value;
hm->total++;
} else {
for (k=0;k<hm->map_array[index]->size;k++){
if(bitset_hashEquals(hm->map_array[index]->values[k]->key,bitset,nb_taxa)) {
hm->map_array[index]->values[k]->value = value;
return;
}
}
if(hm->map_array[index]->size>=hm->map_array[index]->capacity){
hm->map_array[index]->values = realloc(hm->map_array[index]->values,hm->map_array[index]->capacity*2*sizeof(bitset_keyvalue*));
hm->map_array[index]->capacity *= 2;
}
hm->map_array[index]->values[hm->map_array[index]->size] = malloc(sizeof(bitset_keyvalue));
hm->map_array[index]->values[hm->map_array[index]->size]->key = bitset;
hm->map_array[index]->values[hm->map_array[index]->size]->value = value;
hm->map_array[index]->size++;
hm->total++;
}
}
// Computes a hash code for the bitset associated to an edge
int bitset_hashcode(id_hash_table_t *hashtable, int nb_taxa){
int hashCodeSet = 1;
int hashCodeUnset = 1;
int hashCodeAll = 1;
int nbset = 0;
int nbunset = 0;
int bit;
for (bit = 0; bit < nb_taxa; bit++) {
if (lookup_id(hashtable, bit)){
hashCodeSet = 31*hashCodeSet + bit;
nbset++;
} else {
hashCodeUnset = 31*hashCodeUnset + bit;
nbunset++;
}
hashCodeAll = 31*hashCodeAll + bit;
}
// If the number of species on the left is the same
// than the number of species on the right
// We return the hashcode of the all species
// Otherwise, we return the hashcode for the minimum
// between left and right
// Allows an edge to be kind of "unique"
if(nbset == nbunset){
return hashCodeAll;
} else if(nbset < nbunset){
return hashCodeSet;
}
return hashCodeUnset;
}
// HashCode for an edge bitset.
// Used for insertion in an EdgeMap
int bitset_hashEquals(id_hash_table_t *tbl1, id_hash_table_t *tbl2, int nb_taxa) {
return equal_or_complement_id_hashtables(tbl1, tbl2, nb_taxa);
}
// Reconstructs the HashMap if the capacity is almost attained (loadfactor)
void bitset_hashmap_rehash(bitset_hashmap *hm, int nb_taxa) {
// We rehash everything with a new capacity
if (((float)hm->total) >= ((float)hm->capacity) * hm->loadfactor) {
int newcapacity = hm->capacity * 2;
int i,l,k;
bitset_bucket **new_map_array = malloc(newcapacity*sizeof(bitset_bucket*));
for(i=0;i<newcapacity;i++){
new_map_array[i]=NULL;
}
for(k=0;k<hm->capacity;k++){
if (hm->map_array[k] != NULL) {
for(l=0;l<hm->map_array[k]->size;l++){
int index = bitset_hashmap_indexfor(bitset_hashcode(hm->map_array[k]->values[l]->key,nb_taxa), newcapacity);
if (new_map_array[index] == NULL) {
new_map_array[index] = malloc(sizeof(bitset_bucket));
new_map_array[index]->size=1;
new_map_array[index]->capacity=3;
new_map_array[index]->values=malloc(3*sizeof(bitset_keyvalue*));
new_map_array[index]->values[0] = malloc(sizeof(bitset_keyvalue));
new_map_array[index]->values[0]->key = hm->map_array[k]->values[l]->key;
new_map_array[index]->values[0]->value = hm->map_array[k]->values[l]->value;
} else {
if(new_map_array[index]->size>=new_map_array[index]->capacity){
new_map_array[index]->values = realloc(new_map_array[index]->values,new_map_array[index]->capacity*2*sizeof(bitset_keyvalue*));
new_map_array[index]->capacity *= 2;
}
new_map_array[index]->values[new_map_array[index]->size] = malloc(sizeof(bitset_keyvalue));
new_map_array[index]->values[new_map_array[index]->size]->key = hm->map_array[k]->values[l]->key;
new_map_array[index]->values[new_map_array[index]->size]->value = hm->map_array[k]->values[l]->value;
new_map_array[index]->size++;
}
}
}
}
hm->capacity = newcapacity;
bitset_hash_map_free_map_array(hm->map_array,hm->total);
hm->map_array = new_map_array;
}
}
|