File: hashtables_bfields.c

package info (click to toggle)
iqtree 2.0.7%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 14,620 kB
  • sloc: cpp: 142,571; ansic: 57,789; sh: 275; python: 242; makefile: 95
file content (269 lines) | stat: -rw-r--r-- 10,452 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
/*

BOOSTER: BOOtstrap Support by TransfER: 
BOOSTER is an alternative method to compute bootstrap branch supports 
in large trees. It uses transfer distance between bipartitions, instead
of perfect match.

Copyright (C) 2017 Frederic Lemoine, Jean-Baka Domelevo Entfellner, Olivier Gascuel

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.

*/

/* This file implements bit arrays to store Taxon_ids, for use in the Edges of the Tree objects. */
#include "hashtables_bfields.h"
/* ntax is defined as an extern int in this header file.
   chunksize is also defined there. */


id_hash_table_t* create_id_hash_table(int size)
{
	/* here we leave the size parameter for compatibility with the old hashtable implementation,
	   but this parameter IS NOT USED in this one. We use the static variable nbchunks_bitarray insead. */
    id_hash_table_t *new_table = (id_hash_table_t*) malloc(sizeof(id_hash_table_t));
    new_table->num_items = 0;

    /* Attempt to allocate and initialize to 0 the memory for the bitfield  */
    if ((new_table->bitarray = (bfield_t) calloc(nbchunks_bitarray, sizeof(unsigned long))) == NULL)
        return NULL;
    else
    	return new_table;
}

id_hash_table_t* complement_id_hashtbl(id_hash_table_t* h, int nbtaxa) {
	/* this creates a new hashtable and populates it with the complement of h */
	id_hash_table_t* c = create_id_hash_table(0);
	int retval;
	Taxon_id my_id;
	for (my_id = 0; my_id < nbtaxa; my_id++) {
		if (!lookup_id(h,my_id)) { retval = add_id(c, my_id); assert(retval == 0); }
	}
	return c;
}


int lookup_id(id_hash_table_t *hashtable, Taxon_id my_id)
{
    /* Returns whether the taxon is in the hashtable */ 
	if(my_id >= ntax) {
	  fprintf(stderr,"Error in %s: taxon ID %d is out of range. Aborting.\n", __FUNCTION__, my_id);
	  Generic_Exit(__FILE__,__LINE__,__FUNCTION__,EXIT_FAILURE);
	}	       
	int chunk = my_id / chunksize;
	unsigned long *pointer = hashtable->bitarray + chunk; /* pointer to the long we want to access */
	int bit_index = my_id % chunksize;
	unsigned long mask = 1UL << bit_index; /* within a long, the lsb corresponds to the taxon with lowest TaxonID */
	return ((*pointer & mask) != 0);
}


int add_id(id_hash_table_t *hashtable, Taxon_id my_id)
{
    /* retcodes:
       0 -> no error, insertion has been performed successfully
       1 -> memory allocation failed: no space in memory (impossible in this implementation, though)
       2 -> the id we want to add already exists in the id_hashtable
    */
	int chunk = my_id / chunksize;
	unsigned long *pointer = hashtable->bitarray + chunk; /* pointer to the long we want to access */
	int bit_index = my_id % chunksize;
	unsigned long mask = (1UL << bit_index); /* within a long, the lsb corresponds to the taxon with lowest TaxonID */
	if (*pointer & mask) return 2;
	else {
		*pointer |= mask; /* sets to 1 the bit corresponding to the taxon. */
    		/* and update the total number of items in the hashtable */
		hashtable->num_items++;
		return 0;
	}
}

int delete_id(id_hash_table_t *hashtable, Taxon_id my_id)
{
    /* retcodes:
       0 -> no error, deletion has been performed successfully
       2 -> the id we are asked to delete was already set at 0 in the id_hashtable
    */
	int chunk = my_id / chunksize;
	unsigned long *pointer = hashtable->bitarray + chunk; /* pointer to the long we want to access */
	int bit_index = my_id % chunksize;
	unsigned long mask = (1UL << bit_index); /* within a long, the lsb corresponds to the taxon with lowest TaxonID */
	if (!(*pointer & mask)) return 2;
	else {
		*pointer &= ~mask; /* sets to 0 the bit corresponding to the taxon. */
    		/* and update the total number of items in the hashtable */
		hashtable->num_items--;
		return 0;
	}
}


void clear_id_hashtable(id_hash_table_t *hashtable) { /* clears completely the hashtable (no taxa) */
	int chunk;
	for (chunk = 0; chunk < nbchunks_bitarray; chunk++) hashtable->bitarray[chunk] = 0UL;
	hashtable->num_items = 0;
}


void fill_id_hashtable(id_hash_table_t *hashtable, int nb_taxa) { /* sets all bits to 1 in the whole hashtable (all taxa) */
	int chunk;
	unsigned long full_one = ~(0UL);
	for (chunk = 0; chunk < nbchunks_bitarray; chunk++) hashtable->bitarray[chunk] = full_one;
	/* the last bits of the last chunk are MEANINGLESS when chunksize is not a divisor of nb_taxa. */
	hashtable->num_items = nb_taxa;
}

void complement_id_hashtable(id_hash_table_t *destination, const id_hash_table_t *source, int nb_taxa) {
	/* transforms destination into the complement of source */
	int chunk;
	for (chunk = 0; chunk < nbchunks_bitarray; chunk++) destination->bitarray[chunk] = ~(source->bitarray[chunk]);
	destination->num_items = nb_taxa - source->num_items;
}

unsigned int bitCount (unsigned long value) {
    unsigned int count = 0;
    while (value) {           // until all bits are zero
        if (value & 0x1)     // check LSB
            count++;
        value >>= 1;              // shift bits, deleting LSB
    }
    return count;
}

void update_id_hashtable(id_hash_table_t *source, id_hash_table_t *destination) {
	/* copies all the items from source into destination. Doesn't erase anything anywhere.
	   Doesn't produce duplicate entries in the destination. */
	int chunk;
	unsigned int added;

	for (chunk = 0; chunk < nbchunks_bitarray; chunk++) {
		/* we first need to know how many new taxa we are going to add in destination */
		added = bitCount(source->bitarray[chunk] & ~destination->bitarray[chunk]); /* 1 in source AND O in dest */
		if (added) {
			/* copy all items from source->bitarray[chunk] into destination */
			destination->bitarray[chunk] = (destination->bitarray[chunk] | source->bitarray[chunk]);
			destination->num_items += added;
		} /* end if added */
	} /* end of the for loop */
} /* end update_id_hashtable */


int equal_id_hashtables(id_hash_table_t *tbl1, id_hash_table_t *tbl2) {
	/* this function compares the contents of the id_hashtables and returns a non-zero when tables are identical,
	   0 otherwise */
	if(tbl1 == NULL) return (tbl2 == NULL);
	if(tbl2 == NULL) return 0; /* because tbl1 not null */
	if(tbl1->num_items != tbl2->num_items) return 0; /* tables cannot be identical if they don't have the
							    same number of stored elements */
	int chunk;
	/* we simply test the equality of the successive longs */
	for (chunk = 0; chunk < nbchunks_bitarray; chunk++) {
		if (tbl1->bitarray[chunk] != tbl2->bitarray[chunk]) return 0;
	}
	/* here all the ids in tbl1 have been found also in tbl2, and the two tables have same size: */
	return 1;

} /* end equal_id_hashtables */


int complement_id_hashtables(id_hash_table_t *tbl1, id_hash_table_t *tbl2,int nb_taxa){
	/* this function compares the contents of the id_hashtables and returns a non-zero when tables are complement,
	   0 otherwise */
  if(tbl1 == NULL) return (tbl2 == NULL);
  if(tbl2 == NULL) return 0; /* because tbl1 not null */
  
  int chunk;
  /* we simply test the equality of the successive longs ==> Does not work for the last chunk */
  /* If the last long is < nbtaxa : the direct complement does not work!
     Example: 
        n taxa = 5
        chunk1 = 00000000 00000000 00000000 00011010
        chunk2 = 00000000 00000000 00000000 00000101
   ==> ~chunk2 = 11111111 11111111 11111111 11111010
        It does not work directly, we must put a mask depending on (nb_taxa%chunksize) 
	for the last chunk
         chunk1 & mask = 00000000 00000000 00000000 00011010
        ~chunk2 & mask = 00000000 00000000 00000000 00011010
	==> OK
	The mask is (((unsigned long)1 << (nb_taxa%chunksize)) - 1);
   */
  for (chunk = 0; chunk < nbchunks_bitarray; chunk++) {
    /* Initialize Mask with 1111....11*/
    unsigned long mask = -1;
    if(nb_taxa<(chunk+1)*chunksize){
      mask = (((unsigned long)1 << (nb_taxa%chunksize)) - 1);
    }
    if ((tbl1->bitarray[chunk]&mask) != ((~(tbl2->bitarray[chunk]))&mask)) return 0;
  }
  /* here all the ids in tbl1 have been found also in tbl2, and the two tables have same size: */
  return 1;
} /* end equal_id_hashtables */


int equal_or_complement_id_hashtables(id_hash_table_t *tbl1, id_hash_table_t *tbl2, int total) {
  return(complement_id_hashtables(tbl1,tbl2,total) ||
	 equal_id_hashtables(tbl1,tbl2));
} /* end equal_or_complement_id_hashtables */


id_hash_table_t* suffle_hash_table(id_hash_table_t *hashtable, int total){
  id_hash_table_t * output = create_id_hash_table(total);
  Taxon_id* taxid_array = malloc(total*sizeof(Taxon_id));
  Taxon_id i = 0;
  for(i=0;i<total;i++){
    taxid_array[i] = i;
  }
  shuffle(taxid_array, total, sizeof(Taxon_id));

  for(i=0;i<total;i++){
    if(lookup_id(hashtable, i)){
      add_id(output, taxid_array[i]);
    }
  }
  free(taxid_array);
  return(output);
}


void free_id_hashtable(id_hash_table_t *hashtable)
{
    if (hashtable==NULL) return;
    /* Free all the longs
     */
    free(hashtable->bitarray);
    free(hashtable);
}



void print_id_hashtable(FILE* stream, id_hash_table_t *hashtable, int nbtaxa) {
	int i, chunk;
	unsigned long mylong, base = 0, mask = 1, true_index;
	char c;
   	for (chunk = 0; chunk < nbchunks_bitarray; chunk++) {
		mylong = hashtable->bitarray[chunk];
		for (i = 0; i < chunksize; i++) { /* for all the bits in the unsigned long, starting with the LSB */
			true_index = base + i;
			if (true_index == nbtaxa) break; /* end of the last loop */
			if (true_index % 8 == 0 && !(chunk==0 && i == 0)) fputc(' ', stream); /* write blocks of 8 chars for legibility */
			if ((mylong & mask) == 1) c= '1' ; else c = '0';
			fputc(c, stream);
			mylong >>= 1;
		} /* end for on all the bits of the long */
		base += chunksize; /* so that in every loop, base is equal to chunk * chunksize */
	} /* end for on all the chunks (unsigned longs) */
    fputc('\n', stream);
} /* end print_id_hashtable */