File: modelmarkov.cpp

package info (click to toggle)
iqtree 2.0.7%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 14,620 kB
  • sloc: cpp: 142,571; ansic: 57,789; sh: 275; python: 242; makefile: 95
file content (1934 lines) | stat: -rw-r--r-- 65,139 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
/***************************************************************************
 *   Copyright (C) 2009 by BUI Quang Minh   *
 *   minh.bui@univie.ac.at   *
 *                                                                         *
 *   This program is free software; you can redistribute it and/or modify  *
 *   it under the terms of the GNU General Public License as published by  *
 *   the Free Software Foundation; either version 2 of the License, or     *
 *   (at your option) any later version.                                   *
 *                                                                         *
 *   This program is distributed in the hope that it will be useful,       *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
 *   GNU General Public License for more details.                          *
 *                                                                         *
 *   You should have received a copy of the GNU General Public License     *
 *   along with this program; if not, write to the                         *
 *   Free Software Foundation, Inc.,                                       *
 *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
 ***************************************************************************/
#include "modelmarkov.h"
#include <stdlib.h>
#include <string.h>
#include "modelliemarkov.h"
#include "modelunrest.h"
#include <Eigen/Eigenvalues>
#include <unsupported/Eigen/MatrixFunctions>
using namespace Eigen;


/** number of squaring for scaling-squaring technique */
//const int TimeSquare = 10;

//----- declaration of some helper functions -----/
//int matexp (double Q[], double t, int n, int TimeSquare);
int computeStateFreqFromQMatrix (double Q[], double pi[], int n);

//const double MIN_FREQ_RATIO = MIN_FREQUENCY;
//const double MAX_FREQ_RATIO = 1.0/MIN_FREQUENCY;

ModelMarkov::ModelMarkov(PhyloTree *tree, bool reversible, bool adapt_tree)
 : ModelSubst(tree->aln->num_states), EigenDecomposition()
{
    phylo_tree = tree;
    rates = NULL;

    // variables for reversible model
    eigenvalues = eigenvectors = inv_eigenvectors = NULL;
    highest_freq_state = num_states-1;
    freq_type = FREQ_UNKNOWN;
    half_matrix = true;
    highest_freq_state = num_states-1;

    // variables for non-reversible model
//    model_parameters = NULL;
    rate_matrix = NULL;
    eigenvalues_imag = NULL;
    ceval = cevec = cinv_evec = NULL;
    nondiagonalizable = false;

    if (reversible) {
        name = "Rev";
        full_name = "General reversible model";
    } else {
        name = "NonRev";
        full_name = "General non-reversible model";
    }
    setReversible(reversible, adapt_tree);
}

void ModelMarkov::setReversible(bool reversible, bool adapt_tree) {
    
    bool old_reversible = is_reversible;
    
    is_reversible = reversible;

    if (reversible) {
        // setup reversible model
        int i;
        int nrate = getNumRateEntries();

        if (rates)
            delete [] rates;
        rates = new double[nrate];
        for (i=0; i < nrate; i++)
            rates[i] = 1.0;

        if (!eigenvalues)
            eigenvalues = aligned_alloc<double>(num_states);
        if (!eigenvectors)
            eigenvectors = aligned_alloc<double>(num_states*num_states);
        if (!inv_eigenvectors)
            inv_eigenvectors = aligned_alloc<double>(num_states*num_states);

        num_params = nrate - 1;

        if (adapt_tree && phylo_tree && phylo_tree->rooted) {
            if (verbose_mode >= VB_MED)
                cout << "Converting rooted to unrooted tree..." << endl;
            phylo_tree->convertToUnrooted();
        }
    } else {
        // setup non-reversible model
        ignore_state_freq = true;

        int num_rates = getNumRateEntries();
        if (!rate_matrix)
            rate_matrix = aligned_alloc<double>(num_states*num_states);

        // reallocate the mem spaces
        if (rates && old_reversible) {
            // copy old reversible rates into new non-reversible
            int i, j, k;
            for (i = 0, k = 0; i < num_states; i++)
                for (j = i+1; j < num_states; j++, k++) {
                    rate_matrix[i*num_states+j] = rates[k] * state_freq[j];
                    rate_matrix[j*num_states+i] = rates[k] * state_freq[i];
                }
            delete [] rates;
            rates = new double[num_rates];
            for (i = 0, k = 0; i < num_states; i++)
                for (j = 0; j < num_states; j++)
                    if (i!=j) {
                        rates[k] = rate_matrix[i*num_states+j];
                        k++;
                    }
            ASSERT(k == num_rates);
        } else {
            if (rates)
                delete [] rates;
            rates = new double [num_rates];
            memset(rates, 0, sizeof(double) * (num_rates));
        }

        if (!eigenvalues_imag)
            eigenvalues_imag = aligned_alloc<double>(num_states);

        if (!ceval)
            ceval = aligned_alloc<complex<double> >(num_states);
        if (!cevec)
            cevec = aligned_alloc<complex<double> >(num_states*num_states);
        if (!cinv_evec)
            cinv_evec = aligned_alloc<complex<double> >(num_states*num_states);
        
        if (adapt_tree && phylo_tree && !phylo_tree->rooted) {
            if (verbose_mode >= VB_MED)
                cout << "Converting unrooted to rooted tree..." << endl;
            phylo_tree->convertToRooted();
        }
        num_params = num_rates - 1;        
    }
}

int ModelMarkov::getNumRateEntries() {
    if (is_reversible)
        return num_states*(num_states-1) / 2;
    else
        return num_states*(num_states-1);
}

void ModelMarkov::startCheckpoint() {
    checkpoint->startStruct("ModelMarkov");
}

/* Note:
 * model_parameters must hold whatever is needed to reconstruct the
 * model parameters - subclass's saveCheckpoint should ensure this.
 * Also: ModelSubst::saveCheckpoint saves state_freq 
 * if freq_type == FREQ_ESTIMATE. This will be redundant if called from
 * ModelMarkov::saveCheckpoint, but is needed by ModelProtein and others.
 */
void ModelMarkov::saveCheckpoint() {
    startCheckpoint();
//    CKP_ARRAY_SAVE(num_params, model_parameters);
    endCheckpoint();
    ModelSubst::saveCheckpoint();
}

/*
 * NOTE: subclass is responsible for calling whatever methods
 * to update the rest of the internal state of the class to be
 * consistent with the new model_parameters.
 */
void ModelMarkov::restoreCheckpoint() {
    ModelSubst::restoreCheckpoint();
    startCheckpoint();
//    CKP_ARRAY_RESTORE(num_params, model_parameters);
    endCheckpoint();
}

void ModelMarkov::setTree(PhyloTree *tree) {
	phylo_tree = tree;
}

/*
 * For freq_type, return a "+F" string specifying that freq_type.
 * Note not all freq_types accomodated.
 * Inverse of this occurs in ModelFactory::ModelFactory, 
 * where +F... suffixes on model names get parsed.
 */
string freqTypeString(StateFreqType freq_type, SeqType seq_type, bool full_str) {
    switch(freq_type) {
    case FREQ_UNKNOWN:    return("");
    case FREQ_USER_DEFINED:
        if (seq_type == SEQ_PROTEIN)
            return "";
        else
            return "+FU";
    case FREQ_EQUAL:
        if (seq_type == SEQ_DNA && !full_str)
            return "";
        else
            return "+FQ";
    case FREQ_EMPIRICAL:  return "+F";
    case FREQ_ESTIMATE:
        return "+FO";
    case FREQ_CODON_1x4:  return("+F1X4");
    case FREQ_CODON_3x4:  return("+F3X4");
    case FREQ_CODON_3x4C: return("+F3X4C");
    case FREQ_MIXTURE:  return(""); // no idea what to do here - MDW
    case FREQ_DNA_RY:   return("+FRY");
    case FREQ_DNA_WS:   return("+FWS");
    case FREQ_DNA_MK:   return("+FMK");
    case FREQ_DNA_1112: return("+F1112");
    case FREQ_DNA_1121: return("+F1121");
    case FREQ_DNA_1211: return("+F1211");
    case FREQ_DNA_2111: return("+F2111");
    case FREQ_DNA_1122: return("+F1122");
    case FREQ_DNA_1212: return("+F1212");
    case FREQ_DNA_1221: return("+F1221");
    case FREQ_DNA_1123: return("+F1123");
    case FREQ_DNA_1213: return("+F1213");
    case FREQ_DNA_1231: return("+F1231");
    case FREQ_DNA_2113: return("+F2113");
    case FREQ_DNA_2131: return("+F2131");
    case FREQ_DNA_2311: return("+F2311");
    default: throw("Unrecoginzed freq_type in freqTypeString - can't happen");
    }
}

string ModelMarkov::getName() {
  // MDW note to Minh for code review: I don't really understand what getName()
  // is used for. I've tried to keep the old behaviour while adding
  // the new freq_types, but give this change extra attention please.
    return name+freqTypeString(getFreqType(), phylo_tree->aln->seq_type, false);
  /*
	if (getFreqType() == FREQ_EMPIRICAL)
		return name + "+F";
	else if (getFreqType() == FREQ_CODON_1x4)
		return name += "+F1X4";
	else if (getFreqType() == FREQ_CODON_3x4)
		return name + "+F3X4";
	else if (getFreqType() == FREQ_CODON_3x4C)
		return name + "+F3X4C";
	else if (getFreqType() == FREQ_ESTIMATE && phylo_tree->aln->seq_type != SEQ_DNA)
		return name + "+FO";
	else if (getFreqType() == FREQ_EQUAL && phylo_tree->aln->seq_type != SEQ_DNA)
		return name + "+FQ";
    else
        return name;
  */
}

string ModelMarkov::getNameParams() {

	ostringstream retname;
	retname << name;
//	if (num_states != 4) retname << num_states;
    if (!fixed_parameters) {
        retname << '{';
        int nrates = getNumRateEntries();
        for (int i = 0; i < nrates; i++) {
            if (i>0) retname << ',';
            retname << rates[i];
        }
        retname << '}';
    }
    getNameParamsFreq(retname);
    return retname.str();    
}
    
void ModelMarkov::getNameParamsFreq(ostream &retname) {
     // "+F..." but without {frequencies}
    retname << freqTypeString(freq_type, phylo_tree->aln->seq_type, true);
    if (fixed_parameters)
        return;
    if (freq_type == FREQ_EMPIRICAL || freq_type == FREQ_ESTIMATE ||
        (freq_type == FREQ_USER_DEFINED && phylo_tree->aln->seq_type == SEQ_DNA)) {
        retname << "{" << state_freq[0];
        for (int i = 1; i < num_states; i++)
            retname << "," << state_freq[i];
        retname << "}";
    }
}

void ModelMarkov::init_state_freq(StateFreqType type) {
    //if (type == FREQ_UNKNOWN) return;
    int i;
    freq_type = type;
    ASSERT(freq_type != FREQ_UNKNOWN);
    switch (freq_type) {
    case FREQ_EQUAL:
        if (phylo_tree->aln->seq_type == SEQ_CODON) {
             int nscodon = phylo_tree->aln->getNumNonstopCodons();
             double freq_codon = (1.0-(num_states-nscodon)*Params::getInstance().min_state_freq)/(nscodon);
             for (i = 0; i < num_states; i++)
                 if (phylo_tree->aln->isStopCodon(i))
                     state_freq[i] = Params::getInstance().min_state_freq;
                 else
                     state_freq[i] = freq_codon;
        } else {
            double freq_state = 1.0/num_states;
            for (i = 0; i < num_states; i++)
                state_freq[i] = freq_state;
        }
        break;  
    case FREQ_ESTIMATE:
    case FREQ_EMPIRICAL:
        if (phylo_tree->aln->seq_type == SEQ_CODON) {
            double ntfreq[12];
            phylo_tree->aln->computeCodonFreq(freq_type, state_freq, ntfreq);
//                      phylo_tree->aln->computeCodonFreq(state_freq);
        } else if (phylo_tree->aln->seq_type != SEQ_POMO) {
            double emp_state_freq[num_states];
            phylo_tree->aln->computeStateFreq(emp_state_freq);
            setStateFrequency(emp_state_freq);
        } for (i = 0; i < num_states; i++)
            if (state_freq[i] > state_freq[highest_freq_state])
                highest_freq_state = i;
        break;
    case FREQ_USER_DEFINED:
        if (state_freq[0] == 0.0) outError("State frequencies not specified");
        break;
    default: break;
    }
    if (phylo_tree->aln->seq_type == SEQ_DNA) {
        // BQM 2017-05-02: first, empirically count state_freq from alignment
        if (freq_type >= FREQ_DNA_RY)
            phylo_tree->aln->computeStateFreq(state_freq);

        // For complex DNA freq_types, adjust state_freq to conform to that freq_type.
        forceFreqsConform(state_freq, freq_type);
    }
}

void ModelMarkov::init(StateFreqType type) {
    init_state_freq(type);
	decomposeRateMatrix();
	if (verbose_mode >= VB_MAX)
		writeInfo(cout);
}

void ModelMarkov::writeInfo(ostream &out) {
	if (is_reversible && num_states == 4) {
        report_rates(out, "Rate parameters", rates);
        report_state_freqs(out);
		//if (freq_type != FREQ_ESTIMATE) return;
    } else if (is_reversible && num_states == 2) {
        report_state_freqs(out);
	} else if (!is_reversible) {
        // non-reversible
//        int i;
//        out << "Model parameters: ";
//        if (num_params>0) out << model_parameters[0];
//        for (i=1; i < num_params; i++) out << "," << model_parameters[i];
//        out << endl;

        if (num_states != 4) return;
		report_rates(out, "Substitution rates", rates);
        report_state_freqs(out, state_freq);
    }
}

void ModelMarkov::report_rates(ostream& out, string title, double *r) {
  out << setprecision(5);
  if (is_reversible && num_states == 4) {
    out << title << ":";
    //out.precision(3);
    //out << fixed;
    out << "  A-C: " << r[0];
    out << "  A-G: " << r[1];
    out << "  A-T: " << r[2];
    out << "  C-G: " << r[3];
    out << "  C-T: " << r[4];
    out << "  G-T: " << r[5];
    out << endl;
  }
  else if (!is_reversible) {
    out << title << ":" << endl;
    out << "  A-C: " << r[0];
    out << "  A-G: " << r[1];
    out << "  A-T: " << r[2];
    out << "  C-A: " << r[3];
    out << "  C-G: " << r[4];
    out << "  C-T: " << r[5] << endl;
    out << "  G-A: " << r[6];
    out << "  G-C: " << r[7];
    out << "  G-T: " << r[8];
    out << "  T-A: " << r[9];
    out << "  T-C: " << r[10];
    out << "  T-G: " << r[11];
    out << endl;
  }
}

void ModelMarkov::report_state_freqs(ostream& out, double *custom_state_freq) {
    double *f;
    if (custom_state_freq) f = custom_state_freq;
    else f = state_freq;
    if (num_states == 4) {
        out << setprecision(3);
        out << "Base frequencies:";
        out << "  A: " << f[0];
        out << "  C: " << f[1];
        out << "  G: " << f[2];
        out << "  T: " << f[3];
        out << endl;
    } else if (num_states == 2) {
        out << setprecision(3);
        out << "State frequencies:";
        out << "  0: " << f[0];
        out << "  1: " << f[1];
        out << endl;
    }
}

void ModelMarkov::computeTransMatrixNonrev(double time, double *trans_matrix, int mixture) {
    auto technique = phylo_tree->params->matrix_exp_technique;
    if (technique == MET_SCALING_SQUARING || nondiagonalizable) {
        // scaling and squaring technique
        Map<Matrix<double,Dynamic,Dynamic,RowMajor>,Aligned >rate_mat(rate_matrix, num_states, num_states);
        Map<Matrix<double,Dynamic,Dynamic,RowMajor> >trans_mat(trans_matrix, num_states, num_states);
        MatrixXd mat = rate_mat;
        mat = (mat*time).exp();
        if (mat.minCoeff() < 0) {
            outWarning("negative trans_mat");
        }
        // sanity check rows sum to 1
        VectorXd row_sum = mat.rowwise().sum();
        double mincoeff = row_sum.minCoeff();
        double maxcoeff = row_sum.maxCoeff();
        ASSERT(maxcoeff < 1.001 && mincoeff > 0.999);
        trans_mat = mat;
    } else if (phylo_tree->params->matrix_exp_technique == MET_EIGEN3LIB_DECOMPOSITION) {
        VectorXcd ceval_exp(num_states);
        ArrayXcd eval = Map<ArrayXcd,Aligned>(ceval, num_states);
        ceval_exp = (eval*time).exp().matrix();
        Map<MatrixXcd,Aligned> cevectors(cevec, num_states, num_states);
        Map<MatrixXcd,Aligned> cinv_evectors(cinv_evec, num_states, num_states);
        MatrixXcd res = cevectors * ceval_exp.asDiagonal() * cinv_evectors;
        Map<Matrix<double,Dynamic,Dynamic,RowMajor> >map_trans(trans_matrix,num_states,num_states);
        map_trans = res.real();
        // sanity check rows sum to 1
        VectorXd row_sum = map_trans.rowwise().sum();
        double mincoeff = row_sum.minCoeff();
        double maxcoeff = row_sum.maxCoeff();
        if (maxcoeff > 1.0001 || mincoeff < 0.9999) {
            if (verbose_mode >= VB_MED)
                cout << "INFO: Switch to scaling-squaring due to unstable eigen-decomposition rowsum: "
                     << mincoeff << " to " << maxcoeff << endl;
            nondiagonalizable = true;
            computeTransMatrixNonrev(time, trans_matrix, mixture);
            nondiagonalizable = false;
        }
    } else {
        ASSERT(0 && "this line should not be reached");
    }

}

void ModelMarkov::computeTransMatrix(double time, double *trans_matrix, int mixture) {

    if (!is_reversible) {
        computeTransMatrixNonrev(time, trans_matrix, mixture);
        return;
    }

	/* compute P(t) */
	double evol_time = time / total_num_subst;

    VectorXd eval_exp(num_states);
    ArrayXd eval = Map<ArrayXd,Aligned>(eigenvalues, num_states);
    eval_exp = (eval*evol_time).exp().matrix();
    Map<Matrix<double,Dynamic,Dynamic,RowMajor>,Aligned> evectors(eigenvectors, num_states, num_states);
    Map<Matrix<double,Dynamic,Dynamic,RowMajor>,Aligned> inv_evectors(inv_eigenvectors, num_states, num_states);
    MatrixXd res = evectors * eval_exp.asDiagonal() * inv_evectors;
    Map<Matrix<double,Dynamic,Dynamic,RowMajor> >map_trans(trans_matrix,num_states,num_states);
    map_trans = res;
    return;
    
    /*
    double exptime[num_states];
	int i, j, k;

	for (i = 0; i < num_states; i++)
		exptime[i] = exp(evol_time * eigenvalues[i]);

	int row_offset;
	for (i = 0, row_offset = 0; i < num_states; i++, row_offset+=num_states) {
		double *trans_row = trans_matrix + row_offset;
		for (j = i+1; j < num_states; j ++) {
			// compute upper triangle entries
			double *trans_entry = trans_row + j;
//			double *coeff_entry = eigen_coeff + ((row_offset+j)*num_states);
			*trans_entry = 0.0;
			for (k = 0; k < num_states; k ++) {
				*trans_entry += eigenvectors[i*num_states+k] * inv_eigenvectors[k*num_states+j] * exptime[k];
			}
			if (*trans_entry < 0.0) {
				*trans_entry = 0.0;
			}
			// update lower triangle entries
			trans_matrix[j*num_states+i] = (state_freq[i]/state_freq[j]) * (*trans_entry);
		}
		trans_row[i] = 0.0; // initialize diagonal entry
		// taking the sum of row
		double sum = 0.0;
		for (j = 0; j < num_states; j++)
			sum += trans_row[j];
		trans_row[i] = 1.0 - sum; // update diagonal entry
	}
    */
//	delete [] exptime;
}

double ModelMarkov::computeTrans(double time, int state1, int state2) {

    if (is_reversible) {
        double evol_time = time / total_num_subst;
        int i;
        double trans_prob = 0.0;
        for (i = 0; i < num_states; i++) {
            trans_prob += eigenvectors[state1*num_states+i] * inv_eigenvectors[i*num_states+state2] * exp(evol_time * eigenvalues[i]);
        }
        return trans_prob;
    } else {
        // non-reversible
        double *trans_matrix = new double[num_states*num_states];
        computeTransMatrix(time, trans_matrix);
        double trans = trans_matrix[state1*num_states+state2];
        delete [] trans_matrix;
        return trans;
    }
}

double ModelMarkov::computeTrans(double time, int state1, int state2, double &derv1, double &derv2) {
	double evol_time = time / total_num_subst;
	int i;

//	double *coeff_entry = eigen_coeff + ((state1*num_states+state2)*num_states);
	double trans_prob = 0.0;
	derv1 = derv2 = 0.0;
	for (i = 0; i < num_states; i++) {
		double trans = eigenvectors[state1*num_states+i] * inv_eigenvectors[i*num_states+state2] * exp(evol_time * eigenvalues[i]);
		double trans2 = trans * eigenvalues[i];
		trans_prob += trans;
		derv1 += trans2;
		derv2 += trans2 * eigenvalues[i];
	}
	return trans_prob;
}


void ModelMarkov::computeTransDerv(double time, double *trans_matrix, 
	double *trans_derv1, double *trans_derv2, int mixture)
{
	int i, j, k;

    if (!is_reversible) {
        computeTransMatrix(time, trans_matrix);
        // First derivative = Q * e^(Qt)
        Map<Matrix<double, Dynamic, Dynamic, RowMajor> > trans_mat(trans_matrix, num_states, num_states);
        Map<Matrix<double, Dynamic, Dynamic, RowMajor> > rate_mat(rate_matrix, num_states, num_states);
        MatrixXd prod = rate_mat * trans_mat;
        Map<Matrix<double, Dynamic, Dynamic, RowMajor> > derv1_mat(trans_derv1, num_states, num_states);
        derv1_mat = prod;

        // Second derivative = Q * Q * e^(Qt)
        prod = rate_mat * prod;
        Map<Matrix<double, Dynamic, Dynamic, RowMajor> > derv2_mat(trans_derv2, num_states, num_states);
        derv2_mat = prod;

        /*
        for (i = 0; i < num_states; i++)
            for (j = 0; j < num_states; j++) {
                double val = 0.0;
                for (k = 0; k < num_states; k++)
                    val += rate_matrix[i*num_states+k] * trans_matrix[k*num_states+j];
                trans_derv1[i*num_states+j] = val;
            }
            
        // Second derivative = Q * Q * e^(Qt)
        for (i = 0; i < num_states; i++)
            for (j = 0; j < num_states; j++) {
                double val = 0.0;
                for (k = 0; k < num_states; k++)
                    val += rate_matrix[i*num_states+k] * trans_derv1[k*num_states+j];
                trans_derv2[i*num_states+j] = val;
            }
         */
        return;
    }

	double evol_time = time / total_num_subst;
    
    ArrayXd eval = Map<ArrayXd,Aligned>(eigenvalues, num_states);
    ArrayXd eval_exp = (eval*evol_time).exp();
    ArrayXd eval_exp_derv1 = eval_exp*eval;
    ArrayXd eval_exp_derv2 = eval_exp_derv1*eval;

    Map<Matrix<double,Dynamic,Dynamic,RowMajor>,Aligned> evectors(eigenvectors, num_states, num_states);
    Map<Matrix<double,Dynamic,Dynamic,RowMajor>,Aligned> inv_evectors(inv_eigenvectors, num_states, num_states);
    MatrixXd res = evectors * eval_exp.matrix().asDiagonal() * inv_evectors;
    Map<Matrix<double,Dynamic,Dynamic,RowMajor> >map_trans(trans_matrix,num_states,num_states);
    map_trans = res;

    res = evectors * eval_exp_derv1.matrix().asDiagonal() * inv_evectors;
    Map<Matrix<double,Dynamic,Dynamic,RowMajor> >map_derv1(trans_derv1,num_states,num_states);
    map_derv1 = res;

    res = evectors * eval_exp_derv2.matrix().asDiagonal() * inv_evectors;
    Map<Matrix<double,Dynamic,Dynamic,RowMajor> >map_derv2(trans_derv2,num_states,num_states);
    map_derv2 = res;

    /*
	double exptime[num_states];

	for (i = 0; i < num_states; i++)
		exptime[i] = exp(evol_time * eigenvalues[i]);

	for (i = 0; i < num_states; i ++) {
		for (j = 0; j < num_states; j ++) {
			int offset = (i*num_states+j);
			double *trans_entry = trans_matrix + offset;
			double *derv1_entry = trans_derv1 + offset;
			double *derv2_entry = trans_derv2 + offset;

//			int coeff_offset = offset*num_states;
//			double *coeff_entry       = eigen_coeff + coeff_offset;
			*trans_entry = 0.0;
			*derv1_entry = 0.0;
			*derv2_entry = 0.0;
			for (k = 0; k < num_states; k ++) {
				double trans = eigenvectors[i*num_states+k] * inv_eigenvectors[k*num_states+j] * exptime[k];
				double trans2 = trans * eigenvalues[k];
				*trans_entry += trans;
				*derv1_entry += trans2;
				*derv2_entry += trans2 * eigenvalues[k];
			}
			if (*trans_entry < 0.0) {
				*trans_entry = 0.0;
			}
		}
	}
     */
//	delete [] exptime;
}

void ModelMarkov::getRateMatrix(double *rate_mat) {
	int nrate = getNumRateEntries();
	memcpy(rate_mat, rates, nrate * sizeof(double));
}

void ModelMarkov::setRateMatrix(double* rate_mat)
{
	int nrate = getNumRateEntries();
	memcpy(rates, rate_mat, nrate * sizeof(double));
}

void ModelMarkov::setFullRateMatrix(double* rate_mat, double *freq)
{
    int i, j, k;
    if (isReversible()) {
        for (i = 0, k = 0; i < num_states; i++)
            for (j = i+1; j < num_states; j++)
                rates[k++] = rate_mat[i*num_states+j] / freq[j];
        memcpy(state_freq, freq, sizeof(double)*num_states);
    } else {
        // non-reversible
        for (i = 0, k = 0; i < num_states; i++)
            for (j = 0; j < num_states; j++)
                if (i != j)
                    rates[k++] = rate_mat[i*num_states+j];
    }
}

void ModelMarkov::getStateFrequency(double *freq, int mixture) {
	ASSERT(state_freq);
	ASSERT(freq_type != FREQ_UNKNOWN);
	memcpy(freq, state_freq, sizeof(double) * num_states);
  // // DEBUG.
  // cout << setprecision(8);
  // cout << "State frequency reported by ModelMarkov: ";
  // for (int i = 0; i < num_states; i++) {
  //   cout << state_freq[i] << " ";
  // }
  // cout << endl;
    // 2015-09-07: relax the sum of state_freq to be 1, this will be done at the end of optimization
    double sum = 0.0;
    int i;
    for (i = 0; i < num_states; i++) sum += freq[i];
    sum = 1.0/sum;
    for (i = 0; i < num_states; i++) freq[i] *= sum;
}

void ModelMarkov::setStateFrequency(double* freq)
{
	ASSERT(state_freq);
    /*
    if (!isReversible()) {
        // integrate out state_freq from rate_matrix
        int i, j, k = 0;
        for (i = 0, k = 0; i < num_states; i++)
            for (j = 0; j < num_states; j++)
                if (i != j) {
                    rates[k] = (rates[k])*freq[j];
                    if (state_freq[j] != 0.0)
                        rates[k] /= state_freq[j];
                    k++;
                }
    }
     */
    ModelSubst::setStateFrequency(freq);
}

void ModelMarkov::adaptStateFrequency(double* freq)
{
    ASSERT(state_freq);
    if (!isReversible()) {
        // integrate out state_freq from rate_matrix
        int i, j, k = 0;
        for (i = 0, k = 0; i < num_states; i++)
            for (j = 0; j < num_states; j++)
                if (i != j) {
                    rates[k] = (rates[k])*freq[j];
                    if (state_freq[j] > ZERO_FREQ)
                        rates[k] /= state_freq[j];
                    k++;
                }
    }
    ModelSubst::setStateFrequency(freq);
}

void ModelMarkov::getQMatrix(double *q_mat) {

    if (!is_reversible) {
        // non-reversible model
        memmove(q_mat, rate_matrix, num_states*num_states*sizeof(double));
        return;
    }

	double **rate_matrix = (double**) new double[num_states];
	int i, j, k = 0;

	for (i = 0; i < num_states; i++)
		rate_matrix[i] = new double[num_states];

	for (i = 0, k = 0; i < num_states; i++) {
		rate_matrix[i][i] = 0.0;
		for (j = i+1; j < num_states; j++, k++) {
			rate_matrix[i][j] = (state_freq[i] <= ZERO_FREQ || state_freq[j] <= ZERO_FREQ) ? 0 : rates[k];
			rate_matrix[j][i] = rate_matrix[i][j];
		}
	}

	computeRateMatrix(rate_matrix, state_freq, num_states);
	for (i = 0; i < num_states; i++)
		memmove(q_mat + (i*num_states), rate_matrix[i], num_states * sizeof(double));

	for (i = num_states-1; i >= 0; i--)
		delete [] rate_matrix[i];
	delete [] rate_matrix;

}

int ModelMarkov::getNDim() { 
	ASSERT(freq_type != FREQ_UNKNOWN);
	if (fixed_parameters)
		return 0;
    if (!is_reversible)
        return num_params;

    // reversible model
    int ndim = num_params;
	if (freq_type == FREQ_ESTIMATE) 
		ndim += num_states-1;
	return ndim;
}

int ModelMarkov::getNDimFreq() { 

    // BQM, 2017-05-02: getNDimFreq should return degree of freedom, which is not included in getNDim()
    // That's why 0 is returned for FREQ_ESTIMATE, num_states-1 for FREQ_EMPIRICAL

    if (fixed_parameters)
        return 0;

	if (freq_type == FREQ_EMPIRICAL)
        return num_states-1;
	else if (freq_type == FREQ_CODON_1x4) 
        return 3;
	else if (freq_type == FREQ_CODON_3x4 || freq_type == FREQ_CODON_3x4C) 
        return 9;

    // commented out due to reason above
//	if (phylo_tree->aln->seq_type == SEQ_DNA) {
//            return nFreqParams(freq_type);
//	}
	return 0;
}

void ModelMarkov::scaleStateFreq(bool sum_one) {
	int i;
	if (sum_one) {
		// make the frequencies sum to 1
		double sum = 0.0;
		for (i = 0; i < num_states; i++) sum += state_freq[i];
		for (i = 0; i < num_states; i++) state_freq[i] /= sum;		
	} else {
		// make the last frequency equal to 0.1
		if (state_freq[num_states-1] == 0.1) return;
		ASSERT(state_freq[num_states-1] > 1.1e-6);
		for (i = 0; i < num_states; i++) 
			state_freq[i] /= state_freq[num_states-1]*10.0;
	}
}

void ModelMarkov::setVariables(double *variables) {
	int nrate = getNDim();

    // non-reversible case
//    if (!is_reversible) {
//        if (nrate > 0)
//            memcpy(variables+1, model_parameters, nrate*sizeof(double));
//        return;
//    }

	if (is_reversible && freq_type == FREQ_ESTIMATE) nrate -= (num_states-1);
	if (nrate > 0)
		memcpy(variables+1, rates, nrate*sizeof(double));
	if (is_reversible && freq_type == FREQ_ESTIMATE) {
        // 2015-09-07: relax the sum of state_freq to be 1, this will be done at the end of optimization
		int ndim = getNDim();
		memcpy(variables+(ndim-num_states+2), state_freq, (num_states-1)*sizeof(double));
    }
}

bool ModelMarkov::getVariables(double *variables) {
	int nrate = getNDim();
	int i;
	bool changed = false;

    // non-reversible case
//    if (!is_reversible) {
//        for (i = 0; i < nrate && !changed; i++)
//            changed = (model_parameters[i] != variables[i+1]);
//        if (changed) {
//            memcpy(model_parameters, variables+1, nrate * sizeof(double));
//            setRates();
//        }
//        return changed;
//    }

	if (is_reversible && freq_type == FREQ_ESTIMATE) nrate -= (num_states-1);
	if (nrate > 0) {
		for (i = 0; i < nrate; i++)
			changed |= (rates[i] != variables[i+1]);
		memcpy(rates, variables+1, nrate * sizeof(double));
	}

	if (is_reversible && freq_type == FREQ_ESTIMATE) {
        // 2015-09-07: relax the sum of state_freq to be 1, this will be done at the end of optimization
        // 2015-09-07: relax the sum of state_freq to be 1, this will be done at the end of optimization
		int ndim = getNDim();
		for (i = 0; i < num_states-1; i++)
			changed |= (state_freq[i] != variables[i+ndim-num_states+2]);
		memcpy(state_freq, variables+(ndim-num_states+2), (num_states-1)*sizeof(double));

//		memcpy(state_freq, variables+nrate+1, (num_states-1)*sizeof(double));
		//state_freq[num_states-1] = 0.1;
		//scaleStateFreq(true);

//		double sum = 0.0;
//		for (int i = 0; i < num_states-1; i++)
//			sum += state_freq[i];
//		state_freq[num_states-1] = 1.0 - sum;
//		double sum = 1.0;
//		int i, j;
//		for (i = 1; i < num_states; i++)
//			sum += variables[nrate+i];
//		for (i = 0, j = 1; i < num_states; i++)
//			if (i != highest_freq_state) {
//				state_freq[i] = variables[nrate+j] / sum;
//				j++;
//			}
//		state_freq[highest_freq_state] = 1.0/sum;
	}
	return changed;
}

double ModelMarkov::targetFunk(double x[]) {
	bool changed = getVariables(x);

	if (changed) {
		decomposeRateMatrix();
		ASSERT(phylo_tree);
		phylo_tree->clearAllPartialLH();
//        if (nondiagonalizable) // matrix is ill-formed
//            return 1.0e+30;
	}

    // avoid numerical issue if state_freq is too small
    for (int i = 0; i < num_states; i++)
        if (state_freq[i] < 0 || (state_freq[i] > 0 && state_freq[i] < Params::getInstance().min_state_freq)) {
            //outWarning("Weird state_freq[" + convertIntToString(i) + "]=" + convertDoubleToString(state_freq[i]));
            return 1.0e+30;
        }

//    if (!is_reversible) {
//        for (int i = 0; i < num_states; i++)
//            if (state_freq[i] < MIN_FREQUENCY)
//                return 1.0e+30;
//    }

	return -phylo_tree->computeLikelihood();

}

bool ModelMarkov::isUnstableParameters() {
	int nrates = getNumRateEntries();
	int i;
    // NOTE: zero rates are not consider unstable anymore
	for (i = 0; i < nrates; i++)
		if (/*rates[i] < MIN_RATE+TOL_RATE || */rates[i] > MAX_RATE*0.99)
			return true;

    if (freq_type == FREQ_ESTIMATE)
	for (i = 0; i < num_states; i++)
		if (state_freq[i] > 0.0 && state_freq[i] < MIN_RATE+TOL_RATE)
			return true;
	return false;
}

void ModelMarkov::setBounds(double *lower_bound, double *upper_bound, bool *bound_check) {
//    ASSERT(is_reversible && "setBounds should only be called on subclass of ModelMarkov");

    int i, ndim = getNDim();

    for (i = 1; i <= ndim; i++) {
	//cout << variables[i] << endl;
	lower_bound[i] = MIN_RATE;
	upper_bound[i] = MAX_RATE;
	bound_check[i] = false;
    }

	if (is_reversible && freq_type == FREQ_ESTIMATE) {
		for (i = ndim-num_states+2; i <= ndim; i++) {
//            lower_bound[i] = MIN_FREQUENCY/state_freq[highest_freq_state];
//			upper_bound[i] = state_freq[highest_freq_state]/MIN_FREQUENCY;
            lower_bound[i]  = Params::getInstance().min_state_freq;
//            upper_bound[i] = 100.0;
            upper_bound[i] = 1.0;
            bound_check[i] = false;
        }
	} else if (phylo_tree->aln->seq_type == SEQ_DNA) {
        setBoundsForFreqType(&lower_bound[num_params+1], &upper_bound[num_params+1],
            &bound_check[num_params+1], Params::getInstance().min_state_freq, freq_type);
    }
}

double ModelMarkov::optimizeParameters(double gradient_epsilon) {
    
    if (fixed_parameters)
        return 0.0;
    
	int ndim = getNDim();
	
	// return if nothing to be optimized
	if (ndim == 0) return 0.0;
    
	if (verbose_mode >= VB_MAX)
		cout << "Optimizing " << name << " model parameters..." << endl;

	//if (freq_type == FREQ_ESTIMATE) scaleStateFreq(false);

	double *variables = new double[ndim+1]; // used for BFGS numerical recipes
    double *variables2 = new double[ndim+1]; // used for L-BFGS-B
	double *upper_bound = new double[ndim+1];
	double *lower_bound = new double[ndim+1];
	bool *bound_check = new bool[ndim+1];
	double score;

    for (int i = 0; i < num_states; i++)
        if (state_freq[i] > state_freq[highest_freq_state])
            highest_freq_state = i;

	// by BFGS algorithm
	setVariables(variables);
    setVariables(variables2);
	setBounds(lower_bound, upper_bound, bound_check);
    if (phylo_tree->params->optimize_alg.find("BFGS-B") == string::npos)
        score = -minimizeMultiDimen(variables, ndim, lower_bound, upper_bound, bound_check, max(gradient_epsilon, TOL_RATE));
    else
        score = -L_BFGS_B(ndim, variables+1, lower_bound+1, upper_bound+1, max(gradient_epsilon, TOL_RATE));

    bool changed = getVariables(variables);

    /* 2019-09-05: REMOVED due to numerical issue (NAN) with L-BFGS-B
    // 2017-12-06: more robust optimization using 2 different routines
    // when estimates are at boundary
    score = -minimizeMultiDimen(variables, ndim, lower_bound, upper_bound, bound_check, max(gradient_epsilon, TOL_RATE));
	bool changed = getVariables(variables);

    if (isUnstableParameters()) {
        // parameters at boundary, restart with L-BFGS-B with parameters2
        double score2 = -L_BFGS_B(ndim, variables2+1, lower_bound+1, upper_bound+1, max(gradient_epsilon, TOL_RATE));
        if (score2 > score+0.1) {
            if (verbose_mode >= VB_MED)
                cout << "NICE: L-BFGS-B found better parameters with LnL=" << score2 << " than BFGS LnL=" << score << endl;
            changed = getVariables(variables2);
            score = score2;
        } else {
            // otherwise, revert what BFGS found
            changed = getVariables(variables);
        }
    }
     */

    // BQM 2015-09-07: normalize state_freq
	if (is_reversible && freq_type == FREQ_ESTIMATE) {
        scaleStateFreq(true);
        changed = true;
    }
    if (changed) {
        decomposeRateMatrix();
        phylo_tree->clearAllPartialLH();
        score = phylo_tree->computeLikelihood();
    }
	
	delete [] bound_check;
	delete [] lower_bound;
	delete [] upper_bound;
	delete [] variables2;
	delete [] variables;

	return score;
}

void ModelMarkov::decomposeRateMatrixNonrev() {
    int i, j, k = 0;
    double sum;
    //double m[num_states];
    double freq = 1.0/num_states;
    
    for (i = 0; i < num_states; i++)
        state_freq[i] = freq;
    
    for (i = 0, k = 0; i < num_states; i++) {
        double *rate_row = rate_matrix+(i*num_states);
        double row_sum = 0.0;
        for (j = 0; j < num_states; j++)
            if (j != i) {
                row_sum += (rate_row[j] = rates[k++]);
            }
        rate_row[i] = -row_sum;
    }
    computeStateFreqFromQMatrix(rate_matrix, state_freq, num_states);
    
    
    for (i = 0, sum = 0.0; i < num_states; i++) {
        sum -= rate_matrix[i*num_states+i] * state_freq[i]; /* exp. rate */
    }
    
    if (sum == 0.0) throw "Empty Q matrix";
    
    double delta = total_num_subst / sum; /* 0.01 subst. per unit time */
    
    for (i = 0; i < num_states; i++) {
        double *rate_row = rate_matrix+(i*num_states);
        for (j = 0; j < num_states; j++) {
            rate_row[j] *= delta;
        }
    }
    
    if (phylo_tree->params->matrix_exp_technique == MET_EIGEN_DECOMPOSITION) {
        eigensystem_nonrev(rate_matrix, state_freq, eigenvalues, eigenvalues_imag, eigenvectors, inv_eigenvectors, num_states);
        return;
    }
    
    
    /******** using Eigen3 library ***********/
    
    nondiagonalizable = false; // until proven otherwise
    int n = 0; // the number of states where freq is non-zero
    for (i = 0; i < num_states; i++)
        if (state_freq[i] > ZERO_FREQ)
            n++;
    int ii, jj;
    MatrixXd Q(n, n);
    VectorXd pi(n);
    for (i = 0, ii = 0; i < num_states; i++)
        if (state_freq[i] > ZERO_FREQ) {
            pi(ii) = state_freq[i];
            ii++;
        }
    // normalize pi to sum=1
    pi = pi*(1.0/pi.sum());
    // RowMajor for rate_matrix
    if (n == num_states)
        Q = Map<Matrix<double,Dynamic,Dynamic,RowMajor>,Aligned >(rate_matrix, num_states, num_states);
    else {
        for (i = 0, ii = 0; i < num_states; i++)
            if (state_freq[i] > ZERO_FREQ) {
                for (j = 0, jj = 0; j < num_states; j++)
                    if (state_freq[j] > ZERO_FREQ) {
                        Q(ii,jj) = rate_matrix[i*num_states+j];
                        jj++;
                    }
                ii++;
            }
    }
    EigenSolver<MatrixXd> eigensolver(Q);
    ASSERT (eigensolver.info() == Eigen::Success);
    if (n == num_states) {
        Map<VectorXcd,Aligned> eval(ceval, num_states);
        eval = eigensolver.eigenvalues();
        Map<MatrixXcd,Aligned> evec(cevec, num_states, num_states);
        evec = eigensolver.eigenvectors();
        FullPivLU<MatrixXcd> lu(evec);
        if (lu.isInvertible()) {
            Map<MatrixXcd,Aligned> inv_evec(cinv_evec, num_states, num_states);
            inv_evec = lu.inverse();
        } else {
            nondiagonalizable = true;
            outWarning("evec not invertible");
        }
    } else {
        // manual copy non-zero entries
        for (i = 0, ii = 0; i < num_states; i++)
            if (state_freq[i] > ZERO_FREQ) {
                ceval[i] = eigensolver.eigenvalues()(ii);
                ii++;
            } else
                ceval[i] = 0.0;
        MatrixXcd evec = eigensolver.eigenvectors();
        MatrixXcd inv_evec;
        FullPivLU<MatrixXcd> lu(evec);
        if (lu.isInvertible()) {
            inv_evec = lu.inverse();
        } else {
            nondiagonalizable = true;
            outWarning("evec not invertible");
        }
        for (i = 0, ii = 0; i < num_states; i++) {
            auto *eigenvectors_ptr = cevec + (i*num_states);
            auto *inv_eigenvectors_ptr = cinv_evec + (i*num_states);
            if (state_freq[i] > ZERO_FREQ) {
                for (j = 0, jj = 0; j < num_states; j++)
                    if (state_freq[j] > ZERO_FREQ) {
                        eigenvectors_ptr[j] = evec(ii,jj);
                        inv_eigenvectors_ptr[j] = inv_evec(ii,jj);
                        jj++;
                    } else {
                        eigenvectors_ptr[j] = inv_eigenvectors_ptr[j] = (i == j);
                    }
                ii++;
            } else {
                for (j = 0; j < num_states; j++) {
                    eigenvectors_ptr[j] = inv_eigenvectors_ptr[j] = (i == j);
                }
            }
        }
    }
    
    // sanity check
//    MatrixXcd eval_diag = eval.asDiagonal();
//    MatrixXd check = (inv_evec * mat * evec - eval_diag).cwiseAbs();
//    ASSERT(check.maxCoeff() < 1e-4);
}

void ModelMarkov::decomposeRateMatrix(){
	int i, j, k = 0;

    if (!is_reversible) {
        decomposeRateMatrixNonrev();
        return;
    }
    
    if (num_params == -1) {
        // reversible model
		// manual compute eigenvalues/vectors for F81-style model
		eigenvalues[0] = 0.0;
		double mu = 0.0;
		for (i = 0; i < num_states; i++)
			mu += state_freq[i]*state_freq[i];
		mu = total_num_subst/(1.0 - mu);

		// compute eigenvalues
		for (i = 1; i < num_states; i++)
			eigenvalues[i] = -mu;

//		double *f = new double[num_states];
//		for (i = 0; i < num_states; i++) f[i] = sqrt(state_freq[i]);
		// compute eigenvectors
		memset(eigenvectors, 0, num_states*num_states*sizeof(double));
		memset(inv_eigenvectors, 0, num_states*num_states*sizeof(double));
		eigenvectors[0] = 1.0;
		for (i = 1; i < num_states; i++)
			eigenvectors[i] = -1.0;
//			eigenvectors[i] = f[i]/f[num_states-1];
		for (i = 1; i < num_states; i++) {
			eigenvectors[i*num_states] = 1.0;
			eigenvectors[i*num_states+i] = state_freq[0]/state_freq[i];
		}

		for (i = 0; i < num_states; i++)
			for (j = 0; j < num_states; j++)
				inv_eigenvectors[i*num_states+j] = state_freq[j]*eigenvectors[j*num_states+i];
		writeInfo(cout);
		// sanity check
		double *q = new double[num_states*num_states];
		getQMatrix(q);
		double zero;
		for (j = 0; j < num_states; j++) {
			for (i = 0, zero = 0.0; i < num_states; i++) {
				for (k = 0; k < num_states; k++) zero += q[i*num_states+k] * eigenvectors[k*num_states+j];
				zero -= eigenvalues[j] * eigenvectors[i*num_states+j];
				if (fabs(zero) > 1.0e-5) {
					cout << "\nERROR: Eigenvector doesn't satisfy eigenvalue equation! (gap=" << fabs(zero) << ")" << endl;
					abort();
				}
			}
		}
		delete [] q;
        return;
	}
    
    auto technique = phylo_tree->params->matrix_exp_technique;
    
    if (technique == MET_EIGEN3LIB_DECOMPOSITION) {
        // Use Eigen3 library for eigen decomposition of symmetric matrix
        int n = 0; // the number of states where freq is non-zero
        for (i = 0; i < num_states; i++)
            if (state_freq[i] > ZERO_FREQ)
                n++;
        int ii, jj;
        MatrixXd Q(n, n);
        VectorXd pi(n);
        for (i = 0, ii = 0; i < num_states; i++)
            if (state_freq[i] > ZERO_FREQ) {
                pi(ii) = state_freq[i];
                ii++;
            }
        // normalize pi to sum=1
        pi = pi*(1.0/pi.sum());
        
        ArrayXd pi_sqrt_arr = pi.array().sqrt();
        auto pi_sqrt = pi_sqrt_arr.matrix().asDiagonal();
        auto pi_sqrt_inv = pi_sqrt_arr.inverse().matrix().asDiagonal();

        if (half_matrix) {
            for (i = 0, k = 0, ii = 0; i < num_states; i++)
            if (state_freq[i] > ZERO_FREQ){
                Q(ii,ii) = 0.0;
                for (j = i+1, jj = ii+1; j < num_states; j++, k++)
                if (state_freq[j] > ZERO_FREQ) {
                    Q(ii,jj) = Q(jj,ii) = rates[k];
                    jj++;
                }
                ASSERT(jj == n);
                ii++;
            } else
                k += num_states-i-1; // 2019-04-27 BUG FIX: k is not increased properly!
        } else {
            // full matrix
            if (n == num_states)
                Q = Map<Matrix<double,Dynamic,Dynamic,RowMajor> >(rates,num_states,num_states);
            else {
                for (i = 0, ii = 0; i < num_states; i++)
                    if (state_freq[i] > ZERO_FREQ) {
                        for (j = 0, jj = 0; j < num_states; j++)
                            if (state_freq[j] > ZERO_FREQ) {
                                Q(ii,jj) = rates[i*num_states+j];
                                jj++;
                            }
                        ii++;
                    }
            }
        }
        
        // compute rate matrix
        if (!ignore_state_freq)
            Q *= pi.asDiagonal();
        
        //make row sum equal zero
        VectorXd Q_row_sum = Q.rowwise().sum();
        Q -= Q_row_sum.asDiagonal();
        
        // normalize rat_mat
        if (normalize_matrix) {
            double scale_factor = total_num_subst / (Q_row_sum.dot(pi));
            Q *= scale_factor;
        }
        
//        if (verbose_mode >= VB_DEBUG)
//            cout << Q << endl;
        
        //symmetrize rate matrix
        Q = pi_sqrt * Q * pi_sqrt_inv;
        if (verbose_mode >= VB_DEBUG)
            cout << "Symmetric rate matrix:" << endl << Q << endl;
        if ((Q - Q.transpose()).cwiseAbs().maxCoeff() >= 0.01) {
            cout << "Q: " << endl << Q << endl;
            cout << "pi: " << pi << endl;
            writeInfo(cout);
        }
        if ((Q - Q.transpose()).cwiseAbs().maxCoeff() > 0.1) {
            //  Somehow transformed Q is non-symmetric, revert to the old function
            decomposeRateMatrixRev();
            return;
        }

        // eigensolver
        SelfAdjointEigenSolver<MatrixXd> eigensolver(Q);
        if (eigensolver.info() != Eigen::Success) {
            // Eigen3 failed, revert to the old function
            decomposeRateMatrixRev();
            return;
        }
        if (eigensolver.eigenvalues().maxCoeff() > 1e-4) {
             // "eigenvalues are not positive", revert to the old function
            decomposeRateMatrixRev();
            return;
        }

        if (n == num_states) {
            Map<VectorXd,Aligned> eval(eigenvalues,num_states);
            eval = eigensolver.eigenvalues();
            if (verbose_mode >= VB_DEBUG)
                cout << "eval: " << eval << endl;

            Map<Matrix<double,Dynamic,Dynamic,RowMajor>,Aligned> evec(eigenvectors,num_states,num_states);
            evec = pi_sqrt_inv * eigensolver.eigenvectors();

            Map<Matrix<double,Dynamic,Dynamic,RowMajor>,Aligned> inv_evec(inv_eigenvectors,num_states,num_states);
            inv_evec = eigensolver.eigenvectors().transpose() * pi_sqrt;
        } else {
            // manual copy non-zero entries
            for (i = 0, ii = 0; i < num_states; i++)
                if (state_freq[i] > ZERO_FREQ) {
                    eigenvalues[i] = eigensolver.eigenvalues()(ii);
                    ii++;
                } else
                    eigenvalues[i] = 0.0;
            MatrixXd evec = pi_sqrt_inv * eigensolver.eigenvectors();
            MatrixXd inv_evec = eigensolver.eigenvectors().transpose() * pi_sqrt;
            for (i = 0, ii = 0; i < num_states; i++) {
                double *eigenvectors_ptr = eigenvectors + (i*num_states);
                double *inv_eigenvectors_ptr = inv_eigenvectors + (i*num_states);
                if (state_freq[i] > ZERO_FREQ) {
                    for (j = 0, jj = 0; j < num_states; j++)
                        if (state_freq[j] > ZERO_FREQ) {
                            eigenvectors_ptr[j] = evec(ii,jj);
                            inv_eigenvectors_ptr[j] = inv_evec(ii,jj);
                            jj++;
                        } else {
                            eigenvectors_ptr[j] = inv_eigenvectors_ptr[j] = (i == j);
                        }
                    ii++;
                } else {
                    for (j = 0; j < num_states; j++) {
                        eigenvectors_ptr[j] = inv_eigenvectors_ptr[j] = (i == j);
                    }
                }
            }
        }
        return;
    }
    decomposeRateMatrixRev();
}

void ModelMarkov::decomposeRateMatrixRev() {

    int i, j, k;
    // general reversible model
    double **rate_matrix = new double*[num_states];

    for (i = 0; i < num_states; i++)
        rate_matrix[i] = new double[num_states];

    if (half_matrix) {
        for (i = 0, k = 0; i < num_states; i++) {
            rate_matrix[i][i] = 0.0;
            for (j = i+1; j < num_states; j++, k++) {
                rate_matrix[i][j] = (state_freq[i] <= ZERO_FREQ || state_freq[j] <= ZERO_FREQ) ? 0 : rates[k];
                rate_matrix[j][i] = rate_matrix[i][j];
            }
        }
    } else {
        // full matrix
        for (i = 0; i < num_states; i++) {
            memcpy(rate_matrix[i], &rates[i*num_states], num_states*sizeof(double));
            rate_matrix[i][i] = 0.0;
        }
    }
    /* eigensystem of 1 PAM rate matrix */
    eigensystem_sym(rate_matrix, state_freq, eigenvalues, eigenvectors, inv_eigenvectors, num_states);
    //eigensystem(rate_matrix, state_freq, eigenvalues, eigenvectors, inv_eigenvectors, num_states);
    for (i = num_states-1; i >= 0; i--)
        delete [] rate_matrix[i];
    delete [] rate_matrix;
}

void ModelMarkov::readRates(istream &in) throw(const char*, string) {
	int nrates = getNumRateEntries();
	string str;
	in >> str;
	if (str == "equalrate") {
		for (int i = 0; i < nrates; i++)
			rates[i] = 1.0;
	} else if (is_reversible ){
        // reversible model
		try {
			rates[0] = convert_double(str.c_str());
		} catch (string &str) {
			outError(str);
		}
		if (rates[0] < 0.0)
			throw "Negative rates not allowed";
		for (int i = 1; i < nrates; i++) {
			if (!(in >> rates[i]))
				throw "Rate entries could not be read";
			if (rates[i] < 0.0)
				throw "Negative rates not allowed";
		}
    } else {
        // non-reversible model, read the whole rate matrix
        int i = 0, row, col;
        for (row = 0; row < num_states; row++) {
            double row_sum = 0.0;
            for (col = 0; col < num_states; col++)
                if (row == 0 && col == 0) {
                    // top-left element was already red
                    try {
                        row_sum = convert_double(str.c_str());
                    } catch (string &str) {
                        outError(str);
                    }
                } else if (row != col) {
                    // non-diagonal element
                    if (!(in >> rates[i]))
                        throw name+string(": Rate entries could not be read");
                    if (rates[i] < 0.0)
                        throw "Negative rates found";
                    row_sum += rates[i];
                    i++;
                } else {
                    // diagonal element
                    double d;
                    in >> d;
                    row_sum += d;
                }
            if (fabs(row_sum) > 1e-3)
                throw "Row " + convertIntToString(row) + " does not sum to 0";
        }
    }
}

void ModelMarkov::readRates(string str) throw(const char*) {
	int nrates = getNumRateEntries();
	int end_pos = 0;
	cout << __func__ << " " << str << endl;
	if (str.find("equalrate") != string::npos) {
		for (int i = 0; i < nrates; i++)
			rates[i] = 1.0;
	} else for (int i = 0; i < nrates; i++) {
		int new_end_pos;
		try {
			rates[i] = convert_double(str.substr(end_pos).c_str(), new_end_pos);
		} catch (string &str) {
			outError(str);
		}
		end_pos += new_end_pos;
		if (rates[i] <= 0.0)
			outError("Non-positive rates found");
		if (i == nrates-1 && end_pos < str.length())
			outError("String too long ", str);
		if (i < nrates-1 && end_pos >= str.length())
			outError("Unexpected end of string ", str);
		if (end_pos < str.length() && str[end_pos] != ',')
			outError("Comma to separate rates not found in ", str);
		end_pos++;
	}
	num_params = 0;

}

void ModelMarkov::readStateFreq(istream &in) throw(const char*) {
	int i;
	for (i = 0; i < num_states; i++) {
		if (!(in >> state_freq[i])) 
			throw "State frequencies could not be read";
		if (state_freq[i] < 0.0)
			throw "Negative state frequencies found";
	}
	double sum = 0.0;
	for (i = 0; i < num_states; i++) sum += state_freq[i];
	if (fabs(sum-1.0) > 1e-2)
		throw "State frequencies do not sum up to 1.0";
    sum = 1.0/sum;
    for (i = 0; i < num_states; i++)
        state_freq[i] *= sum;
}

void ModelMarkov::readStateFreq(string str) throw(const char*) {
	int i;
	int end_pos = 0;
	for (i = 0; i < num_states; i++) {
		int new_end_pos;
		state_freq[i] = convert_double(str.substr(end_pos).c_str(), new_end_pos);
		end_pos += new_end_pos;
		//cout << i << " " << state_freq[i] << endl;
		if (state_freq[i] < 0.0 || state_freq[i] > 1)
			outError("State frequency must be in [0,1] in ", str);
		if (i == num_states-1 && end_pos < str.length())
			outError("Unexpected end of string ", str);
		if (end_pos < str.length() && str[end_pos] != ',' && str[end_pos] != ' ')
			outError("Comma/Space to separate state frequencies not found in ", str);
		end_pos++;
	}
	double sum = 0.0;
	for (i = 0; i < num_states; i++) sum += state_freq[i];
	if (fabs(sum-1.0) > 1e-2)
		outError("State frequencies do not sum up to 1.0 in ", str);
    sum = 1.0/sum;
    for (i = 0; i < num_states; i++)
        state_freq[i] *= sum;
}

void ModelMarkov::readParameters(const char *file_name, bool adapt_tree) {
    if (!fileExists(file_name))
        outError("File not found ", file_name);

    cout << "Reading model parameters from file " << file_name << endl;

    // if detect if reading full matrix or half matrix by the first entry
	try {
		ifstream in(file_name);
        double d;
        in >> d;
        if (d < 0) {
            setReversible(false, adapt_tree);
        } else
            setReversible(true, adapt_tree);
        in.close();
    }
	catch (...) {
		outError(ERR_READ_ANY, file_name);
	}

	try {
		ifstream in(file_name);
		if (in.fail()) {
			outError("Invalid model name ", file_name);
        }
		readRates(in);
		readStateFreq(in);
		in.close();
	}
	catch (const char *str) {
		outError(str);
	} 
	num_params = 0;
	writeInfo(cout);

    if (!is_reversible) {
        // check consistency of state_freq
        double saved_state_freq[num_states];
        memcpy(saved_state_freq, state_freq, sizeof(double)*num_states);
        decomposeRateMatrix();
        for (int i = 0; i < num_states; i++)
            if (fabs(state_freq[i] - saved_state_freq[i]) > 1e-3)
                cout << "WARNING: State " << i << " frequency " << state_freq[i]
                     << " does not match " << saved_state_freq[i] << endl;
    }
}

void ModelMarkov::readParametersString(string &model_str, bool adapt_tree) {

    // if detect if reading full matrix or half matrix by the first entry
    int end_pos;
    double d = 0.0;
    d = convert_double(model_str.c_str(), end_pos);
    if (d < 0) {
        setReversible(false, adapt_tree);
    } else
        setReversible(true, adapt_tree);

	try {
		stringstream in(model_str);
		readRates(in);
		readStateFreq(in);
	}
	catch (const char *str) {
		outError(str);
	} 
	num_params = 0;
	writeInfo(cout);

    if (!is_reversible) {
        // check consistency of state_freq
        double saved_state_freq[num_states];
        memcpy(saved_state_freq, state_freq, sizeof(double)*num_states);
        decomposeRateMatrix();
        for (int i = 0; i < num_states; i++)
            if (fabs(state_freq[i] - saved_state_freq[i]) > 1e-3)
                cout << "WARNING: State " << i << " frequency " << state_freq[i]
                     << " does not match " << saved_state_freq[i] << endl;
    }
}


ModelMarkov::~ModelMarkov() {
    // mem space pointing to target model and thus avoid double free here
	freeMem();
}

void ModelMarkov::freeMem()
{
    if (inv_eigenvectors)
        aligned_free(inv_eigenvectors);
    if (eigenvectors)
        aligned_free(eigenvectors);
    if (eigenvalues)
        aligned_free(eigenvalues);

	if (rates) delete [] rates;

    if (cinv_evec)
        aligned_free(cinv_evec);
    if (cevec)
        aligned_free(cevec);
    if (ceval)
        aligned_free(ceval);
    if (eigenvalues_imag)
        aligned_free(eigenvalues_imag);
    if (rate_matrix)
        aligned_free(rate_matrix);
//    if (model_parameters)
//        delete [] model_parameters;
}

double *ModelMarkov::getEigenvalues() const
{
    return eigenvalues;
}

double *ModelMarkov::getEigenvectors() const
{
    return eigenvectors;
}

double* ModelMarkov::getInverseEigenvectors() const {
	return inv_eigenvectors;
}

//void ModelGTR::setEigenCoeff(double *eigenCoeff)
//{
//    eigen_coeff = eigenCoeff;
//}

void ModelMarkov::setEigenvalues(double *eigenvalues)
{
    this->eigenvalues = eigenvalues;
}

void ModelMarkov::setEigenvectors(double *eigenvectors)
{
    this->eigenvectors = eigenvectors;
}

void ModelMarkov::setInverseEigenvectors(double *inv_eigenvectors)
{
    this->inv_eigenvectors = inv_eigenvectors;
}

/****************************************************/
/*      NON-REVERSIBLE STUFFS                       */
/****************************************************/


void ModelMarkov::setRates() {
	// I don't know the proper C++ way to handle this: got error if I didn't define something here.
	ASSERT(0 && "setRates should only be called on subclass of ModelMarkov");
}

/* static */ ModelMarkov* ModelMarkov::getModelByName(string model_name, PhyloTree *tree, string model_params, StateFreqType freq_type, string freq_params) {
	if (ModelUnrest::validModelName(model_name)) {
		return (new ModelUnrest(tree, model_params));
	} else if (ModelLieMarkov::validModelName(model_name)) {
	        return (new ModelLieMarkov(model_name, tree, model_params, freq_type, freq_params));
	} else {
		cerr << "Unrecognized model name " << model_name << endl;
		return (NULL);
	}
}

/* static */ bool ModelMarkov::validModelName(string model_name) {
	return ModelUnrest::validModelName(model_name) 
	  || ModelLieMarkov::validModelName(model_name);
}

int ModelMarkov::get_num_states_total() {
  return num_states;
}

void ModelMarkov::update_eigen_pointers(double *eval, double *evec, double *inv_evec) {
  eigenvalues = eval;
  eigenvectors = evec;
  inv_eigenvectors = inv_evec;
  return;
}

void ModelMarkov::computeTransMatrixEigen(double time, double *trans_matrix) {
	/* compute P(t) */
	double evol_time = time / total_num_subst;
    int nstates_2 = num_states*num_states;
	double *exptime = new double[nstates_2];
	int i, j, k;

    memset(exptime, 0, sizeof(double)*nstates_2);
	for (i = 0; i < num_states; i++)
        if (eigenvalues_imag[i] == 0.0) {
            exptime[i*num_states+i] = exp(evol_time * eigenvalues[i]);
        } else {
            ASSERT(i < num_states-1 && eigenvalues_imag[i+1] != 0.0 && eigenvalues_imag[i] > 0.0);
            complex<double> exp_eval(eigenvalues[i] * evol_time, eigenvalues_imag[i] * evol_time);
            exp_eval = exp(exp_eval);
            exptime[i*num_states+i] = exp_eval.real();
            exptime[i*num_states+i+1] = exp_eval.imag();
            i++;
            exptime[i*num_states+i] = exp_eval.real();
            exptime[i*num_states+i-1] = -exp_eval.imag();
        }


    // compute V * exp(L t)
    for (i = 0; i < num_states; i++)
        for (j = 0; j < num_states; j++) {
            double val = 0;
            for (k = 0; k < num_states; k++)
                val += eigenvectors[i*num_states+k] * exptime[k*num_states+j];
            trans_matrix[i*num_states+j] = val;
        }

    memcpy(exptime, trans_matrix, sizeof(double)*nstates_2);

    // then compute V * exp(L t) * V^{-1}
    for (i = 0; i < num_states; i++) {
        double row_sum = 0.0;
        for (j = 0; j < num_states; j++) {
            double val = 0;
            for (k = 0; k < num_states; k++)
                val += exptime[i*num_states+k] * inv_eigenvectors[k*num_states+j];
            // make sure that trans_matrix are non-negative
            ASSERT(val >= -0.001);
            val = fabs(val);
            trans_matrix[i*num_states+j] = val;
            row_sum += val;
        }
        ASSERT(fabs(row_sum-1.0) < 1e-4);
    }

    delete [] exptime;
}


/****************************************************/
/*      HELPER FUNCTIONS                            */
/****************************************************/

/* BQM: Ziheng Yang code which fixed old matinv function */
int matinv (double x[], int n, int m, double space[])
{
    /* x[n*m]  ... m>=n
       space[n].  This puts the fabs(|x|) into space[0].  Check and calculate |x|.
       Det may have the wrong sign.  Check and fix.
    */
    int i,j,k;
    int *irow=(int*) space;
    double ee=1e-100, t,t1,xmax, det=1;

    for (i=0; i<n; i++) irow[i]=i;

    for (i=0; i<n; i++)  {
        xmax = fabs(x[i*m+i]);
        for (j=i+1; j<n; j++)
            if (xmax<fabs(x[j*m+i]))
            {
                xmax = fabs(x[j*m+i]);
                irow[i]=j;
            }
        det *= x[irow[i]*m+i];
        if (xmax < ee)   {
            cout << endl << "xmax = " << xmax << " close to zero at " << i+1 << "!\t" << endl;
            ASSERT(0);
        }
        if (irow[i] != i) {
            for (j=0; j < m; j++) {
                t = x[i*m+j];
                x[i*m+j] = x[irow[i]*m+j];
                x[irow[i]*m+j] = t;
            }
        }
        t = 1./x[i*m+i];
        for (j=0; j < n; j++) {
            if (j == i) continue;
            t1 = t*x[j*m+i];
            for (k=0; k<m; k++)  x[j*m+k] -= t1*x[i*m+k];
            x[j*m+i] = -t1;
        }
        for (j=0; j < m; j++)   x[i*m+j] *= t;
        x[i*m+i] = t;
    }                            /* for(i) */
    for (i=n-1; i>=0; i--) {
        if (irow[i] == i) continue;
        for (j=0; j < n; j++)  {
            t = x[j*m+i];
            x[j*m+i] = x[j*m + irow[i]];
            x[j*m + irow[i]] = t;
        }
    }
    space[0]=det;
    return(0);
}

/*
int computeStateFreqFromQMatrix (double Q[], double pi[], int n)
{
    double *space = new double[n*(n+1)];

    // from rate matrix Q[] to pi, the stationary frequencies:
    //   Q' * pi = 0     pi * 1 = 1
    // space[] is of size n*(n+1).
    int i,j;
    double *T = space;      // T[n*(n+1)]

    for (i=0;i<n+1;i++) T[i]=1;
    for (i=1;i<n;i++) {
        for (j=0;j<n;j++)
            T[i*(n+1)+j] =  Q[j*n+i];     // transpose
        T[i*(n+1)+n] = 0.;
    }
    matinv(T, n, n+1, pi);
    for (i=0;i<n;i++)
        pi[i] = T[i*(n+1)+n];
    delete [] space;
    return (0);
}*/
/* End of Ziheng Yang code */

// using Eigen lib
int computeStateFreqFromQMatrix (double Q[], double pi[], int n) {
    MatrixXd A(n+1, n);
    A.topRows(1).setOnes();
    A.bottomRows(n) = Map<MatrixXd>(Q, n, n);
    VectorXd b(n+1);
    b.setZero();
    b(0) = 1.0;
    Map<VectorXd> freq(pi, n);
    freq = A.colPivHouseholderQr().solve(b);
    double sum = freq.sum();
    ASSERT(fabs(sum-1.0) < 1e-4);
    return 0;
}

//int matby (double a[], double b[], double c[], int n,int m,int k)
///* a[n*m], b[m*k], c[n*k]  ......  c = a*b
//*/
//{
//    int i,j,i1;
//    double t;
//    for (i = 0; i < n; i++)
//        for (j = 0; j < k; j++) {
//            for (i1=0,t=0; i1<m; i1++) t+=a[i*m+i1]*b[i1*k+j];
//            c[i*k+j] = t;
//        }
//    return (0);
//}
//
//int matexp (double Q[], double t, int n, int TimeSquare)
//{
//    double *space = new double[n*n];
//    /* This calculates the matrix exponential P(t) = exp(t*Q).
//       Input: Q[] has the rate matrix, and t is the time or branch length.
//              TimeSquare is the number of times the matrix is squared and should
//              be from 5 to 31.
//       Output: Q[] has the transition probability matrix, that is P(Qt).
//       space[n*n]: required working space.
//          P(t) = (I + Qt/m + (Qt/m)^2/2)^m, with m = 2^TimeSquare.
//       T[it=0] is the current matrix, and T[it=1] is the squared result matrix,
//       used to avoid copying matrices.
//       Use an even TimeSquare to avoid one round of matrix copying.
//    */
//    int it, i;
//    double *T[2];
//
//    if (TimeSquare<2 || TimeSquare>31) cout << "TimeSquare not good" << endl;
//    T[0]=Q;
//    T[1]=space;
//    for (i=0; i<n*n; i++)  T[0][i] = ldexp( Q[i]*t, -TimeSquare );
//
//    // DEBUG. Output norms, check scaling factor TimeSquare. Norm should be
//    // around 1.0 after scaling. The function `frob_norm()` is declared in
//    // `utils/tools.h`.
//    // cout << setprecision(16);
//    // cout << "Branch length (t): " << t << "." << endl;
//    // cout << "Norm of Q*t-matrix before scaling: " << frob_norm(Q, n, t) << "." << endl;
//    // cout << "Scaling factor (TimeSquare): " << TimeSquare << "." << endl;
//    // cout << "Norm of Q-matrix after scaling: " << frob_norm(T[0], n) << "." << endl << endl;
//
//    matby (T[0], T[0], T[1], n, n, n);
//    for (i=0; i<n*n; i++)  T[0][i] += T[1][i]/2;
//    for (i=0; i<n; i++)  T[0][i*n+i] ++;
//
//    for (i=0,it=0; i<TimeSquare; i++) {
//        it = !it;
//        matby (T[1-it], T[1-it], T[it], n, n, n);
//    }
//    if (it==1)
//        for (i=0;i<n*n;i++) Q[i]=T[1][i];
//
//    delete [] space;
//    return(0);
//}