File: booster.c

package info (click to toggle)
iqtree 2.0.7%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 14,620 kB
  • sloc: cpp: 142,571; ansic: 57,789; sh: 275; python: 242; makefile: 95
file content (629 lines) | stat: -rw-r--r-- 26,332 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
/*

BOOSTER: BOOtstrap Support by TransfER: 
BOOSTER is an alternative method to compute bootstrap branch supports 
in large trees. It uses transfer distance between bipartitions, instead
of perfect match.

Copyright (C) 2017 Frederic Lemoine, Jean-Baka Domelevo Entfellner, Olivier Gascuel

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.

*/

#include "io.h"
#include "tree.h"
#include "bitset_index.h"

#include <string.h> /* for strcpy, strdup, etc */
#include <getopt.h>
#ifdef _OPENMP
#include <omp.h> /* OpenMP */
#endif
#include <math.h>

#include "version.h"

/**
   A large part of the code was initally implemented by Jean-Baka Domelevo-Entfellner 
   (tree structures, tbe algorithm)
*/

void tbe(Tree *ref_tree, Tree *ref_raw_tree, char **alt_tree_strings,char** taxname_lookup_table, FILE *stat_file, int num_trees, int quiet, double dist_cutoff,int count_per_branch);
void fbp(Tree *ref_tree, char **alt_tree_strings,char** taxname_lookup_table, int num_trees, int quiet);
int* species_to_move(Edge* re, Edge* be, int dist, int nb_taxa);
/*
void usage(FILE * out,char *name){
  fprintf(out,"Usage: ");
  fprintf(out,"%s -i <ref tree file (newick)> -b <bootstrap tree file (newick)> [-@ <cpus> -d <dist_cutoff> -r <raw distance output tree file> -S <stat file> -o <output tree> -v]\n",name);
  fprintf(out,"Options:\n");
  fprintf(out,"      -i, --input            : Input tree file\n");
  fprintf(out,"      -b, --boot             : Bootstrap tree file (1 file containing all bootstrap trees)\n");
  fprintf(out,"      -o, --out              : Output file (optional) with normalized support values, default : stdout\n");
  fprintf(out,"      -r, --out-raw          : Output file (optional) with raw support values in the form of id|avgdist|depth, default : none\n");
  fprintf(out,"      -@, --num-threads      : Number of threads (default 1)\n");
  fprintf(out,"      -S, --stat-file        : Prints output statistics for each branch in the given output file (optional)\n");
  fprintf(out,"      -c, --count-per-branch : Prints individual taxa moves for each branches in the log file (only with -S & -a tbe)\n");
  fprintf(out,"      -d, --dist-cutoff      : Distance cutoff to consider a branch for taxa transfer index computation (-a tbe only, default 0.3)\n");
  fprintf(out,"      -a, --algo             : tbe or fbp (default tbe)\n");
  fprintf(out,"      -q, --quiet            : Does not print progress messages during analysis\n");
  fprintf(out,"      -v, --version          : Prints version (optional)\n");
  fprintf(out,"      -h, --help             : Prints this help\n");
  fprintf(out,"\n");
  fprintf(out,"If you use BOOSTER, please cite:\n");
  fprintf(out,"Renewing Felsenstein's Phylogenetic Bootstrap in the Era of Big Data\n");
  fprintf(out,"F. Lemoine, J.-B. Domelevo-Entfellner, E. Wilkinson, D. Correia, M. Davila Felipe, T. De Oliveira, O. Gascuel.\n");
  fprintf(out,"Nature 556, 452-456 (2018)\n");
}

void printOptions(FILE * out,char* input_tree,char * boot_trees, char * output_tree, char * output_raw_tree, char *output_stat, char *algo, int nb_threads, int quiet, double dist_cutoff, int count_per_branch){
  fprintf(out,"**************************\n");
  fprintf(out,"*         Options        *\n");
  fprintf(out,"**************************\n");
  short_version(out);
  fprintf(out,"Input Tree      : %s\n", input_tree);
  fprintf(out,"Bootstrap Trees : %s\n", boot_trees);
  if(output_tree==NULL)
    fprintf(out,"Output tree     : stdout\n");
  else
    fprintf(out,"Output tree     : %s\n",output_tree);
  if(output_raw_tree!=NULL)
    fprintf(out,"Output raw tree : %s\n",output_raw_tree);
  if(output_stat==NULL)
    fprintf(out,"Stat file       : None\n");
  else
    fprintf(out,"Stat file       : %s\n",output_stat);
  fprintf(out,"Algo            : %s\n", algo);
  if(count_per_branch){
    fprintf(out,"Count tax move/branch: true\n");
  }else{
    fprintf(out,"Count tax move/branch: false\n");
  }
  fprintf(out,"Threads         : %d\n", nb_threads);
  fprintf(out,"Dist cutoff     : %f\n", dist_cutoff);
  if(quiet)
    fprintf(out,"Quiet           : true\n");
  else
    fprintf(out,"Quiet           : false\n");
  fprintf(out,"**************************\n");
}
*/
void reset_matrices(int nb_taxa, int nb_edges_ref, int nb_edges_boot, short unsigned*** c_matrix, short unsigned*** i_matrix, short unsigned*** hamming, short unsigned** min_dist, short unsigned** min_dist_edges){
  int i;
  (*min_dist) = (short unsigned*) malloc(nb_edges_ref*sizeof(short unsigned)); /* array of min Hamming distances */
  (*min_dist_edges) = (short unsigned*) malloc(nb_edges_ref*sizeof(short unsigned)); /* array of edge ids corresponding to min Hamming distances */
  (*c_matrix) = (short unsigned**) malloc(nb_edges_ref*sizeof(short unsigned*)); /* matrix of cardinals of complements */
  (*i_matrix) = (short unsigned**) malloc(nb_edges_ref*sizeof(short unsigned*)); /* matrix of cardinals of intersections */
  (*hamming) = (short unsigned**) malloc(nb_edges_ref*sizeof(short unsigned*)); /* matrix of Hamming distances */
  for (i=0; i<nb_edges_ref; i++){
    (*c_matrix)[i] = (short unsigned*) malloc(nb_edges_boot*sizeof(short unsigned));
    (*i_matrix)[i] = (short unsigned*) malloc(nb_edges_boot*sizeof(short unsigned));
    (*hamming)[i] = (short unsigned*) malloc(nb_edges_boot*sizeof(short unsigned));
    (*min_dist)[i] = nb_taxa; /* initialization to the nb of taxa */
  }
}

void free_matrices(int nb_edges_ref, short unsigned*** c_matrix, short unsigned*** i_matrix, short unsigned*** hamming, short unsigned** min_dist, short unsigned** min_dist_edges){
  int i;
  for (i=0; i<nb_edges_ref; i++) {
    free((*c_matrix)[i]);
    free((*i_matrix)[i]);
    free((*hamming)[i]);
  }
  free((*c_matrix));
  free((*i_matrix));
  free((*hamming));
  free((*min_dist));
  free((*min_dist_edges));
}

int main_booster (const char* input_tree, const char *boot_trees,
    const char* out_tree, const char* out_raw_tree, const char* stat_out,
    int quiet) {
  /* this program takes as input three arguments.
     Arg1 is the filename of the reference tree.
     Arg2 is the prefix (including path if necessary) of the trees to be compared to the reference (bootstrapped trees)
     OR Arg2 is a single file containing all the bootstrap trees, one per line.
     Arg3 is the name of the output file (output tree with bootstrap values). */

  int i, retcode;
  /* int one_side; /\* to store a number of taxa seen on one side of a branch in the ref tree *\/ */

  FILE *output_file = NULL;
  FILE *intree_file = NULL;
  FILE *boottree_file = NULL;
  FILE *stat_file = NULL;
  FILE *output_raw_file = NULL; /* Output tree file with edge bootstrap values noted as "id|avgdist|topo_depth" */
  
//  char *input_tree = NULL;
//  char *boot_trees = NULL;
//  char *out_tree = NULL;
//  char *out_raw_tree = NULL;
//  char *stat_out = NULL;

  Tree *ref_tree;
  Tree *ref_raw_tree = NULL; /* For raw support at edges : id|avgdist|depth */
  char **alt_tree_strings;

  char *algo = "tbe";
  
//  int quiet = 0;
  
//  int num_threads = 1;

  double dist_cutoff = 0.3;

  /* If true, compute and print in the log file the (normalized) number of moves of each taxa for all branches */
  int count_per_branch = 0;
	
  static struct option long_options[] = {
    {"input", required_argument, 0, 'i'},
    {"boot" , required_argument, 0, 'b'},
    {"out"  , required_argument, 0, 'o'},
    {"out-raw"  , required_argument, 0, 'r'},
    {"count-per-branch", no_argument, 0, 'c'},
    {"stat-file" , required_argument, 0, 'S'},
    {"algo" , required_argument, 0, 'a'},
    {"dist-cutoff" , required_argument, 0, 'd'},
    {"num-threads", required_argument, 0,'@'},
    {"help" , no_argument      , 0, 'h'},
    {"version", no_argument      , 0, 'v'},
    {"quiet", no_argument      , 0, 'q'},
    {0, 0, 0, 0}
  };

  opterr = 0;
  int option_index = 0;
  int c = 0;
    /*
  while ((c = getopt_long(argc, argv, "i:a:b:d:o:cs:@:S:n:r:hvq", long_options, &option_index)) != -1){
    switch (c){
    case 'i': input_tree = optarg; break;
    case 'b': boot_trees = optarg; break;
    case 'o': out_tree = optarg; break;
    case '@': num_threads=strtol(optarg,NULL,10); break; 
    case 'a': algo = optarg; break;
    case 'c': count_per_branch=1; break;
    case 'd': sscanf(optarg,"%lf",&dist_cutoff); break;
    case 'S': stat_out = optarg; break;
    case 'r': out_raw_tree = optarg; break;
    case 'q': quiet = 1; break;
    case 'h': usage(stdout,argv[0]); return EXIT_SUCCESS; break; 
    case 'v': version(stdout,argv[0]); return EXIT_SUCCESS; break;
    case ':': fprintf(stderr, "Option -%c requires an argument\n", optopt); return EXIT_FAILURE; break;
    case '?': fprintf(stderr, "Option -%c is undefined\n", optopt); return EXIT_FAILURE; break;
    }
  }

  if(strcmp(algo,"tbe") && strcmp(algo,"fbp")){
    fprintf(stderr,"Algo option must be one of \"tbe\" or \"fbp\"\n");
    Generic_Exit(__FILE__,__LINE__,__FUNCTION__,EXIT_FAILURE);
  }
  
  if (argc < optind || input_tree == NULL || boot_trees == NULL){
    fprintf(stderr,"An option is missing\n");
    usage(stderr,argv[0]);
    Generic_Exit(__FILE__,__LINE__,__FUNCTION__,EXIT_FAILURE);
  }

  if(num_threads>0){
    if(num_threads > omp_get_max_threads())
      num_threads = omp_get_max_threads();
  }else{
    num_threads = 1;
  }
  omp_set_num_threads(num_threads);
*/
    
  if(stat_out !=NULL){
    stat_file = fopen(stat_out,"w");
    if(stat_file == NULL){
      fprintf(stderr,"File %s not found or not writable. Aborting.\n", stat_out);
      Generic_Exit(__FILE__,__LINE__,__FUNCTION__,EXIT_FAILURE);
    }
  } else stat_file = NULL;

  /* writing the output tree to the file given on the commandline */
  if(out_tree == NULL){
    output_file = stdout;
  }else{
    output_file = fopen(out_tree,"w");
    if(output_file == NULL){
      fprintf(stderr,"File %s not found or not writable. Aborting.\n", out_tree);
      Generic_Exit(__FILE__,__LINE__,__FUNCTION__,EXIT_FAILURE);
    }
  }

  /* writing the output tree to the file given on the commandline */
  if(out_raw_tree != NULL){
    output_raw_file = fopen(out_raw_tree,"w");
    if(output_raw_file == NULL){
      fprintf(stderr,"File %s not found or not writable. Aborting.\n", out_raw_tree);
      Generic_Exit(__FILE__,__LINE__,__FUNCTION__,EXIT_FAILURE);
    }
  }

  /*
  if(!quiet) printOptions(stderr, input_tree, boot_trees, out_tree, out_raw_tree, stat_out, algo, num_threads, quiet, dist_cutoff, count_per_branch);
*/
  intree_file = fopen(input_tree,"r");
  if (intree_file == NULL) {
    fprintf(stderr,"File %s not found or impossible to access media. Aborting.\n", input_tree);
    Generic_Exit(__FILE__,__LINE__,__FUNCTION__,EXIT_FAILURE);
  }

  /* we copy the tree into a large string */
  unsigned int treefilesize = 3 * tell_size_of_one_tree(input_tree);
  if (treefilesize > MAX_TREELENGTH) {
    fprintf(stderr,"Tree filesize for %s bigger than %d bytes: are you sure it's a valid NH tree? Aborting.\n", input_tree, MAX_TREELENGTH/3);
    Generic_Exit(__FILE__,__LINE__,__FUNCTION__,EXIT_FAILURE);
  }

  char *big_string = (char*) calloc(treefilesize+1, sizeof(char)); 
  retcode = copy_nh_stream_into_str(intree_file, big_string);
  if (retcode != 1) { 
    fprintf(stderr,"Unexpected EOF while parsing the reference tree! Aborting.\n"); 
    Generic_Exit(__FILE__,__LINE__,__FUNCTION__,EXIT_FAILURE);
  }
  fclose(intree_file);

  /* and then feed this string to the parser */
  char** taxname_lookup_table = NULL;
  ref_tree  = complete_parse_nh(big_string, &taxname_lookup_table); /* sets taxname_lookup_table en passant */
  if(out_raw_tree !=NULL){
    ref_raw_tree  = complete_parse_nh(big_string, &taxname_lookup_table); /* sets taxname_lookup_table en passant */
  }


  /***********************************************************************/
  /* Establishing the list of bootstrapped trees we are going to analyze */
  /***********************************************************************/
  int init_boot_trees = 10;
  int i_tree;
  int num_trees = 0; /* this is the number of trees really analyzed */

  alt_tree_strings = malloc(init_boot_trees * sizeof(char*));
  boottree_file = fopen(boot_trees,"r");
  if (boottree_file == NULL) {
    fprintf(stderr,"File %s not found or impossible to access media. Aborting.\n", boot_trees);
    Generic_Exit(__FILE__,__LINE__,__FUNCTION__,EXIT_FAILURE);
  }

  if (tell_size_of_one_tree(boot_trees) > treefilesize /* this value is still reachable */) {
    fprintf(stderr,"error: size of one alternate tree bigger than three times the size of the ref tree! Aborting.\n");
    Generic_Exit(__FILE__,__LINE__,__FUNCTION__,EXIT_FAILURE);
  }

  /* we copy the tree into a large string */
  while(copy_nh_stream_into_str(boottree_file, big_string)) /* reads from the current point in the stream, retcode 1 iff no error */
    {
      if(num_trees >= init_boot_trees){
	alt_tree_strings = realloc(alt_tree_strings,init_boot_trees*2*sizeof(char*));
	init_boot_trees *= 2;
      }
      alt_tree_strings[num_trees] = strdup(big_string);
      num_trees++;
    }
  fclose(boottree_file);

  if(!quiet)  fprintf(stderr,"Num trees: %d\n",num_trees);

  if(!strcmp(algo,"tbe")){
    tbe(ref_tree, ref_raw_tree, alt_tree_strings, taxname_lookup_table, stat_file, num_trees, quiet, dist_cutoff, count_per_branch);
  }else{
    fbp(ref_tree, alt_tree_strings, taxname_lookup_table, num_trees, quiet);
  }
  write_nh_tree(ref_tree, output_file);
  if(output_raw_file!=NULL && ref_raw_tree!=NULL){
    write_nh_tree(ref_raw_tree, output_raw_file);
  }

  fclose(output_file);
  if(stat_file != NULL) fclose(stat_file);
  // FREEING STUFF
  free(big_string);

  /* free the stuff for the calculation of the mast-like distances */
  for(i_tree=0; i_tree < num_trees;i_tree++){
    free(alt_tree_strings[i_tree]);
  }
  free(alt_tree_strings);

  /* we also have to free the taxname lookup table */
  for(i=0; i < ref_tree->nb_taxa; i++) free(taxname_lookup_table[i]); /* freeing (char*)'s */
  free(taxname_lookup_table); /* which is a (char**) */
  free_tree(ref_tree);
  return 0;
}


void fbp(Tree *ref_tree, char **alt_tree_strings,char** taxname_lookup_table, int num_trees, int quiet){
  int j;
  Tree *alt_tree;
  int i_tree,i;
  short unsigned* nb_found = malloc(ref_tree->nb_edges * sizeof(short unsigned));
  double support;
  // We initialize the reference edge hashmap
  bitset_hashmap *hm = new_bitset_hashmap(ref_tree->nb_edges*2, 0.75);

  for(i=0; i< ref_tree->nb_edges; i++){
    nb_found[i] = 0;
    bitset_hashmap_putvalue(hm,ref_tree->a_edges[i]->hashtbl[1],ref_tree->nb_taxa,i);
  }

 
#pragma omp parallel for private( j, alt_tree, support) shared(nb_found, hm, ref_tree, alt_tree_strings, taxname_lookup_table, quiet, num_trees) schedule(dynamic)
  for(i_tree=0; i_tree< num_trees; i_tree++){
    if(!quiet) fprintf(stderr,"New bootstrap tree : %d\n",i_tree);
    alt_tree = complete_parse_nh(alt_tree_strings[i_tree], &taxname_lookup_table);
    
    if (alt_tree == NULL) {
      fprintf(stderr,"Not a correct NH tree (%d). Skipping.\n%s\n",i_tree,alt_tree_strings[i_tree]);
      continue; /* some files maybe not containing trees */
    }
    if (alt_tree->nb_taxa != ref_tree->nb_taxa) {
      fprintf(stderr,"This tree doesn't have the same number of taxa as the reference tree. Skipping.\n");
      continue; /* some files maybe not containing trees */
    }

    /****************************************************/
    /*     comparison of the bipartitions, FBP method   */
    /****************************************************/		  
    for (j = 0; j <  alt_tree->nb_edges; j++) {
      // We query the hashmap to see if the edge is present, and then get its reference index
      int refindex = bitset_hashmap_value(hm, alt_tree->a_edges[j]->hashtbl[1], alt_tree->nb_taxa);
      if (refindex>-1){
	#pragma omp atomic update
	nb_found[refindex]++;
      }
    }
    free_tree(alt_tree);
  }

  #pragma omp barrier

  if(num_trees != 0) {
    for (i = 0; i <  ref_tree->nb_edges; i++) {
      if(ref_tree->a_edges[i]->right->nneigh == 1) { continue; }
      /* the bootstrap value for a branch is inscribed as the name of its descendant (always right side of the edge, by convention) */
      if(ref_tree->a_edges[i]->right->name) free(ref_tree->a_edges[i]->right->name); /* clear name if existing */
      ref_tree->a_edges[i]->right->name = (char*) malloc(16 * sizeof(char));
      support   = (double) nb_found[i] * 1.0 / num_trees;
      sprintf(ref_tree->a_edges[i]->right->name, "%.6f", support);
      ref_tree->a_edges[i]->branch_support = support;
    }
  }
  free(nb_found);
  free_bitset_hashmap(hm);
}

void tbe(Tree *ref_tree, Tree *ref_raw_tree, char **alt_tree_strings,char** taxname_lookup_table, FILE *stat_file, int num_trees, int quiet, double dist_cutoff, int count_per_branch){
  short unsigned** c_matrix;
  short unsigned** i_matrix;
  short unsigned** hamming;
  short unsigned* min_dist_edge; /* array of edge ids corresponding to min Hamming distances */
  short unsigned* min_dist;
  int i,j;
  int m = ref_tree->nb_edges;
  int n = ref_tree->nb_taxa;
  Tree *alt_tree;
  int i_tree;
  int *dist_accu      = (int*) calloc(m,sizeof(int)); /* array of distance sums, one per branch. Initialized to 0. */
  int **dist_accu_tmp;
  double *moved_species_counts;  /* array of average branch rate in which each taxon moves */
  int *moved_species; /* array of number of branches in which each taxon moves, in one bootstrap tree: initialized at each bootstrap tree */
  /** Max number of branches we can see in the bootstrap tree: If it has no multifurcation : binary tree--> ntax*2-2 (if rooted...) */
  int max_branches_boot = ref_tree->nb_taxa*2-2;
  
  /* array a[i][j] of number of bootstrap tree from which each taxon j moves around the branch i and that are closer than given distance */
  int **moved_species_counts_per_branch;

  if(stat_file != NULL && count_per_branch){
    moved_species_counts_per_branch = (int**) calloc(m,sizeof(int*));
    for(i=0;i<m;i++){
      moved_species_counts_per_branch[i]  = (int*) calloc(n,sizeof(int));
    }
  }
  dist_accu_tmp = (int**) calloc(num_trees,sizeof(int*)); /* array of distance sums, one per boot tree and branch. Initialized to 0. */
  for(i_tree=0; i_tree< num_trees; i_tree++){
    dist_accu_tmp[i_tree]  = (int*) calloc(m,sizeof(int)); /* array of distance sums, one per branch. Initialized to 0. */
  }
  moved_species_counts = (double*) calloc(m,sizeof(double)); /* array of average branch rate in which each taxon moves */

#pragma omp parallel for private(min_dist,c_matrix,i_matrix,hamming,min_dist_edge, i, alt_tree, moved_species) shared(max_branches_boot, ref_tree, alt_tree_strings, dist_accu_tmp, taxname_lookup_table, m, moved_species_counts, moved_species_counts_per_branch) schedule(dynamic)
  for(i_tree=0; i_tree< num_trees; i_tree++){
    if(!quiet) fprintf(stderr,"New bootstrap tree : %d\n",i_tree);
    alt_tree = complete_parse_nh(alt_tree_strings[i_tree], &taxname_lookup_table);
    
    if (alt_tree == NULL) {
      fprintf(stderr,"Not a correct NH tree (%d). Skipping.\n%s\n",i_tree,alt_tree_strings[i_tree]);
      continue; /* some files maybe not containing trees */
    }
    if (alt_tree->nb_taxa != n) {
      fprintf(stderr,"This tree doesn't have the same number of taxa as the reference tree. Skipping.\n");
      continue; /* some files maybe not containing trees */
    }

    /* resetting the arrays that need be reset. By construction of the post-order traversal,
       the other arrays (i_matrix, c_matrix and hamming) need not be reset. */
    reset_matrices(n, m, max_branches_boot, &c_matrix, &i_matrix, &hamming, &min_dist,&min_dist_edge);

    /****************************************************/
    /* comparison of the bipartitions, Transfer method */
    /****************************************************/		  
    /* calculation of the C and I matrices (see Brehelin/Gascuel/Martin) */
    update_all_i_c_post_order_ref_tree(ref_tree, alt_tree, i_matrix, c_matrix);
    update_all_i_c_post_order_boot_tree(ref_tree, alt_tree, i_matrix, c_matrix, hamming, min_dist, min_dist_edge);

    /* Looking at number of times each taxon moves around low distance branches */
    moved_species = (int*) calloc(n,sizeof(int));
    int nb_branches_close=0;
    int j;
    for(i=0;i<m;i++){
      Edge* re = ref_tree->a_edges[i];
      if (re->right->nneigh == 1) continue;
      Edge* be = alt_tree->a_edges[min_dist_edge[i]];

      double norm  = ((double)min_dist[i]) * 1.0 / (((double)re->topo_depth) - 1.0);
      int mindepth = (int)(ceil(1.0/dist_cutoff + 1.0));
      int* sm = species_to_move(re, be, min_dist[i], n);
      for(j=0;j<min_dist[i];j++){
	if (norm <= dist_cutoff && re->topo_depth >= mindepth ){
	  moved_species[sm[j]]++;
	}
	if(stat_file != NULL && count_per_branch){
          #pragma omp atomic update
	  moved_species_counts_per_branch[i][sm[j]]++;
	}
      }
      if (norm <= dist_cutoff && re->topo_depth >= mindepth ){
	nb_branches_close++;
      }
      free(sm);
    }

    /* output, just to see */
    for (i = 0; i < m; i++) {
      /* Just backup for pvalue computation */
      dist_accu_tmp[i_tree][i] = min_dist[i];
    }
    for (i=0; i < n; i++){
      #pragma omp atomic update
      moved_species_counts[i] += ((double)moved_species[i])*1.0/((double)nb_branches_close);
    }

    free_matrices(m, &c_matrix, &i_matrix, &hamming, &min_dist,&min_dist_edge);
    free_tree(alt_tree);
    free(moved_species);
  }

  #pragma omp barrier

  for (i = 0; i < m; i++){
    for(i_tree=0; i_tree < num_trees; i_tree++){
      dist_accu[i] += dist_accu_tmp[i_tree][i];
    }
  }

  int card;
  double bootstrap_val, avg_dist;
		
  if(num_trees != 0) {
    if(stat_file != NULL)
      fprintf(stat_file,"EdgeId\tDepth\tMeanMinDist\n");

    /* OUTPUT FINAL STATISTICS and UPDATE REF TREE WITH BOOTSTRAP VALUES */
    for (i = 0; i <  ref_tree->nb_edges; i++) {
      if(ref_tree->a_edges[i]->right->nneigh == 1) { continue; }

      /* the bootstrap value for a branch is inscribed as the name of its descendant (always right side of the edge, by convention) */
      if(ref_tree->a_edges[i]->right->name) free(ref_tree->a_edges[i]->right->name); /* clear name if existing */
      ref_tree->a_edges[i]->right->name = (char*) malloc(16 * sizeof(char));
      card = ref_tree->a_edges[i]->hashtbl[1]->num_items;
      if (card > n/2) { card = n - card; }	  
      avg_dist      = (double) dist_accu[i] * 1.0 / num_trees;
      bootstrap_val = (double) 1.0 - avg_dist * 1.0 / (1.0 * ref_tree->a_edges[i]->topo_depth-1.0);

      if(stat_file != NULL)
	fprintf(stat_file,"%d\t%d\t%f\n", i, (ref_tree->a_edges[i]->topo_depth), avg_dist);

      sprintf(ref_tree->a_edges[i]->right->name, "%.6f", bootstrap_val);

      ref_tree->a_edges[i]->branch_support = bootstrap_val;
      
      if(ref_raw_tree!=NULL){
	/* the bootstrap value for a branch is inscribed as the name of its descendant as id|avgdist|depth */
	if(ref_raw_tree->a_edges[i]->right->name) free(ref_raw_tree->a_edges[i]->right->name); /* clear name if existing */
	ref_raw_tree->a_edges[i]->right->name = (char*) malloc(16 * sizeof(char));
	card = ref_raw_tree->a_edges[i]->hashtbl[1]->num_items;
	if (card > n/2) { card = n - card; }
	avg_dist      = (double) dist_accu[i] * 1.0 / num_trees;
	sprintf(ref_raw_tree->a_edges[i]->right->name, "%d|%.6f|%d", ref_raw_tree->a_edges[i]->id, avg_dist,ref_tree->a_edges[i]->topo_depth);
      }
    }

    if(stat_file != NULL){
      fprintf(stat_file,"Taxon\ttIndex\n");
      for(i=0; i<n;i++){
	fprintf(stat_file,"%s\t%f\n", taxname_lookup_table[i], moved_species_counts[i]*100.0 / ((double)num_trees));
      }
    }
  }

  if(stat_file != NULL && count_per_branch){
    fprintf(stat_file,"Edge\tSupport");
    for(i=0; i<n;i++){
      fprintf(stat_file,"\t%s", taxname_lookup_table[i]);
    }
    fprintf(stat_file,"\n");
    for(i=0; i<m;i++){
      if(ref_tree->a_edges[i]->right->nneigh == 1) { continue; }
      fprintf(stat_file,"%d\t%s", i,ref_tree->a_edges[i]->right->name);
      for(j=0;j<n;j++){
	fprintf(stat_file,"\t%f",moved_species_counts_per_branch[i][j]*1.0/num_trees);
      }
      fprintf(stat_file,"\n");
    }
    for(i=0;i<m;i++){
      free(moved_species_counts_per_branch[i]);
    }
    free(moved_species_counts_per_branch);
  }
  
  free(dist_accu);
  for(i_tree=0; i_tree < num_trees;i_tree++){
    free(dist_accu_tmp[i_tree]);
  }
  free(dist_accu_tmp);
  free(moved_species_counts);
}



// Returns the list of id of species to move to go from one branch to the other
// Its length should correspond to given dist
// If not, exit with an error
int* species_to_move(Edge* re, Edge* be, int dist, int nb_taxa) {
  int i;
  int maxnb = dist;
  if(nb_taxa-dist >= dist) maxnb=nb_taxa-dist;
  int *diff = calloc(maxnb,sizeof(int));
  int *equ  = calloc(maxnb,sizeof(int));
  int nbdiff=0, nbequ=0;

  for(i = 0; i < nb_taxa; i++) {
    if(lookup_id(re->hashtbl[1],i) != lookup_id(be->hashtbl[1],i)){
      diff[nbdiff]=i;
      nbdiff++;
    } else {
      equ[nbequ] = i;
      nbequ++;
    }
  }
  if(nbdiff < nbequ){
    if(nbdiff != dist){
      fprintf(stderr,"Length of moved species array (%d) is not equal to the minimum distance found (%d)\n", nbdiff, dist);
      Generic_Exit(__FILE__,__LINE__,__FUNCTION__,EXIT_FAILURE);
    }
    free(equ);
    return diff;
  }
  if(nbequ != dist){
      fprintf(stderr,"Length of moved species array (%d) is not equal to the minimum distance found (%d)\n", nbequ, dist);
      Generic_Exit(__FILE__,__LINE__,__FUNCTION__,EXIT_FAILURE);
    }
  free(diff);
  return equ;
}