1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
|
/*
BOOSTER: BOOtstrap Support by TransfER:
BOOSTER is an alternative method to compute bootstrap branch supports
in large trees. It uses transfer distance between bipartitions, instead
of perfect match.
Copyright (C) 2017 Frederic Lemoine, Jean-Baka Domelevo Entfellner, Olivier Gascuel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "stats.h"
/************************************************/
/* BASIC FUNCTIONS */
/************************************************/
/* this file contains basic operations on numerical arrays (min, max, mean, sorting, median, debug printing, etc) */
int min_int(int a, int b) {
return (a<b ? a : b);
}
int max_int(int a, int b) {
return (a>b ? a : b);
}
int max_int_vec(int* myvec, int length) {
if (length==0) return -1;
int i, maximum = myvec[0];
for(i=1;i<length;i++) if (maximum < myvec[i]) maximum = myvec[i];
return maximum;
}
short unsigned max_short_unsigned_vec(short unsigned* myvec, int length) {
if (length==0) return -1;
int i;
short unsigned maximum = myvec[0];
for(i=1;i<length;i++) if (maximum < myvec[i]) maximum = myvec[i];
return maximum;
}
double min_double(double a, double b) {
return (a<b ? a : b);
}
double max_double(double a, double b) {
return (a>b ? a : b);
}
void print_int_vec(FILE* out, int* myvec, int length) {
int i;
for(i=0;i<length-1;i++) fprintf(out,"%d ", myvec[i]);
fprintf(out,"%d\n", myvec[length-1]);
}
void print_double_vec(FILE* out, double* myvec, int length) {
int i;
for(i=0;i<length-1;i++) fprintf(out,"%.4g ", myvec[i]);
fprintf(out,"%.4g\n", myvec[length-1]);
}
double mean_int_vec(int* myvec, int length) {
int i, accu=0;
for (i=0;i<length;i++) accu += myvec[i];
return ((double) accu) / length;
}
double mean_double_vec(double* myvec, int length) {
int i;
double accu=0.0;
for (i=0;i<length;i++) accu += myvec[i];
return accu / length;
}
int median_int_vec(int* myvec, int length) {
/* we don't want to modify the original vector, so work on a copy that is going
to be sorted: */
int i, mycopy[length];
for(i=0;i<length;i++) mycopy[i] = myvec[i];
divide_and_conquer_int_vec(mycopy, length);
return mycopy[(int)(floor(length/2))];
}
double median_double_vec(double* myvec, int length) {
/* we don't want to modify the original vector, so work on a copy that is going
to be sorted: */
int i;
double mycopy[length];
for(i=0;i<length;i++) mycopy[i] = myvec[i];
divide_and_conquer_double_vec(mycopy, length);
return mycopy[(int)(floor(length/2))];
}
void summary_double_vec(double* myvec, int length, double* result) {
/* the result vector HAS TO BE ALLOCATED BEFOREHAND, size at least 6.
Same as the result function in R:
0) minimum
1) 1st quartile
2) median
3) mean
4) 3rd quartile
5) maximum */
int i;
double mycopy[length];
for(i=0;i<length;i++) mycopy[i] = myvec[i];
divide_and_conquer_double_vec(mycopy, length);
result[0] = mycopy[0]; /* min */
result[1] = mycopy[(int)(floor(length/4))]; /* 1st quart. */
result[2] = mycopy[(int)(floor(length/2))]; /* median */
result[3] = mean_double_vec(mycopy, length); /* mean */
result[4] = mycopy[(int)(floor(3*length/4))]; /* 3rd quart. */
result[5] = mycopy[length-1]; /* max */
} /* end summary_double_vec */
void summary_double_vec_nocopy(double* myvec, int length, double* result) {
/* the result vector HAS TO BE ALLOCATED BEFOREHAND, size at least 6.
Same as the result function in R:
0) minimum
1) 1st quartile
2) median
3) mean
4) 3rd quartile
5) maximum */
/* nocopy: same as function above but modifies the array in place */
divide_and_conquer_double_vec(myvec, length);
result[0] = myvec[0]; /* min */
result[1] = myvec[(int)(floor(length/4))]; /* 1st quart. */
result[2] = myvec[(int)(floor(length/2))]; /* median */
result[3] = mean_double_vec(myvec, length); /* mean */
result[4] = myvec[(int)(floor(3*length/4))]; /* 3rd quart. */
result[5] = myvec[length-1]; /* max */
} /* end summary_double_vec_nocopy */
int sum_vec_of_ints(int* table, int size) {
/* simply gives the sum of the vector */
int i, accu = 0;
for (i=0; i< size; i++) accu += table[i];
return accu;
} /* end sum_vec_of_ints */
int sum_vec_of_ints_but_one(int* table, int size, int index_to_ignore) {
/* simply gives the sum of the vector */
int i, accu = 0;
for (i=0; i< size; i++) if(i != index_to_ignore) accu += table[i];
return accu;
} /* end sum_vec_of_ints_but_one */
int swap_ints(int* a, int* b) {
if (a == NULL || b == NULL) return 1;
int temp = *b;
*b = *a;
*a = temp;
return 0;
}
int swap_doubles(double* a, double* b) {
if (a == NULL || b == NULL) return 1;
double temp = *b;
*b = *a;
*a = temp;
return 0;
}
void merge_sorted_int_vecs(int* myvec, int length1, int length2) {
/* this function assumes that we have myvec[0..(length1-1)]
and myvec[length1..(length1+length2-1)] that are two sorted vectors.
It merges the two in place, reusing the initial space. */
int i, index1=0, index2=0, index_res=0, total_length = length1 + length2;
int temp[total_length];
int* vec1 = myvec, *vec2 = myvec+length1; /* pointer arithmetic */
/* index1 and index2 indicate the next elements of the two subvectors to be processed */
while(index1 < length1 && index2 < length2) {
/* there are still elements to treat in both vectors */
if(vec1[index1] <= vec2[index2]) temp[index_res++] = vec1[index1++];
else temp[index_res++] = vec2[index2++];
}
/* now at least one of the input subvecs is fully processed, remains the other: */
if (index1 < length1) for (i = index1; i < length1; i++) temp[index_res++] = vec1[i];
else for (i = index2; i < length2; i++) temp[index_res++] = vec2[i];
/* sanity check */
if (index_res != total_length) {
fprintf(stderr,"fatal error : input lengths do not sum up to output length. Aborting.\n");
Generic_Exit(__FILE__,__LINE__,__FUNCTION__,EXIT_FAILURE);
}
/* now we copy the result back into the original vector, to do the thing in place */
for(i=0;i<total_length;i++) myvec[i] = temp[i];
} /* end of merge_sorted_int_vecs */
void divide_and_conquer_int_vec(int* vec, int length) {
/* this function works "in place" and does not allocate extra memory.
The allocation is done during the merge step, but through a local variable there. */
if (length < 2) return; /* nothing to do here */
if (length == 2) {
if (vec[0] > vec[1]) swap_ints(vec,vec+1); /* swapping with pointer arithmetic */
return; /* we're done */
} /* end if length == 2 */
/* implicit else: here length > 2 */
int breakpoint = (int) floor(length / 2);
/* breakpoint is the number of values in the first half */
int length1 = breakpoint, length2 = length - breakpoint;
divide_and_conquer_int_vec(vec, length1);
divide_and_conquer_int_vec(vec+breakpoint, length2);
merge_sorted_int_vecs(vec, length1, length2);
return ;
} /* end divide_and_conquer_int_vec */
void merge_sorted_double_vecs(double* myvec, int length1, int length2) {
/* this function assumes that we have myvec[0..(length1-1)]
and myvec[length1..(length1+length2-1)] that are two sorted vectors.
It merges the two in place, reusing the initial space. */
int i, index1=0, index2=0, index_res=0, total_length = length1 + length2;
double temp[total_length];
double* vec1 = myvec, *vec2 = myvec+length1; /* pointer arithmetic */
/* index1 and index2 indicate the next elements of the two subvectors to be processed */
while(index1 < length1 && index2 < length2) {
/* there are still elements to treat in both vectors */
if(vec1[index1] <= vec2[index2]) temp[index_res++] = vec1[index1++];
else temp[index_res++] = vec2[index2++];
}
/* now at least one of the input subvecs is fully processed, remains the other: */
if (index1 < length1) for (i = index1; i < length1; i++) temp[index_res++] = vec1[i];
else for (i = index2; i < length2; i++) temp[index_res++] = vec2[i];
/* sanity check */
if (index_res != total_length) {
fprintf(stderr,"fatal error : input lengths do not sum up to output length. Aborting.\n");
Generic_Exit(__FILE__,__LINE__,__FUNCTION__,EXIT_FAILURE);
}
/* now we copy the result back into the original vector, to do the thing in place */
for(i=0;i<total_length;i++) myvec[i] = temp[i];
} /* end of merge_sorted_double_vecs */
void divide_and_conquer_double_vec(double* vec, int length) {
/* this function works "in place" and does not allocate extra memory.
The allocation is done during the merge step, but through a local variable there. */
if (length < 2) return; /* nothing to do here */
if (length == 2) {
if (vec[0] > vec[1]) swap_doubles(vec,vec+1); /* swapping with pointer arithmetic */
return; /* we're done */
} /* end if length == 2 */
/* implicit else: here length > 2 */
int breakpoint = (int) floor(length / 2);
/* breakpoint is the number of values in the first half */
int length1 = breakpoint, length2 = length - breakpoint;
divide_and_conquer_double_vec(vec, length1);
divide_and_conquer_double_vec(vec+breakpoint, length2);
merge_sorted_double_vecs(vec, length1, length2);
return ;
} /* end divide_and_conquer_double_vec */
/************************************************/
/* STAT FUNCTIONS */
/************************************************/
double unif(){
double unif = 0.5;
unif = (unif + prng_get_int())/ INT_MAX;
return(unif);
}
double exponentiel(double lambda){
double exponentiel = unif();
exponentiel = -log(1 - exponentiel) / lambda;
return(exponentiel);
}
double gauss(){
double unif1 = unif();
double unif2 = unif();
double gauss = sqrt(-2*log(unif1))*sin(2 * S_PI * (unif2));
return(gauss);
}
double normal(double mu, double sig){
return(mu + (sig*gauss()));
}
int proba(double p){
return(unif()<p);
}
int binomial(double p, int nb){
int binom = 0;
int i = 0;
for(i = 0; i < nb; i++){
binom+=unif() < p;
}
return(binom);
}
/* Samples num values from the ungrouped version of the data array:
Example: data array:
data[0]=3; data[1]=0; data[2]=4
It will return a sample (of size num ) from :
0,0,0,2,2,2,2
num must be <= sum(data) : otherwize returns 0 filled array
The output is grouped by indice , i.e:
output[0]=2; output[1]=0; output[2]=3
AND NOT:
0,0,2,2,2
So the output has the same size than data , i.e : length
*/
int* sample_from_counts(int* data, int length, int num, int replace){
int total = 0;
int * values;
int * counts;
int i,j;
int current;
int* sampled;
counts = malloc( length * sizeof(int));
for(i=0; i < length; i++){
total += data[i];
counts[i] = 0;
}
if( total < num ){
return(counts);
}
values = malloc( total * sizeof(int));
current=0;
for(i=0;i<length;i++){
for(j=0;j<data[i];j++){
values[current] = i;
current++;
}
counts[i]=0;
}
sampled = sample(values, total, num, replace);
for(j=0;j<num;j++){
counts[sampled[j]]++;
}
free(sampled);
free(values);
return(counts);
}
/* Sample num ints from the input of length length, with or without replacement */
int* sample(int* data, int length, int num, int replace){
int * output = malloc(num * sizeof(int));
int i=0;
/* Without replacement */
if(!replace){
int * temp = malloc(length * sizeof(int));
for(i=0; i < length; i++){
temp[i] = data[i];
}
shuffle(temp,length,sizeof(int));
for(i=0;i<num;i++){
output[i] = temp[i];
}
free(temp);
}else{
/* With replacement */
for(i=0;i<num;i++){
output[i] = data[rand_to(length)];
}
}
return output;
}
/* Shuffles the data in the array of length size */
void shuffle(void *obj, size_t nmemb, size_t size){
void *temp = malloc(size);
size_t n = nmemb;
while ( n > 1 ) {
size_t k = rand_to(n--);
memcpy(temp, BYTE(obj) + n*size, size);
memcpy(BYTE(obj) + n*size, BYTE(obj) + k*size, size);
memcpy(BYTE(obj) + k*size, temp, size);
}
free(temp);
}
/* take a random int from [0,max[ */
int rand_to(int max){
return(prng_get_int()%max);
}
double sigma(double * values, int nb_values){
double mean = 0.0;
double var = 0.0;
int i;
for(i = 0; i < nb_values; i++){
mean += values[i];
}
for(i = 0; i < nb_values; i++){
var += pow((values[i] - mean),2);
}
return(sqrt(var));
}
double sum(double * array, int size){
int i;
double sum = 0;
for(i = 0; i < size; i++){
sum += array[i];
}
return(sum);
}
/* Original C++ implementation found at http://www.wilmott.com/messageview.cfm?catid=10&threadid=38771 */
/* C# implementation found at http://weblogs.asp.net/esanchez/archive/2010/07/29/a-quick-and-dirty-implementation-of-excel-norminv-function-in-c.aspx*/
/*
* Compute the quantile function for the normal distribution.
*
* For small to moderate probabilities, algorithm referenced
* below is used to obtain an initial approximation which is
* polished with a final Newton step.
*
* For very large arguments, an algorithm of Wichura is used.
*
* REFERENCE
*
* Beasley, J. D. and S. G. Springer (1977).
* Algorithm AS 111: The percentage points of the normal distribution,
* Applied Statistics, 26, 118-121.
*
* Wichura, M.J. (1988).
* Algorithm AS 241: The Percentage Points of the Normal Distribution.
* Applied Statistics, 37, 477-484.
*/
/* Taken from https://gist.github.com/kmpm/1211922/ */
double qnorm(double p, double mu, double sigma){
double q, r, val;
if (p < 0 || p > 1){
fprintf(stderr,"Warning: p is < 0 or > 1 : returning DBL_MIN\n");
return NAN;
}
if (sigma < 0){
fprintf(stderr,"Warning: sigma is < 0 : returning NaN\n");
return NAN;
}
if (p == 0){
return -INFINITY;
}
if (p == 1){
return INFINITY;
}
if (sigma == 0){
return mu;
}
q = p - 0.5;
/*-- use AS 241 --- */
/* double ppnd16_(double *p, long *ifault)*/
/* ALGORITHM AS241 APPL. STATIST. (1988) VOL. 37, NO. 3
Produces the normal deviate Z corresponding to a given lower
tail area of P; Z is accurate to about 1 part in 10**16.
*/
if (fabs(q) <= .425){/* 0.075 <= p <= 0.925 */
r = .180625 - q * q;
val =
q * (((((((r * 2509.0809287301226727 +
33430.575583588128105) * r + 67265.770927008700853) * r +
45921.953931549871457) * r + 13731.693765509461125) * r +
1971.5909503065514427) * r + 133.14166789178437745) * r +
3.387132872796366608)
/ (((((((r * 5226.495278852854561 +
28729.085735721942674) * r + 39307.89580009271061) * r +
21213.794301586595867) * r + 5394.1960214247511077) * r +
687.1870074920579083) * r + 42.313330701600911252) * r + 1);
} else { /* closer than 0.075 from {0,1} boundary */
/* r = min(p, 1-p) < 0.075 */
if (q > 0)
r = 1 - p;
else
r = p;
r = sqrt(-log(r));
/* r = sqrt(-log(r)) <==> min(p, 1-p) = exp( - r^2 ) */
if (r <= 5){ /* <==> min(p,1-p) >= exp(-25) ~= 1.3888e-11 */
r += -1.6;
val = (((((((r * 7.7454501427834140764e-4 +
.0227238449892691845833) * r + .24178072517745061177) *
r + 1.27045825245236838258) * r +
3.64784832476320460504) * r + 5.7694972214606914055) *
r + 4.6303378461565452959) * r +
1.42343711074968357734)
/ (((((((r *
1.05075007164441684324e-9 + 5.475938084995344946e-4) *
r + .0151986665636164571966) * r +
.14810397642748007459) * r + .68976733498510000455) *
r + 1.6763848301838038494) * r +
2.05319162663775882187) * r + 1);
} else { /* very close to 0 or 1 */
r += -5;
val = (((((((r * 2.01033439929228813265e-7 +
2.71155556874348757815e-5) * r +
.0012426609473880784386) * r + .026532189526576123093) *
r + .29656057182850489123) * r +
1.7848265399172913358) * r + 5.4637849111641143699) *
r + 6.6579046435011037772)
/ (((((((r *
2.04426310338993978564e-15 + 1.4215117583164458887e-7) *
r + 1.8463183175100546818e-5) * r +
7.868691311456132591e-4) * r + .0148753612908506148525)
* r + .13692988092273580531) * r +
.59983220655588793769) * r + 1);
}
if (q < 0.0){
val = -val;
}
}
return mu + sigma * val;
}
/* From https://en.wikipedia.org/wiki/Normal_distribution */
double pnorm(double x){
double value,sum,result;
int i;
sum = x;
value=x;
for(i=1;i<=100;i++){
value=(value*x*x/(2*i+1));
sum=sum+value;
}
result=0.5+(sum/sqrt(2*S_PI))*exp(-(x*x)/2);
return(result);
}
double log_fact(int n){
int i;
double lf = (double) 0.0;
for (i = 2; i <= n; i++){
lf = lf + (double) log((double)i);
}
return lf;
}
double factorial_log_rmnj(int n){
if (n==0) {
return(0.0);
} else if (n<=100) {
return(log_fact(n));
} else {
double accu = 0.0;
accu += (double) log((double)n*(1.0+4.0*n*(1.0+2.0*n)) + 1.0/30.0 - 11.0/(240.0*n))/6.0;
accu += (double) log(S_PI)/ 2.0;
accu -= (double) n;
accu += (double) n * log(n);
return( accu );
}
}
|