1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
|
/*
BOOSTER: BOOtstrap Support by TransfER:
BOOSTER is an alternative method to compute bootstrap branch supports
in large trees. It uses transfer distance between bipartitions, instead
of perfect match.
Copyright (C) 2017 Frederic Lemoine, Jean-Baka Domelevo Entfellner, Olivier Gascuel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "io.h"
#include "tree.h"
#include "bitset_index.h"
#include <string.h> /* for strcpy, strdup, etc */
#include <getopt.h>
#ifdef _OPENMP
#include <omp.h> /* OpenMP */
#endif
#include <math.h>
#include "version.h"
/**
A large part of the code was initally implemented by Jean-Baka Domelevo-Entfellner
(tree structures, tbe algorithm)
*/
void tbe(Tree *ref_tree, Tree *ref_raw_tree, char **alt_tree_strings,char** taxname_lookup_table, FILE *stat_file, int num_trees, int quiet, double dist_cutoff,int count_per_branch);
void fbp(Tree *ref_tree, char **alt_tree_strings,char** taxname_lookup_table, int num_trees, int quiet);
int* species_to_move(Edge* re, Edge* be, int dist, int nb_taxa);
/*
void usage(FILE * out,char *name){
fprintf(out,"Usage: ");
fprintf(out,"%s -i <ref tree file (newick)> -b <bootstrap tree file (newick)> [-@ <cpus> -d <dist_cutoff> -r <raw distance output tree file> -S <stat file> -o <output tree> -v]\n",name);
fprintf(out,"Options:\n");
fprintf(out," -i, --input : Input tree file\n");
fprintf(out," -b, --boot : Bootstrap tree file (1 file containing all bootstrap trees)\n");
fprintf(out," -o, --out : Output file (optional) with normalized support values, default : stdout\n");
fprintf(out," -r, --out-raw : Output file (optional) with raw support values in the form of id|avgdist|depth, default : none\n");
fprintf(out," -@, --num-threads : Number of threads (default 1)\n");
fprintf(out," -S, --stat-file : Prints output statistics for each branch in the given output file (optional)\n");
fprintf(out," -c, --count-per-branch : Prints individual taxa moves for each branches in the log file (only with -S & -a tbe)\n");
fprintf(out," -d, --dist-cutoff : Distance cutoff to consider a branch for taxa transfer index computation (-a tbe only, default 0.3)\n");
fprintf(out," -a, --algo : tbe or fbp (default tbe)\n");
fprintf(out," -q, --quiet : Does not print progress messages during analysis\n");
fprintf(out," -v, --version : Prints version (optional)\n");
fprintf(out," -h, --help : Prints this help\n");
fprintf(out,"\n");
fprintf(out,"If you use BOOSTER, please cite:\n");
fprintf(out,"Renewing Felsenstein's Phylogenetic Bootstrap in the Era of Big Data\n");
fprintf(out,"F. Lemoine, J.-B. Domelevo-Entfellner, E. Wilkinson, D. Correia, M. Davila Felipe, T. De Oliveira, O. Gascuel.\n");
fprintf(out,"Nature 556, 452-456 (2018)\n");
}
void printOptions(FILE * out,char* input_tree,char * boot_trees, char * output_tree, char * output_raw_tree, char *output_stat, char *algo, int nb_threads, int quiet, double dist_cutoff, int count_per_branch){
fprintf(out,"**************************\n");
fprintf(out,"* Options *\n");
fprintf(out,"**************************\n");
short_version(out);
fprintf(out,"Input Tree : %s\n", input_tree);
fprintf(out,"Bootstrap Trees : %s\n", boot_trees);
if(output_tree==NULL)
fprintf(out,"Output tree : stdout\n");
else
fprintf(out,"Output tree : %s\n",output_tree);
if(output_raw_tree!=NULL)
fprintf(out,"Output raw tree : %s\n",output_raw_tree);
if(output_stat==NULL)
fprintf(out,"Stat file : None\n");
else
fprintf(out,"Stat file : %s\n",output_stat);
fprintf(out,"Algo : %s\n", algo);
if(count_per_branch){
fprintf(out,"Count tax move/branch: true\n");
}else{
fprintf(out,"Count tax move/branch: false\n");
}
fprintf(out,"Threads : %d\n", nb_threads);
fprintf(out,"Dist cutoff : %f\n", dist_cutoff);
if(quiet)
fprintf(out,"Quiet : true\n");
else
fprintf(out,"Quiet : false\n");
fprintf(out,"**************************\n");
}
*/
void reset_matrices(int nb_taxa, int nb_edges_ref, int nb_edges_boot, short unsigned*** c_matrix, short unsigned*** i_matrix, short unsigned*** hamming, short unsigned** min_dist, short unsigned** min_dist_edges){
int i;
(*min_dist) = (short unsigned*) malloc(nb_edges_ref*sizeof(short unsigned)); /* array of min Hamming distances */
(*min_dist_edges) = (short unsigned*) malloc(nb_edges_ref*sizeof(short unsigned)); /* array of edge ids corresponding to min Hamming distances */
(*c_matrix) = (short unsigned**) malloc(nb_edges_ref*sizeof(short unsigned*)); /* matrix of cardinals of complements */
(*i_matrix) = (short unsigned**) malloc(nb_edges_ref*sizeof(short unsigned*)); /* matrix of cardinals of intersections */
(*hamming) = (short unsigned**) malloc(nb_edges_ref*sizeof(short unsigned*)); /* matrix of Hamming distances */
for (i=0; i<nb_edges_ref; i++){
(*c_matrix)[i] = (short unsigned*) malloc(nb_edges_boot*sizeof(short unsigned));
(*i_matrix)[i] = (short unsigned*) malloc(nb_edges_boot*sizeof(short unsigned));
(*hamming)[i] = (short unsigned*) malloc(nb_edges_boot*sizeof(short unsigned));
(*min_dist)[i] = nb_taxa; /* initialization to the nb of taxa */
}
}
void free_matrices(int nb_edges_ref, short unsigned*** c_matrix, short unsigned*** i_matrix, short unsigned*** hamming, short unsigned** min_dist, short unsigned** min_dist_edges){
int i;
for (i=0; i<nb_edges_ref; i++) {
free((*c_matrix)[i]);
free((*i_matrix)[i]);
free((*hamming)[i]);
}
free((*c_matrix));
free((*i_matrix));
free((*hamming));
free((*min_dist));
free((*min_dist_edges));
}
int main_booster (const char* input_tree, const char *boot_trees,
const char* out_tree, const char* out_raw_tree, const char* stat_out,
int quiet) {
/* this program takes as input three arguments.
Arg1 is the filename of the reference tree.
Arg2 is the prefix (including path if necessary) of the trees to be compared to the reference (bootstrapped trees)
OR Arg2 is a single file containing all the bootstrap trees, one per line.
Arg3 is the name of the output file (output tree with bootstrap values). */
int i, retcode;
/* int one_side; /\* to store a number of taxa seen on one side of a branch in the ref tree *\/ */
FILE *output_file = NULL;
FILE *intree_file = NULL;
FILE *boottree_file = NULL;
FILE *stat_file = NULL;
FILE *output_raw_file = NULL; /* Output tree file with edge bootstrap values noted as "id|avgdist|topo_depth" */
// char *input_tree = NULL;
// char *boot_trees = NULL;
// char *out_tree = NULL;
// char *out_raw_tree = NULL;
// char *stat_out = NULL;
Tree *ref_tree;
Tree *ref_raw_tree = NULL; /* For raw support at edges : id|avgdist|depth */
char **alt_tree_strings;
char *algo = "tbe";
// int quiet = 0;
// int num_threads = 1;
double dist_cutoff = 0.3;
/* If true, compute and print in the log file the (normalized) number of moves of each taxa for all branches */
int count_per_branch = 0;
static struct option long_options[] = {
{"input", required_argument, 0, 'i'},
{"boot" , required_argument, 0, 'b'},
{"out" , required_argument, 0, 'o'},
{"out-raw" , required_argument, 0, 'r'},
{"count-per-branch", no_argument, 0, 'c'},
{"stat-file" , required_argument, 0, 'S'},
{"algo" , required_argument, 0, 'a'},
{"dist-cutoff" , required_argument, 0, 'd'},
{"num-threads", required_argument, 0,'@'},
{"help" , no_argument , 0, 'h'},
{"version", no_argument , 0, 'v'},
{"quiet", no_argument , 0, 'q'},
{0, 0, 0, 0}
};
opterr = 0;
int option_index = 0;
int c = 0;
/*
while ((c = getopt_long(argc, argv, "i:a:b:d:o:cs:@:S:n:r:hvq", long_options, &option_index)) != -1){
switch (c){
case 'i': input_tree = optarg; break;
case 'b': boot_trees = optarg; break;
case 'o': out_tree = optarg; break;
case '@': num_threads=strtol(optarg,NULL,10); break;
case 'a': algo = optarg; break;
case 'c': count_per_branch=1; break;
case 'd': sscanf(optarg,"%lf",&dist_cutoff); break;
case 'S': stat_out = optarg; break;
case 'r': out_raw_tree = optarg; break;
case 'q': quiet = 1; break;
case 'h': usage(stdout,argv[0]); return EXIT_SUCCESS; break;
case 'v': version(stdout,argv[0]); return EXIT_SUCCESS; break;
case ':': fprintf(stderr, "Option -%c requires an argument\n", optopt); return EXIT_FAILURE; break;
case '?': fprintf(stderr, "Option -%c is undefined\n", optopt); return EXIT_FAILURE; break;
}
}
if(strcmp(algo,"tbe") && strcmp(algo,"fbp")){
fprintf(stderr,"Algo option must be one of \"tbe\" or \"fbp\"\n");
Generic_Exit(__FILE__,__LINE__,__FUNCTION__,EXIT_FAILURE);
}
if (argc < optind || input_tree == NULL || boot_trees == NULL){
fprintf(stderr,"An option is missing\n");
usage(stderr,argv[0]);
Generic_Exit(__FILE__,__LINE__,__FUNCTION__,EXIT_FAILURE);
}
if(num_threads>0){
if(num_threads > omp_get_max_threads())
num_threads = omp_get_max_threads();
}else{
num_threads = 1;
}
omp_set_num_threads(num_threads);
*/
if(stat_out !=NULL){
stat_file = fopen(stat_out,"w");
if(stat_file == NULL){
fprintf(stderr,"File %s not found or not writable. Aborting.\n", stat_out);
Generic_Exit(__FILE__,__LINE__,__FUNCTION__,EXIT_FAILURE);
}
} else stat_file = NULL;
/* writing the output tree to the file given on the commandline */
if(out_tree == NULL){
output_file = stdout;
}else{
output_file = fopen(out_tree,"w");
if(output_file == NULL){
fprintf(stderr,"File %s not found or not writable. Aborting.\n", out_tree);
Generic_Exit(__FILE__,__LINE__,__FUNCTION__,EXIT_FAILURE);
}
}
/* writing the output tree to the file given on the commandline */
if(out_raw_tree != NULL){
output_raw_file = fopen(out_raw_tree,"w");
if(output_raw_file == NULL){
fprintf(stderr,"File %s not found or not writable. Aborting.\n", out_raw_tree);
Generic_Exit(__FILE__,__LINE__,__FUNCTION__,EXIT_FAILURE);
}
}
/*
if(!quiet) printOptions(stderr, input_tree, boot_trees, out_tree, out_raw_tree, stat_out, algo, num_threads, quiet, dist_cutoff, count_per_branch);
*/
intree_file = fopen(input_tree,"r");
if (intree_file == NULL) {
fprintf(stderr,"File %s not found or impossible to access media. Aborting.\n", input_tree);
Generic_Exit(__FILE__,__LINE__,__FUNCTION__,EXIT_FAILURE);
}
/* we copy the tree into a large string */
unsigned int treefilesize = 3 * tell_size_of_one_tree(input_tree);
if (treefilesize > MAX_TREELENGTH) {
fprintf(stderr,"Tree filesize for %s bigger than %d bytes: are you sure it's a valid NH tree? Aborting.\n", input_tree, MAX_TREELENGTH/3);
Generic_Exit(__FILE__,__LINE__,__FUNCTION__,EXIT_FAILURE);
}
char *big_string = (char*) calloc(treefilesize+1, sizeof(char));
retcode = copy_nh_stream_into_str(intree_file, big_string);
if (retcode != 1) {
fprintf(stderr,"Unexpected EOF while parsing the reference tree! Aborting.\n");
Generic_Exit(__FILE__,__LINE__,__FUNCTION__,EXIT_FAILURE);
}
fclose(intree_file);
/* and then feed this string to the parser */
char** taxname_lookup_table = NULL;
ref_tree = complete_parse_nh(big_string, &taxname_lookup_table); /* sets taxname_lookup_table en passant */
if(out_raw_tree !=NULL){
ref_raw_tree = complete_parse_nh(big_string, &taxname_lookup_table); /* sets taxname_lookup_table en passant */
}
/***********************************************************************/
/* Establishing the list of bootstrapped trees we are going to analyze */
/***********************************************************************/
int init_boot_trees = 10;
int i_tree;
int num_trees = 0; /* this is the number of trees really analyzed */
alt_tree_strings = malloc(init_boot_trees * sizeof(char*));
boottree_file = fopen(boot_trees,"r");
if (boottree_file == NULL) {
fprintf(stderr,"File %s not found or impossible to access media. Aborting.\n", boot_trees);
Generic_Exit(__FILE__,__LINE__,__FUNCTION__,EXIT_FAILURE);
}
if (tell_size_of_one_tree(boot_trees) > treefilesize /* this value is still reachable */) {
fprintf(stderr,"error: size of one alternate tree bigger than three times the size of the ref tree! Aborting.\n");
Generic_Exit(__FILE__,__LINE__,__FUNCTION__,EXIT_FAILURE);
}
/* we copy the tree into a large string */
while(copy_nh_stream_into_str(boottree_file, big_string)) /* reads from the current point in the stream, retcode 1 iff no error */
{
if(num_trees >= init_boot_trees){
alt_tree_strings = realloc(alt_tree_strings,init_boot_trees*2*sizeof(char*));
init_boot_trees *= 2;
}
alt_tree_strings[num_trees] = strdup(big_string);
num_trees++;
}
fclose(boottree_file);
if(!quiet) fprintf(stderr,"Num trees: %d\n",num_trees);
if(!strcmp(algo,"tbe")){
tbe(ref_tree, ref_raw_tree, alt_tree_strings, taxname_lookup_table, stat_file, num_trees, quiet, dist_cutoff, count_per_branch);
}else{
fbp(ref_tree, alt_tree_strings, taxname_lookup_table, num_trees, quiet);
}
write_nh_tree(ref_tree, output_file);
if(output_raw_file!=NULL && ref_raw_tree!=NULL){
write_nh_tree(ref_raw_tree, output_raw_file);
}
fclose(output_file);
if(stat_file != NULL) fclose(stat_file);
// FREEING STUFF
free(big_string);
/* free the stuff for the calculation of the mast-like distances */
for(i_tree=0; i_tree < num_trees;i_tree++){
free(alt_tree_strings[i_tree]);
}
free(alt_tree_strings);
/* we also have to free the taxname lookup table */
for(i=0; i < ref_tree->nb_taxa; i++) free(taxname_lookup_table[i]); /* freeing (char*)'s */
free(taxname_lookup_table); /* which is a (char**) */
free_tree(ref_tree);
return 0;
}
void fbp(Tree *ref_tree, char **alt_tree_strings,char** taxname_lookup_table, int num_trees, int quiet){
int j;
Tree *alt_tree;
int i_tree,i;
short unsigned* nb_found = malloc(ref_tree->nb_edges * sizeof(short unsigned));
double support;
// We initialize the reference edge hashmap
bitset_hashmap *hm = new_bitset_hashmap(ref_tree->nb_edges*2, 0.75);
for(i=0; i< ref_tree->nb_edges; i++){
nb_found[i] = 0;
bitset_hashmap_putvalue(hm,ref_tree->a_edges[i]->hashtbl[1],ref_tree->nb_taxa,i);
}
#pragma omp parallel for private( j, alt_tree, support) shared(nb_found, hm, ref_tree, alt_tree_strings, taxname_lookup_table, quiet, num_trees) schedule(dynamic)
for(i_tree=0; i_tree< num_trees; i_tree++){
if(!quiet) fprintf(stderr,"New bootstrap tree : %d\n",i_tree);
alt_tree = complete_parse_nh(alt_tree_strings[i_tree], &taxname_lookup_table);
if (alt_tree == NULL) {
fprintf(stderr,"Not a correct NH tree (%d). Skipping.\n%s\n",i_tree,alt_tree_strings[i_tree]);
continue; /* some files maybe not containing trees */
}
if (alt_tree->nb_taxa != ref_tree->nb_taxa) {
fprintf(stderr,"This tree doesn't have the same number of taxa as the reference tree. Skipping.\n");
continue; /* some files maybe not containing trees */
}
/****************************************************/
/* comparison of the bipartitions, FBP method */
/****************************************************/
for (j = 0; j < alt_tree->nb_edges; j++) {
// We query the hashmap to see if the edge is present, and then get its reference index
int refindex = bitset_hashmap_value(hm, alt_tree->a_edges[j]->hashtbl[1], alt_tree->nb_taxa);
if (refindex>-1){
#pragma omp atomic update
nb_found[refindex]++;
}
}
free_tree(alt_tree);
}
#pragma omp barrier
if(num_trees != 0) {
for (i = 0; i < ref_tree->nb_edges; i++) {
if(ref_tree->a_edges[i]->right->nneigh == 1) { continue; }
/* the bootstrap value for a branch is inscribed as the name of its descendant (always right side of the edge, by convention) */
if(ref_tree->a_edges[i]->right->name) free(ref_tree->a_edges[i]->right->name); /* clear name if existing */
ref_tree->a_edges[i]->right->name = (char*) malloc(16 * sizeof(char));
support = (double) nb_found[i] * 1.0 / num_trees;
sprintf(ref_tree->a_edges[i]->right->name, "%.6f", support);
ref_tree->a_edges[i]->branch_support = support;
}
}
free(nb_found);
free_bitset_hashmap(hm);
}
void tbe(Tree *ref_tree, Tree *ref_raw_tree, char **alt_tree_strings,char** taxname_lookup_table, FILE *stat_file, int num_trees, int quiet, double dist_cutoff, int count_per_branch){
short unsigned** c_matrix;
short unsigned** i_matrix;
short unsigned** hamming;
short unsigned* min_dist_edge; /* array of edge ids corresponding to min Hamming distances */
short unsigned* min_dist;
int i,j;
int m = ref_tree->nb_edges;
int n = ref_tree->nb_taxa;
Tree *alt_tree;
int i_tree;
int *dist_accu = (int*) calloc(m,sizeof(int)); /* array of distance sums, one per branch. Initialized to 0. */
int **dist_accu_tmp;
double *moved_species_counts; /* array of average branch rate in which each taxon moves */
int *moved_species; /* array of number of branches in which each taxon moves, in one bootstrap tree: initialized at each bootstrap tree */
/** Max number of branches we can see in the bootstrap tree: If it has no multifurcation : binary tree--> ntax*2-2 (if rooted...) */
int max_branches_boot = ref_tree->nb_taxa*2-2;
/* array a[i][j] of number of bootstrap tree from which each taxon j moves around the branch i and that are closer than given distance */
int **moved_species_counts_per_branch;
if(stat_file != NULL && count_per_branch){
moved_species_counts_per_branch = (int**) calloc(m,sizeof(int*));
for(i=0;i<m;i++){
moved_species_counts_per_branch[i] = (int*) calloc(n,sizeof(int));
}
}
dist_accu_tmp = (int**) calloc(num_trees,sizeof(int*)); /* array of distance sums, one per boot tree and branch. Initialized to 0. */
for(i_tree=0; i_tree< num_trees; i_tree++){
dist_accu_tmp[i_tree] = (int*) calloc(m,sizeof(int)); /* array of distance sums, one per branch. Initialized to 0. */
}
moved_species_counts = (double*) calloc(m,sizeof(double)); /* array of average branch rate in which each taxon moves */
#pragma omp parallel for private(min_dist,c_matrix,i_matrix,hamming,min_dist_edge, i, alt_tree, moved_species) shared(max_branches_boot, ref_tree, alt_tree_strings, dist_accu_tmp, taxname_lookup_table, m, moved_species_counts, moved_species_counts_per_branch) schedule(dynamic)
for(i_tree=0; i_tree< num_trees; i_tree++){
if(!quiet) fprintf(stderr,"New bootstrap tree : %d\n",i_tree);
alt_tree = complete_parse_nh(alt_tree_strings[i_tree], &taxname_lookup_table);
if (alt_tree == NULL) {
fprintf(stderr,"Not a correct NH tree (%d). Skipping.\n%s\n",i_tree,alt_tree_strings[i_tree]);
continue; /* some files maybe not containing trees */
}
if (alt_tree->nb_taxa != n) {
fprintf(stderr,"This tree doesn't have the same number of taxa as the reference tree. Skipping.\n");
continue; /* some files maybe not containing trees */
}
/* resetting the arrays that need be reset. By construction of the post-order traversal,
the other arrays (i_matrix, c_matrix and hamming) need not be reset. */
reset_matrices(n, m, max_branches_boot, &c_matrix, &i_matrix, &hamming, &min_dist,&min_dist_edge);
/****************************************************/
/* comparison of the bipartitions, Transfer method */
/****************************************************/
/* calculation of the C and I matrices (see Brehelin/Gascuel/Martin) */
update_all_i_c_post_order_ref_tree(ref_tree, alt_tree, i_matrix, c_matrix);
update_all_i_c_post_order_boot_tree(ref_tree, alt_tree, i_matrix, c_matrix, hamming, min_dist, min_dist_edge);
/* Looking at number of times each taxon moves around low distance branches */
moved_species = (int*) calloc(n,sizeof(int));
int nb_branches_close=0;
int j;
for(i=0;i<m;i++){
Edge* re = ref_tree->a_edges[i];
if (re->right->nneigh == 1) continue;
Edge* be = alt_tree->a_edges[min_dist_edge[i]];
double norm = ((double)min_dist[i]) * 1.0 / (((double)re->topo_depth) - 1.0);
int mindepth = (int)(ceil(1.0/dist_cutoff + 1.0));
int* sm = species_to_move(re, be, min_dist[i], n);
for(j=0;j<min_dist[i];j++){
if (norm <= dist_cutoff && re->topo_depth >= mindepth ){
moved_species[sm[j]]++;
}
if(stat_file != NULL && count_per_branch){
#pragma omp atomic update
moved_species_counts_per_branch[i][sm[j]]++;
}
}
if (norm <= dist_cutoff && re->topo_depth >= mindepth ){
nb_branches_close++;
}
free(sm);
}
/* output, just to see */
for (i = 0; i < m; i++) {
/* Just backup for pvalue computation */
dist_accu_tmp[i_tree][i] = min_dist[i];
}
for (i=0; i < n; i++){
#pragma omp atomic update
moved_species_counts[i] += ((double)moved_species[i])*1.0/((double)nb_branches_close);
}
free_matrices(m, &c_matrix, &i_matrix, &hamming, &min_dist,&min_dist_edge);
free_tree(alt_tree);
free(moved_species);
}
#pragma omp barrier
for (i = 0; i < m; i++){
for(i_tree=0; i_tree < num_trees; i_tree++){
dist_accu[i] += dist_accu_tmp[i_tree][i];
}
}
int card;
double bootstrap_val, avg_dist;
if(num_trees != 0) {
if(stat_file != NULL)
fprintf(stat_file,"EdgeId\tDepth\tMeanMinDist\n");
/* OUTPUT FINAL STATISTICS and UPDATE REF TREE WITH BOOTSTRAP VALUES */
for (i = 0; i < ref_tree->nb_edges; i++) {
if(ref_tree->a_edges[i]->right->nneigh == 1) { continue; }
/* the bootstrap value for a branch is inscribed as the name of its descendant (always right side of the edge, by convention) */
if(ref_tree->a_edges[i]->right->name) free(ref_tree->a_edges[i]->right->name); /* clear name if existing */
ref_tree->a_edges[i]->right->name = (char*) malloc(16 * sizeof(char));
card = ref_tree->a_edges[i]->hashtbl[1]->num_items;
if (card > n/2) { card = n - card; }
avg_dist = (double) dist_accu[i] * 1.0 / num_trees;
bootstrap_val = (double) 1.0 - avg_dist * 1.0 / (1.0 * ref_tree->a_edges[i]->topo_depth-1.0);
if(stat_file != NULL)
fprintf(stat_file,"%d\t%d\t%f\n", i, (ref_tree->a_edges[i]->topo_depth), avg_dist);
sprintf(ref_tree->a_edges[i]->right->name, "%.6f", bootstrap_val);
ref_tree->a_edges[i]->branch_support = bootstrap_val;
if(ref_raw_tree!=NULL){
/* the bootstrap value for a branch is inscribed as the name of its descendant as id|avgdist|depth */
if(ref_raw_tree->a_edges[i]->right->name) free(ref_raw_tree->a_edges[i]->right->name); /* clear name if existing */
ref_raw_tree->a_edges[i]->right->name = (char*) malloc(16 * sizeof(char));
card = ref_raw_tree->a_edges[i]->hashtbl[1]->num_items;
if (card > n/2) { card = n - card; }
avg_dist = (double) dist_accu[i] * 1.0 / num_trees;
sprintf(ref_raw_tree->a_edges[i]->right->name, "%d|%.6f|%d", ref_raw_tree->a_edges[i]->id, avg_dist,ref_tree->a_edges[i]->topo_depth);
}
}
if(stat_file != NULL){
fprintf(stat_file,"Taxon\ttIndex\n");
for(i=0; i<n;i++){
fprintf(stat_file,"%s\t%f\n", taxname_lookup_table[i], moved_species_counts[i]*100.0 / ((double)num_trees));
}
}
}
if(stat_file != NULL && count_per_branch){
fprintf(stat_file,"Edge\tSupport");
for(i=0; i<n;i++){
fprintf(stat_file,"\t%s", taxname_lookup_table[i]);
}
fprintf(stat_file,"\n");
for(i=0; i<m;i++){
if(ref_tree->a_edges[i]->right->nneigh == 1) { continue; }
fprintf(stat_file,"%d\t%s", i,ref_tree->a_edges[i]->right->name);
for(j=0;j<n;j++){
fprintf(stat_file,"\t%f",moved_species_counts_per_branch[i][j]*1.0/num_trees);
}
fprintf(stat_file,"\n");
}
for(i=0;i<m;i++){
free(moved_species_counts_per_branch[i]);
}
free(moved_species_counts_per_branch);
}
free(dist_accu);
for(i_tree=0; i_tree < num_trees;i_tree++){
free(dist_accu_tmp[i_tree]);
}
free(dist_accu_tmp);
free(moved_species_counts);
}
// Returns the list of id of species to move to go from one branch to the other
// Its length should correspond to given dist
// If not, exit with an error
int* species_to_move(Edge* re, Edge* be, int dist, int nb_taxa) {
int i;
int maxnb = dist;
if(nb_taxa-dist >= dist) maxnb=nb_taxa-dist;
int *diff = calloc(maxnb,sizeof(int));
int *equ = calloc(maxnb,sizeof(int));
int nbdiff=0, nbequ=0;
for(i = 0; i < nb_taxa; i++) {
if(lookup_id(re->hashtbl[1],i) != lookup_id(be->hashtbl[1],i)){
diff[nbdiff]=i;
nbdiff++;
} else {
equ[nbequ] = i;
nbequ++;
}
}
if(nbdiff < nbequ){
if(nbdiff != dist){
fprintf(stderr,"Length of moved species array (%d) is not equal to the minimum distance found (%d)\n", nbdiff, dist);
Generic_Exit(__FILE__,__LINE__,__FUNCTION__,EXIT_FAILURE);
}
free(equ);
return diff;
}
if(nbequ != dist){
fprintf(stderr,"Length of moved species array (%d) is not equal to the minimum distance found (%d)\n", nbequ, dist);
Generic_Exit(__FILE__,__LINE__,__FUNCTION__,EXIT_FAILURE);
}
free(diff);
return equ;
}
|