1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
|
#include "multitree.hpp"
#include "io_utils.hpp"
namespace terraces {
struct index_array_view {
index* _begin;
index* _end;
index* begin() const { return _begin; }
index* end() const { return _end; }
};
std::ostream& print_multitree_node(std::ostream& stream, const multitree_node* node,
const name_map& names) {
switch (node->type) {
case multitree_node_type::base_single_leaf:
return stream << names[node->single_leaf];
case multitree_node_type::base_two_leaves: {
auto& tl = node->two_leaves;
return stream << '(' << names[tl.left_leaf] << ',' << names[tl.right_leaf] << ')';
}
case multitree_node_type::base_unconstrained: {
auto& u = node->unconstrained;
return stream << '{' << utils::as_comma_separated_output(
index_array_view{u.begin, u.end}, names)
<< '}';
}
case multitree_node_type::inner_node: {
auto& in = node->inner_node;
stream << '(';
print_multitree_node(stream, in.left, names);
stream << ',';
print_multitree_node(stream, in.right, names);
stream << ')';
return stream;
}
case multitree_node_type::alternative_array: {
auto& aa = node->alternative_array;
for (auto it = aa.begin; it != aa.end; ++it) {
if (it != aa.begin) {
stream << '|';
}
print_multitree_node(stream, it, names);
}
return stream;
}
case multitree_node_type::unexplored: {
auto& u = node->unexplored;
return stream << '[' << utils::as_comma_separated_output(
index_array_view{u.begin, u.end}, names)
<< ']';
}
default:
assert(false);
return stream;
}
}
std::ostream& operator<<(std::ostream& stream, newick_multitree_t tree) {
auto node = tree.root;
auto& names = *tree.names;
return print_multitree_node(stream, node, names);
}
} // namespace terraces
|